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Abstract

An autonomous robot that acts in a goal-directed fashion requires a world model of the

elements that are relevant to the robot’s task. In real-world, dynamic environments, the world

model has to be created and continually updated from uncertain sensor data. The symbols

used in plan-based robot control have to be anchored to detected objects. Furthermore, robot

perception is not only a bottom-up and passive process: Knowledge about the composition of

compound objects can be used to recognize larger-scale structures from their parts. Knowledge

about the spatial context of an object and about common relations to other objects can be ex-

ploited to improve the quality of the world model and can inform an active search for objects

that are missing from the world model.

This thesis makes several contributions to address these challenges: First, a model-based

semantic mapping system is presented that recognizes larger-scale structures like furniture

based on semantic descriptions in an ontology. Second, a context-aware anchoring process is

presented that creates and maintains the links between object symbols and the sensor data cor-

responding to those objects while exploiting the geometric context of objects. Third, an active

perception system is presented that actively searches for a required object while being guided

by the robot’s knowledge about the environment.

Zusammenfassung

Autonome Roboter benötigen ein Weltmodell derjenigen Elemente in seiner Umgebung, die

für ihre jeweilige Aufgabe relevant sind, um zielgerichtet handeln zu können. In dynamischen

Umgebungen muss das Weltmodell aus unsicheren Sensordaten erzeugt und kontinuierlich ak-

tuell gehalten werden. Symbole, die in der planbasierten Robotersteuerung verwendet werden,

müssen in tatsächlich erkannten Objekten verankert werden. Zudem ist Roboterwahrnehmung

nicht ein Prozess, der allein Bottom-Up und passiv geschieht: Wissen über die Zusammenset-

zung von Objekten kann genutzt werden, um größere Strukturen aus ihren Teilen zu erkennen.

Das Wissen über den räumlichen Kontext eines Objektes kann dabei helfen, die Qualität des

Weltmodells zu steigern, und kann eine aktive Suche nach fehlenden Objekten lenken.

Die vorliegende Arbeit leistet die folgenden Beträge zur Lösung dieser Probleme: Erstens

wird ein Verfahren zur modellbasierten semantischen Kartierung vorgestellt, das größere Struk-

turen (wie Möbel) basierend auf semantischen Beschreibungen aus einer Ontologie erkennt.

Zweitens wird ein kontextbasierter Anchoringprozess präsentiert, welcher die Verbindungen

zwischen Objektsymbolen und den entsprechenden Sensordaten erzeugt und aktuell hält und



dabei den geometrischen Kontext der Objekte berücksichtigt. Drittens wird ein System zur ak-

tiven Wahrnehmung vorgestellt, welches aktiv nach einem benötigten Objekt sucht und dabei

das Wissen über die Umgebung des Roboters ausnutzt.

iv



Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Joachim Hertzberg for his invalu-

able supervision, support and encouragement during the writing of this dissertation. I always

knew that I could come to him for help and advice, no matter how busy he was at the time, and

that he would always have my back.

I would like to express my sincere gratitude to Prof. Dr. Alessandro Saffiotti for agreeing

to be my second supervisor and for warmly welcoming me to his research group during my

research stay in Örebro. The long and intense discussions with him over the years not only

provided much-needed clarity and insight but also always made me walk away with a smile.

I would like to offer my special thanks to my coauthors and colleagues from the University

days Dr. Sven Albrecht, Dr. Thomas Schüler, Jochen Sprickerhof and Priv. Doz. Dr. Thomas

Wiemann for the shared research and the stimulating conversations we had during our journey

together.

I would also like to thank my current colleagues at DFKI, which are too numerous to name

here, for providing a friendly and inspiring research environment.

I would like to extend my sincere thanks to the whole team of the RACE project for the

fruitful collaboration and the sometimes exhausting, but always exhilarating code sprints, in
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Chapter 1

Introduction

Autonomous mobile robots have begun to make impressive inroads into both homes and facto-

ries in the last two decades. Professional service robots (mainly logistics robots, but also other

fields such as defense, milking robots, public relations, exoskeletons, and medical robots) have

sold 173,000 units in 2019, while service robots for domestic and personal use (vacuum clean-

ing, lawn mowing, window cleaning and other types) have sold more than 18.6 million units

in the same year, both with a yearly growth of over 30 % (International Federation of Robotics,

2020).

At the moment, these robots are very specialized and focused on simple tasks which do not

require object manipulation and only limited perception and semantics. For most of the tasks

listed above, it suffices to recognize obstacles, and the semantic properties of the environment

can be mostly ignored.

The most advanced robot prototypes, which include semantic environment perception, are

found in the research community; the progress in this field can be observed for example in

the annual RoboCup@Home competition (van der Zant and Wisspeintner, 2005; Wisspeintner

et al., 2009). These academic developments are already approaching a point where they are

ready to be employed in real-world scenarios, as is evidenced by the rise of a number of start-

ups such as Fetch Robotics1 or Magazino2, who start to offer more advanced robots for tasks

such as order picking and commissioning in commercial warehouses.

At the same time, a new generation of “safe” robots that a suitable for human-robot collab-

oration —also known as cobots— have sprung up in the industrial community (de Gea Fer-

nández et al., 2017a,b; Villani et al., 2018). These robots are intended to work closely together

1https://fetchrobotics.com/
2https://www.magazino.eu/

1
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2 CHAPTER 1. INTRODUCTION

with humans in dynamic environments, instead of being separated from human workers by a

safety fence, and are no longer limited to repetitive tasks in the carefully controlled environ-

ment of a robot work cell. To be able to respond to mass customization and rapidly chang-

ing requirements, several carmakers are already replacing the traditional conveyor-belt-based

manufacturing processes that have existed since Ford’s days with a newer, more dynamic sys-

tem, where robots transport the parts that are needed for a given assembly step between work

stations that are manned by workers and collaborative robots. All of these developments are

expected to continue to accelerate in the coming years.

One essential skill that all these advanced autonomous robots require is robot perception,

i.e., a deeper semantic understanding of the dynamic environment they operate in. Robot

perception goes beyond pure bottom-up object recognition: It has to take the robot’s knowledge

about its environment and the context of the scene into account, and it has to bridge the gap

between raw sensor data and the high-level (usually plan-based) robot control. This is the core

of this thesis.

1.1 Motivation

Consider the case of a robot working as a waiter in a restaurant (Figure 1.1). It has to fulfill a

variety of tasks: setting a table for new guests, serving meals and beverages to a guest, cleaning

a table, filling a dishwasher and so on. To fulfill these tasks, there are many things the robot

needs to know about its environment:

• Where are the pieces of furniture that are relevant to the task (tables, bar, chairs, counter,

dishwasher, fridge, . . . )?

• Where are the relevant objects (plates, cutlery, glasses, mugs, salt and pepper mills, menus,

table signs, . . . )?

• How to search efficiently for a missing object? I.e., what are the most likely places to look

for an object? For example, some restaurants have a shared pepper mill that is brought to

a table with certain meals and retrieved by the waiter later. What if the guest has moved

the pepper mill in the meantime?

When our exemplary robot was delivered from the factory, it was already equipped with

certain general knowledge about generic restaurants: An ontology of types of furniture, CAD

models of the furniture, some basic object recognition capabilities. However, when it is first

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION



1.1. MOTIVATION 3

Figure 1.1: Artist’s conception of the PR2 robot working as a waiter in a restaurant: setting a table and
serving tea. Image source: http://ellingson.cc/willow, artwork by Joshua Ellingson

turned on, it still needs to adapt to the specific layout of the restaurant that it is operating in; for

example, it needs to create a semantic map of all the furniture that is present in the restaurant.

Moreover, it needs to continuously keep track of all the object locations and the changes in the

environment while it is operating. Also, when the plan-based robot control requires an object

that is not in the robot’s current world model, the robot needs to actively search for this object

while taking into account known objects and knowledge about probable locations of the target

object.

Concretely, the robot in our example performs an initial exploration of the environment

while recording point clouds from its RGB-D cameras and/or 3D laser scanners. These point

clouds are continually registered using 6DoF SLAM, and a mesh representation is created. The

mesh representation is matched against an OWL-DL knowledge base of furniture, and hy-

potheses for possible pieces of furniture are generated. These hypotheses are then verified

by matching CAD models of the furniture into the accumulated point cloud. This is further

described in Chapter 3.

Given the semantic map of the environment and its furniture, the robot can start planning

and executing tasks, such as completing a table setting, i.e., ensuring that there is a complete

place setting consisting of a plate, a spoon and a fork in front of every chair. An important

part of this task is to recognize which objects are already present on the table. Since the spatial

context in which an object appears can help to disambiguate the object class in the face of noisy

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION
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4 CHAPTER 1. INTRODUCTION

object recognition, the robot uses a probabilistic graph representation of the scene to improve

the results of a baseline object recognition system (see Figure 1.2). It also continually anchors

symbols used by the planner to objects detected through its sensors. Details on the context-

aware anchoring system can be found in Chapter 4.

VasePlate

Spoon

Mug

Salt Dish

Mug

Spoon

Figure 1.2: Left: A table setting from the point of view of the robot’s RGB camera; right: a graph
representation of the same scene.

Both modules described so far (semantic mapping and context-aware anchoring) are pas-

sive, i.e., they continually process data that is perceived through the robot’s sensors. However,

an autonomous robot also needs to actively navigate, re-position its sensors and manipulate

the environment to gather the necessary information to fulfill tasks such as object search (to

find an object that is required for a task) or exploration (for example, to explore all occluded

regions of the table that have a certain chance of hiding an object in the case of our “complete

a table setting” example). This is the role of the final module, the active perception system. It

continually builds and updates an octomap of the environment (see Figure 1.3) to track known

and unknown space. For each region of unknown space, it tracks the probability of containing

a target object. This probability could be supplied, for example, by sampling the Probabilistic

Graphical Model used by the context-aware anchoring system. The active perception system

then plans and executes the sequence of actions (re-positioning the sensors by moving head

and torso, navigating to a different pose, moving away occluding objects) that has the lowest

expected time until a target object is found. Since the execution of those actions provides new

viewpoints for the camera, the passive context-aware anchoring system (which is running in

the background) also profits from this. The active perception module is the topic of Chapter 5.

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION
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Figure 1.3: An octomap of the table scene from Figure 1.2.

While the thesis focuses on robot perception, it should be made clear that the focus is not

on pure computer vision. Most computer vision research focuses on recognizing objects in a

single RGB or RGB-D frame while being agnostic of the circumstances of where and when this

RGB frame was taken. While this task is an essential building block of any robot perception

system, robot perception should go beyond just narrow passive bottom-up perception. Robots

usually have a wealth of information about the situation that an image was taken in: The loca-

tion, previously detected (or manipulated) objects nearby, customary arrangements of certain

objects, the part hierarchy of composite objects and so on. This top-down knowledge needs to

be integrated with bottom-up object detection to create a full robot perception system. More-

over, robot perception is not necessarily passive: Usually, a robot actively points its sensors

towards a location and runs object recognition to locate a certain object, and it needs to figure

out how to do this most efficiently based on its knowledge of the situation.

Note that none of this should not be taken as a dismissal of common computer vision meth-

ods; rather, that this thesis tackles a different hard problem while integrating with and comple-

menting computer vision.

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION



6 CHAPTER 1. INTRODUCTION

1.2 Scientific Contribution

The scientific contribution of this thesis can be summarized in the following three points:

Model-based Semantic Mapping A model-based semantic mapping system is presented that

recognizes larger-scale structures like furniture based on semantic descriptions in an

OWL-DL ontology. The system works incrementally and in a closed loop, based on RGB-

D images captured by a mobile robot. The result is a mesh representation of the static

structures in the robot’s environment, enriched by CAD models of the recognized pieces

of furniture.

Context-aware Anchoring A context-aware anchoring process is presented that creates and

maintains the links between object symbols and the sensor data corresponding to those

objects while exploiting the geometric context of objects to improve the classification ac-

curacy of a baseline local object recognition system. The system works online and incre-

mentally aggregates information from RGB-D images captured by a mobile robot, which

enables it to take into account contextual relations with objects that are outside the current

sensor view.

Active Perception An active perception system is presented that explores the environment in

a goal-directed fashion and actively searches for a required object while being guided by

the robot’s probabilistic knowledge about the environment (which could be supplied by

the anchoring system, for example). New possible sensing actions are generated using

a frontier-based 3D view sampling technique. The algorithm finds objects in less time

(on average) than state-of-the-art greedy algorithms by continually planning multiple

sensing actions ahead.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 contains the background and an introduction to the relevant parts of the RACE

project, from which this thesis originates.

Chapter 3 describes the model-based semantic mapping system for recognition and mapping

of large-scale structures based on an OWL-DL ontology.

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION



1.4. COOPERATIONS WITH OTHER RESEARCHERS 7

Chapter 4 presents the context-aware anchoring system, which maintains the link between

symbols used by the planner and objects recognized from the robot’s sensors.

Chapter 5 introduces the active perception system that actively plans and executes perception

actions on the robot.

Chapter 6 concludes this thesis and discusses possible avenues for future research based on

this work.

1.4 Cooperations with Other Researchers

This thesis did not emerge from a vacuum; rather, it was written and developed in the context

of different cooperations with several other researchers, mostly from the EU project RACE.

These cooperations have resulted in a fruitful exchange of ideas and several joint publications.

For this reason, a comprehensive account of the systems developed in this thesis necessarily

includes descriptions of the parts developed by these other authors. Therefore, this section

provides a differentiation of the author’s work from that of his co-authors and colleagues.

• The model-based semantic mapping system presented in Chapter 3 was developed in

close collaboration with my then-coworkers at Osnabrück University, Thomas Wiemann

and Sven Albrecht. The meshing tools described in Section 3.2.1 were developed by

Thomas Wiemann, and Sven Albrecht contributed the CAD model matching part of the

system described in Section 3.2.3.

• José Raúl Ruiz-Sarmiento from the University of Málaga stayed at Osnabrück University

as a guest researcher from February through May 2014, which sparked long-lasting coop-

eration with the author of this thesis. During his stay in Osnabrück, J.R. Ruiz-Sarmiento

started to develop the Undirected Probabilistic Graphical Models in a C++ library (UP-

GMpp) in order to integrate it with the context-aware anchoring system described in

Chapter 4 (Sections 4.2.3.1, 4.2.3.3 and 4.2.3.4).

• In the context of the RACE project, Miguel Oliveira, Gi Hyun Lim, S. Hamidreza Kasaei,

Aneesh Chauhan and Luís Seabra Lopes from the Universidade de Aveiro developed the

local object recognition system employed by the context-aware anchoring system (Sec-

tion 4.2.1).

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION



8 CHAPTER 1. INTRODUCTION

• Thorsten Gedicke from Osnabrück University worked as a student assistant in the RACE

project and later completed his master’s thesis (Gedicke, 2015), which was co-supervised

by the author. During this time, he played a major part in the development of the

forward-looking active perception system covered in Chapter 5. He also participated

in the implementation of the anchoring system (Chapter 4).

• The RACE blackboard was mainly developed by Pascal Rost, Stephanie von Riegen and

Lothar Hotz from the University of Hamburg / HITeC e.V. (Section 2.3).

1.5 Publications

The contributions described in this dissertation have in part first been published in conference

or journal publications. The following list gives an overview. All publications predated the

text of this thesis, with the exception of Günther et al. (2018), which is a revised version of

Chapter 4.

Chapter 2 (Background: The RACE project)

• Joachim Hertzberg, Jianwei Zhang, Liwei Zhang, Sebastian Rockel, Bernd Neumann, Jos

Lehmann, Krishna S. R. Dubba, Anthony G. Cohn, Alessandro Saffiotti, Federico Pec-

ora, Masoumeh Mansouri, Štefan Konec̆ný, Martin Günther, Sebastian Stock, Luís Seabra

Lopes, Miguel Oliveira, Gi Hyun Lim, Hamidreza Kasaei, Vahid Mokhtari, Lothar Hotz,

and Wilfried Bohlken. The RACE project. KI - Künstliche Intelligenz, 28(4):297–304, 2014.

ISSN 0933-1875. doi: 10.1007/s13218-014-0327-y

• Sebastian Rockel, Bernd Neumann, Jianwei Zhang, Krishna S. R Dubba, Anthony G.

Cohn, S̆tefan Konec̆ný, Masoumeh Mansouri, Federico Pecora, Alessandro Saffiotti, Mar-

tin Günther, Sebastian Stock, Joachim Hertzberg, Ana Maria Tomé, Armando J. Pinho,

Luís Seabra Lopes, Stephanie von Riegen, and Lothar Hotz. An ontology-based multi-

level robot architecture for learning from experiences. In Designing Intelligent Robots:

Reintegrating AI II, AAAI Spring Symposium, Stanford, USA, March 2013

• Sebastian Stock, Martin Günther, and Joachim Hertzberg. Generating and executing hi-

erarchical mobile manipulation plans. In Proceedings of ISR/Robotik 2014; 41st International

Symposium on Robotics, pages 1–6. VDE, 2014

CONTEXT-AWARE ANCHORING, SEMANTIC MAPPING AND ACTIVE PERCEPTION
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Chapter 3 (Model-Based Semantic Mapping)

• Martin Günther, Thomas Wiemann, Sven Albrecht, and Joachim Hertzberg. Model-based

furniture recognition for building semantic object maps. Artif. Intell., 247:336–351, June

2017. doi: 10.1016/j.artint.2014.12.007. Available online: Jan 23, 2014

• Martin Günther, Thomas Wiemann, Sven Albrecht, and Joachim Hertzberg. Building
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10 CHAPTER 1. INTRODUCTION

Other activities

As part of the 3rd Lucia Winter School on Artificial Intelligence and Robotics in Örebro, Swe-

den (December 11-16, 2016), the model-based semantic mapping system (Chapter 3) and the

forward-looking active perception system (Chapter 5) were taught to a group of 30 graduate

students and junior researchers as part of a full-day lecture and tutorial session.
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Chapter 2

Background: The RACE Project

A major part of this thesis was developed within the RACE1 (Robustness by Autonomous Com-

petence Enhancement) project. RACE was a European FP7 project which ran from December

2011 to November 2014 and involved 6 partners: the University of Hamburg, the University of

Leeds, Örebro University, Osnabrück University, Universidade de Aveiro and HITeC e.V.

2.1 RACE Project Description

According to the RACE project’s Description of Work (2011), the overall aim of the project was

(emphasis mine):

. . . to develop an artificial cognitive system, embodied by a service robot, able to

build a high-level understanding of the world it inhabits by storing and exploiting

appropriate memories of its experiences. Experiences will be recorded internally

at multiple levels: high-level descriptions in terms of goals, tasks and behaviors,

connected to constituting subtasks, and finally to sensory and actuator skills at

the lowest level. In this way, experiences provide a detailed account of how the

robot has achieved past goals or how it has failed, and what sensory events have

accompanied the activities.

The project aims to produce the following key results:

(i) Robots capable of storing experiences in their memory in terms of multi-level

1http://project-race.eu/
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12 CHAPTER 2. BACKGROUND: THE RACE PROJECT

representations connecting actuator and sensory experiences with meaning-

ful high-level structures,

(ii) Methods for learning and generalizing from experiences obtained from behav-

ior in realistically scaled real-world environments,

(iii) Robots demonstrating superior robustness and effectiveness in new situations

and unknown environments using experience-based planning and behavior

adaptation.

While the overarching aim of the project was on learning and generalizing from experi-

ences, this was tackled by other project partners and is not the topic of this thesis. Instead, the

modules presented in this thesis fit into the overall goal stated above by generating symbolic

and metric “sensory events” from raw sensor data, and connecting them to high-level descrip-

tions that are used both for analyzing and learning from experiences (offline) and for planning

and execution monitoring (online).

For a more detailed overview of the RACE project, see Hertzberg et al. (2014); Rockel et al.

(2013). Details on how the modules from this thesis fit into the overall RACE architecture will

be discussed in the following section.

2.2 The RACE Architecture

The software architecture of RACE is centered around the so-called Blackboard: A knowledge

base for symbolic temporally valid facts (so-called “fluents”) with metric properties. Due to

its central nature, Section 2.3 is dedicated to the Blackboard; this section describes the overall

architecture.

Figure 2.1 gives an overview of the major software components and their interfaces in

RACE. The figure also displays the two major feedback loops in the architecture: one fast,

online feedback loop for plan-based robot control, and one slow, offline feedback loop that

enables the robot to learn from experiences.

The online feedback loop (blue in Figure 2.1) starts with the planner, which builds its initial

state representation from fluents on the blackboard that represent the robot’s state (the robot

position and the posture of the arms, torso and grippers), the position and state of objects

and guests, and the goal given by the user. Furthermore, the knowledge on the blackboard

is enriched by several spatial, temporal, resource and ontological reasoners as well as a high-

level scene interpretation module, all of which can be used by the planner. Initially (Stock
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Figure 2.1: The RACE architecture. Red: the modules developed in this thesis; blue: the online feedback
loop from planning via acting, sensing and anchoring back to planning; green: the offline feedback loops
from experiences via planner and reasoners back to experiences. Modified from Rockel et al. (2013).

et al., 2014), RACE used the HTN planner Shop2 (Nau et al., 2001). Later, the HTN planner was

replaced by the hierarchical hybrid planner CHIMP (Stock, 2017a,b).

The finished plan is passed (via the blackboard) to the execution monitor, which dispatches

each planned action to the robot and monitors whether the actions are successfully executed.

The initial implementation (Stock et al., 2014) was based on the Python-based state machine

framework SMACH (Bohren et al., 2011), but was later replaced by Consistency-Based Execu-

tion Monitoring (CBEM; Konec̆ný et al., 2014). CBEM not only monitors whether an already

dispatched action aborts with an error but instead continually checks the planned and the ac-

tual world state for consistency. It does so by transforming the plan including all preconditions

and effects into a temporal constraint network, which allows it to ensure temporal consistency

(something that the Shop2 HTN planner does not account for), as well as to detect when it be-

comes impossible to fulfill the preconditions of an action that is scheduled to be executed later

in the plan.
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14 CHAPTER 2. BACKGROUND: THE RACE PROJECT

The base-level robot software provides the capabilities of the robot (navigation, manipu-

lation, control of the head, torso and grippers, . . . ) in the form of ROS action interfaces. Most

of these actions were already provided with the robot, and are implementations of generic in-

terfaces that are provided by many other robots. This decouples the specific robot to be used

from the specific control architecture (such as RACE), which promotes reuse and portability

of both the base-level robot control software and the control architecture. One extra capability

that was developed in the context of this thesis is active search (Chapter 5), which enables the

robot to actively search for an object. Each ROS action provided by the robot corresponds to a

(parametrizable) action that is available to the planner.

The continuous data from the robot’s sensors is provided in the form of ROS topics to var-

ious modules that process it into a form suitable for storage on the blackboard. The symbolic

proprioception simply checks the continuous state of the gripper, torso and arm joints and

discretizes it into symbols for certain predefined states of the robot, such as “gripper open” or

“left arm tucked”. The RGB-D data from the robot’s head camera is processed by the local ob-

ject recognition system, which is based on spin images and was developed within the RACE

project (Kasaei et al., 2015; Oliveira et al., 2014). The recognized objects and their confidence

values are passed to the context-aware anchoring module (Chapter 4), which performs the

final joint object recognition and anchoring to object fluents on the blackboard. The fluents rep-

resenting the robot’s state and objects are consumed by the planner and the execution monitor,

which completes the first loop.

The second feedback loop (green in Figure 2.1) enables the robot to learn from experiences.

While the robot is executing tasks, the experience extractor/annotator extracts a subset of the

fluents on the blackboard and labels them as a new experience. Between episodes, the con-

ceptualizer processes the collected experiences and updates the concepts in the OWL ontol-

ogy. The OWL ontology is used as a common representation format, from which the planning

domain and the knowledge used by the other reasoners are generated. In the next episode,

the planner and reasoners can make use of the learned concepts, which completes the second

loop. In RACE, two separate approaches for learning from experiences were developed, called

Example-Based Compositional Learning (EBCL; Neumann et al., 2014) and Experience-Based

Planning Domains (EBPDs; Mokhtari et al., 2016). For details on learning from experiences, we

refer the reader to those publications.

Mapping (semantic or otherwise) was not the topic of the RACE project; in RACE, the po-

sitions of all task-relevant furniture objects were part of the initial knowledge that was loaded

at system start, and it was assumed that a suitable semantic mapping system could produce an
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identical output. The furniture recognition and semantic mapping system presented in this

thesis (Chapter 3) fills that gap. It could be integrated into the RACE architecture by performing

an initial mapping session and writing all recognized furniture instances into the Blackboard’s

initial knowledge, as indicated in Figure 2.1. Since both the presented furniture recognition

system and the Blackboard use OWL-DL as a knowledge representation and reasoning sys-

tem, they could be integrated seamlessly, giving the furniture recognition system access to all

knowledge about furniture stored in the Blackboard’s ontology.

2.3 The RACE Blackboard

The Blackboard is the central component of the RACE architecture. Most of the communica-

tion between RACE components does not happen directly, but instead by reading and writing

fluents to the Blackboard. The Blackboard is implemented on top of the Sesame RDF triple

store. All concepts (plans, planned and executed actions, furniture, movable objects, named

areas of interest, spatial relations, the robot’s state and so on) are represented in an OWL-DL

ontology. For example, the concept MoveObjectFromTo represents a specific type of activity

that was executed by the robot. Its purpose is to record the robot’s activities including their

related objects, areas etc., to facilitate learning from experiences. In general, each activity cor-

responds to a task that was emitted by the planner. Since the planning domain is hierarchical,

the activities are also hierarchical (i.e., an activity can have sub-activities). MoveObjectFromTo

is defined as the OWL class in Listing 2.1. As we can see, MoveObjectFromTo is derived from

MoveObjectActivity and inherits some more properties from that superclass.

Taken together, these properties encode the following information about the activity:

hasPassiveObject: The object that was moved.

hasAreaA, hasAreaB: The named areas between which the object was moved (from A to B).

hasGetObjects, hasPutObject: The sub-activities of getting and putting down the object.

hasTask: The planned task that triggered this activity.

Of course, there are plenty of other properties inherited from superclasses further up the

OWL class hierarchy, but these are omitted here for brevity. The activities tend to be one of

the more complex parts of the ontology (which is why they were chosen here for demonstra-

tion purposes). Many other concepts are simpler (such as the concepts representing areas or

physical objects).
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Listing 2.1 The MoveObjectFromTo OWL class and its superclass MoveObjectActivity (in
Manchester OWL syntax)

Class:
MoveObjectFromTo

EquivalentTo:
MoveObjectActivity AND
hasAreaA EXACTLY 1 Area AND
hasPutObject EXACTLY 1 PutObjectActivity AND
hasGetObjects EXACTLY 1 GetObjectsActivity OR

GetObjectsDriveRobotGraspObjectsActivity OR
GetObjectsFromDifferentActivity OR
GetObjectsGraspObjectsActivity

Class:
MoveObjectActivity

EquivalentTo:
RobotActivity AND
hasTask EXACTLY 1 move_object_Task AND
hasPassiveObject EXACTLY 1 PassiveObject AND
hasAreaB EXACTLY 1 Area

Each piece of information stored on the blackboard is an instance (or, in OWL terminology,

an individual) of a concept defined in the ontology. More precisely, in RACE each instance is

a so-called fluent: a temporally valid predicate (i.e., a fact that holds only within a specified

time interval). This modeling choice was made because facts that have become invalid cannot

be simply deleted from the blackboard, but have to be retained in order to provide the full

execution trace of an episode to the modules for learning from experiences. On the RACE

blackboard, fluents are never removed; instead, they are “ended” by updating the finish time

to a time point prior to the current time.

As an example, three fluents are shown in Listing 2.2: pickUpObjectActivity_0X0, on4

and holding0. The example shows another peculiarity in how the validity interval of fluents

are modeled: Both the start and finish times are not definite time points, but instead they

are intervals themselves (from earliest possible start/finish time to latest possible start/finish

time). This affords a limited modeling of uncertainty: In many cases, the exact start or finish

times of a fluent are not known but can be narrowed down to an interval. In the example,

the activity pickUpObjectActivity_0X0 started at 119.621 s (when the action was dispatched)

and ended at 161.817 s (when the action returned successfully). These two time points are
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Listing 2.2 Fluents representing a finished PickUpObjectActivity on the blackboard (in YAML
syntax)

!Fluent
Class_Instance: [PickUpObjectActivity, pickUpObjectActivity_0X0]
StartTime: [119.621, 119.621]
FinishTime: [161.817, 161.817]
Properties:

- [hasArm, Arm, rightArm1]
- [hasPassiveObject, Mug, mug1]
- [hasResult, xsd:string, succeeded]
- [hasOn, On, on4]
- [hasHolding, Holding, holding0]

---
!Fluent
Class_Instance: [On, on4]
StartTime: [0.0, 0.0]
FinishTime: [119.621, 161.817]
Properties:

- [hasArea, PlacingAreaEastRight, placingAreaEastRightCounter1]
- [hasPhysicalEntity, Mug, mug1]
- [isInitialKnowledge, xsd:boolean, True]

---
!Fluent
Class_Instance: [Holding, holding0]
StartTime: [119.621, 161.817]
FinishTime: [0.0, 0.0]
Properties:

- [hasPassiveObject, Mug, mug1]
- [hasGripper, Gripper, rightGripper1]

known exactly, so the earliest possible and latest possible start (resp. finish) times of that

fluent are identical. At some point during the execution of this activity, mug1 ceased to be

on placingAreaEastRightCounter1 and was instead held by rightGripper1. Since the dis-

patched action is opaque to the dispatcher, the exact time point of this transition is not known;

it could have happened any time during the execution of the activity. Therefore, the finish time

of on4 and the start time of holding0 is set to the interval [119.621, 161.817]. The start time

of on4 is unknown (since it was part of the robot’s initial knowledge in this scenario). Likewise,

the end time of holding0 is not yet known, since it still holds (but can be updated later). To

signify this, both of these are set to the special value [0.0, 0.0].

In OWL, each property is a binary relation, i.e., it can only link an individual to a value
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(such as an integer, a string etc.) or another individual. To represent arbitrary n-ary rela-

tions, a technique called reification is employed, whereby the n-ary relation is represented by

an auxiliary individual. As a side effect, reification also makes it possible to specify dura-

tions for the validity of a relation, as seen previously. The two instances of the classes On and

Holding in Listing 2.2 are examples of reified relations. In OWL, it is impossible to directly

specify pickUpObjectActivity_0X0.hasHolding(rightGripper1, mug1), since this would be

a ternary relation between the three individuals pickUpObjectActivity_0X0, rightGripper1

and mug1. Therefore, the ternary relation is split up into one individual holding0 and three

binary relations:

• pickUpObjectActivity_0X0.hasHolding(holding0),

• holding0.hasGripper(rightGripper1) and

• holding0.hasPassiveObject(mug1).

The blackboard can be queried by other modules using the SPARQL query language. For

example, the following query returns all floor areas, i.e., all individuals of class upper:Area (or

its transitive subclasses) whose bounding box pose has the z coordinate 0:

SELECT DISTINCT ?area WHERE

{

?area rdf:type ?type .

?type rdfs:subClassOf* upper:Area .

?area upper:hasBoundingBox ?bbox .

?bbox upper:hasPose ?pose .

?pose upper:hasZ "0.0"^^xsd:float .

}

SPARQL queries can also be registered with the blackboard. When a fluent that matches

a registered query is added or modified, the blackboard publishes the fluent on a specified

ROS topic. This has the advantage that other modules do not have to poll the blackboard

continuously, but are instead actively notified.
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2.4 Demonstration Environment

The environment in which the demonstrations of the RACE project took place is a stylized

restaurant with two tables, four chairs and a counter (see Figure 2.2). There are also varying

amounts of tabletop objects, such as mugs, plates, various cutlery, pepper mills etc., depending

on the concrete scenario. In some scenarios, a human guest is involved, sitting at one of the

tables or blocking the path of the robot. Typical tasks of the robot were serving a mug of coffee

or clearing a table.

Figure 2.2: The RACE demonstration environment at the University of Hamburg

In the RACE ontology, various types of areas in the restaurant that are significant for the

robot’s actions are represented (see Figure 2.3):

ManipulationAreas are areas on the floor from which the robot can reach objects in some

nearby PlacingAreas.

PreManipulationAreas are areas on the floor that are adjacent to a ManipulationArea, but far

enough from any obstacles so that they can be reached using the standard navigation

components.
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Figure 2.3: Schema of the named areas and scenario-relevant objects in one of the RACE demo scenarios.
Figure reproduced from Hertzberg et al. (2014).

SittingAreas are areas on the floor which can be occupied by chairs.

PlacingAreas are areas on the table where objects can be placed.

The symbolic names of these areas are used by many modules in the RACE system, such

as the planner, executor and anchoring. For example, placingAreaEastRightCounter1 (from

Listing 2.2 on page 17) is a fluent that is used by the planner to designate the area in which a

mug is to be placed. Likewise, the executor monitors the successful placement of the mug on

this area, and the anchoring module uses it to update the locations of objects that are detected

on the table.

Since mapping was not in the scope of the RACE project, all areas and poses of the pieces of

furniture were specified manually as part of the robot’s initial knowledge. However, a semantic

mapping system such as the one presented in Chapter 3 could be used to autonomously acquire

this information.

2.5 Software Framework: ROS

The robotics software framework that is used in this thesis is ROS, the Robot Operating Sys-

tem (Quigley et al., 2009). Since the work started on this thesis, ROS has become the de-facto
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standard robotics middleware in autonomous robotics, both in academia and in many indus-

trial applications. Despite its name, ROS is not an operating system, but a collection of tools,

libraries and conventions used to write robot software. It mainly consists of the following com-

ponents:

1. A communication middleware. The middleware is the “plumbing” that connects different

processes (“ROS nodes”) and is based on a publish-subscribe pattern, which enables loose

coupling between nodes. As a result, nodes can be written in many different languages,

can be distributed over several computers and robots in the networks, and the whole

system has a certain degree of resilience against the failure of single nodes.

2. A set of capabilities: Ready-to-use software packages for many common robot capabilities

(navigation, manipulation, sensor data processing, . . . ). Most packages are contributed

by the community, i.e., a large number of research labs and companies worldwide.

3. Standards and conventions. A large set of commonly-used data types have been standard-

ized in the message formats that are sent over the ROS network. Also, there is a set of

conventions (for example for coordinate systems or units of measurement), which are

formalized in so-called ROS Enhancement Proposals (REPs). These two points are often

overlooked in discussions about ROS, but are perhaps the most valuable contribution of

ROS: They provide hardware independence by decoupling algorithms from specific hard-

ware and specific implementations of a capability. For example, the Active Perception al-

gorithm FLAP4CAOS (Chapter 5) requires a navigation capability, and all ROS-enabled

mobile ground robots provide a navigation capability with the same message interface.

This makes it relatively easy to adapt FLAP4CAOS to a new robot. In fact, FLAP4CAOS

has been demonstrated on the PR2 robot, the Calvin robot and a group of three modified

Turtlebots.

2.6 Robots and Simulator used in the Experiments

The main demonstration platform of the RACE project was the PR2 robot. Some experiments

in this thesis have additionally been performed on Osnabrück University’s Calvin and Kurtana

robots and in a Gazebo simulation of the PR2 robot in the RACE demonstration environment

(Section 2.4). This section gives a brief overview of these robots and the simulator. The reason

why the Gazebo simulator is included in this section is that Gazebo provides the same ROS
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interface as the physical PR2 robot, so from the point of view of higher-level software, the

simulated robot can be treated equally to a physical robot.

Since the PR2 robot was developed and sold by Willow Garage, the original creators of

ROS, it already came with very good ROS support. In the course of this thesis, the author was

responsible for the full ROS integration of the Calvin and Kurtana robots and a large part of

the integration of the RACE software with the PR2 robot and Gazebo simulator.

2.6.1 The PR2 Robot and Gazebo Simulator

The PR2 (Figure 2.4) is a mobile manipulator robot that has an omnidirectional base, a liftable

torso, a pan-tilt head and two 7DoF arms with parallel grippers. The sensor suite consists of

a 2D Hokuyo laser scanner in the base, a 3D laser scanner (consisting of a Hokuyo 2D laser

scanner on a tilt unit), and three 3D camera systems in the head (a narrow-angle stereo pair,

a wide-angle stereo pair and a custom structured light camera). The University of Hamburg’s

PR2 was also fitted with an ASUS Xtion Pro Live RGB-D camera, which was used instead of the

built-in 3D cameras in the RACE project. The PR2 was used in the experiments in Chapters 4

and 5.

The RACE demonstration environment (Section 2.4), including the PR2 robot, the furniture

and all task-relevant objects, was modeled in the Gazebo simulator (Figure 2.5). This eased the

software development at RACE partners without easy access to the physical PR2 robot. It also

made it possible to perform a large number of experiments in a reproducible way. The Gazebo

simulator was used in the experiments in Chapter 5.

2.6.2 The Calvin Robot

Osnabrück University’s Calvin robot is equipped with an ASUS Xtion Pro Live RGB-D camera

(top) that was removed from its casing, a web camera below (which was not used in the ex-

periments) and a pair of laser scanners for localization, navigation and obstacle avoidance (see

Figure 2.6). It has a differential drive base and a Katana 5DoF arm with an angular gripper.

Calvin was used in the experiments in Chapters 4 and 5.

2.6.3 The Kurtana Robot

Osnabrück University’s Kurtana robot (Figure 2.7) is a differential drive Kurt robot with a Mi-

crosoft Kinect mounted on a pole. It was used in the experiments in Chapter 3.
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Figure 2.4: University of Hamburg’s PR2 robot “Trixi” during one of the demonstration scenarios. Fig-
ure reproduced from RACE Deliverable D5.3 (2013).

Figure 2.5: The demonstration environment in the Gazebo simulator. Figure reproduced from RACE
Deliverable D5.3 (2013).
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Figure 2.6: Osnabrück University’s Calvin robot

Figure 2.7: Osnabrück University’s Kurtana robot.
Figure reproduced from Günther et al. (2013).
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Chapter 3

Model-Based Semantic Mapping

Many robot applications require a semantic map of the environment, i.e., a map that not

only captures the geometric properties of the environment but which is also annotated with

semantic labels, such as the location and type of doors, elevators, furniture, workbenches, ma-

chinery or other task-relevant objects. For example, in the RACE project, the locations of the

chairs, tables, and counter played a crucial role in the robot’s activities (such as clearing a table

or bringing a mug of coffee from the counter to a specific area on a given table). As explained

in Section 2.4, in RACE, these areas were specified manually, since the topic of mapping was

outside the scope of the project. However, a robot that adapts autonomously to new environ-

ments and changes to a known environment needs the capability to create such a semantic

map autonomously. This chapter presents such a semantic mapping system with the ability

to recognize larger-scale, quasi-static objects like furniture. Smaller, more dynamic objects like

table-top objects are treated in Chapter 4.

In recent years, a great number of approaches that generate geometric maps from RGB-D

data have been developed. These either register the continuous RGB-D frames into a consis-

tent full-scene point cloud (Dryanovski et al., 2013; Endres et al., 2012; Henry et al., 2012; Kerl

et al., 2015; Labbé and Michaud, 2018) or a triangle mesh (Newcombe et al., 2011). However,

creating a semantic map of the environment is still an open research issue. Labeling environ-

ment features with meaningful semantic information is required for a diverse range of tasks,

such as task planning, human-robot interaction, place recognition and object search. Moreover,

recognizing semantic information in the mapped environment can be beneficial for the map-

The contributions described in this chapter have first been published in the following publications: Albrecht
et al. (2011); Günther et al. (2011, 2013, 2017)
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ping process itself by aiding loop closure or generating hypotheses about occluded parts of the

environment.

According to the seminal paper by Kuipers and Byun (1991), a semantic map is hybrid:

It contains geometric and high-level, qualitative semantic features (Nüchter and Hertzberg,

2008). In our system, the geometric map is a 3D triangle mesh of the environment, enriched

with semantic information about the pieces of furniture in the form of CAD models with their

6DoF poses. The system works in a closed loop, i.e., semantic information is not only extracted

from the sensor data (bottom-up), but knowledge and reasoning are also used in the object

classification (top-down). The system is also capable of building its map incrementally, which

has the advantage that one does not have to wait for the completion of the mapping process be-

fore obtaining initial results. This opens up the possibility of influencing the mapping process

based on the information perceived so far.

The semantic mapping system presented in this chapter consists of the following three com-

ponents:

Surface reconstruction: Based on the incoming RGB-D data, a 3D triangle mesh of the envi-

ronment is constructed, and planar patches are extracted.

Ontology-based object classification: An ontology reasoner classifies the planar patches and

generates object hypotheses.

CAD model matching: The object hypotheses are verified by matching a CAD model of the

object to the underlying point cloud data.

The system presented in this chapter has certain commonalities with the context-aware an-

choring system presented in Chapter 4: Both systems recognize objects in the environment

based on RGB-D data and store their poses relative to a global reference frame. However, the

objects that are handled are fundamentally different regarding their size, appearance and dy-

namics, which is why they are best tackled by different approaches. Furniture objects (which

are dealt with in this chapter) are relatively large-scale, quasi-static objects that often feature

dominant planes, whereas tabletop objects (Chapter 4) in comparison are small-scale, dynamic

objects which mostly lack dominant planes and are instead often characterized by more com-

plex shapes and textures. This leads to the following differences in the approaches:

Size: The large scale of furniture objects often causes the piece of furniture to extend beyond a

3D camera’s sensor aperture. For this reason, the system presented in this chapter can not
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only run in single-frame mode (when high interactivity is required), but can also register

multiple point clouds into a consistent scene, where the full pieces of furniture are visible.

Appearance: The classification approach used by the system from this chapter is based on

dominant planes, which is appropriate for most pieces of furniture. Also, furniture usu-

ally occurs in an “upright” orientation. To properly recognize various tabletop objects in

all orientations, the system from Chapter 4 integrates an arbitrary 3D object recognition

method that takes the full texture and shape of the objects into account.

Dynamics: Many pieces of furniture are quasi-static and are rarely moved around. For this

reason, it makes sense to include them in a semantic map of the environment that is

updated in larger intervals. On the other hand, tabletop objects are moved often, which

is why they need to be tracked and continually re-anchored.

For these reasons, the two systems are complementary: The system presented in this chap-

ter would typically be used in a first pass to create a semantic map, i.e., a hybrid map consisting

of a geometric mesh-based 3D map overlaid with semantic information about the pieces of fur-

niture present. The system from Chapter 4 is then run continually during task execution to

anchor the tabletop objects with reference to the semantic map created earlier.

3.1 State of the Art

The field of semantic mapping has attracted continuing interest in the past decades (see the

survey by Kostavelis and Gasteratos (2015) for an overview). Here, we focus on large-scale

approaches that label point clouds with semantic information in an indoor environment, espe-

cially those which explicitly represent knowledge using some form of KR&R system.

Galindo et al. (2005) use a semantic map consisting of two separate hierarchies, spatial and

semantic (using a DL ontology). The link between them is maintained through anchoring. They

demonstrate that their approach can be used to communicate with humans symbolically and

disambiguate incomplete information using a planner. Nüchter and Hertzberg (2008) combine

a semantic network for classifying large-scale building structures such as walls, floor, ceiling

and doors with a trained classifier for recognizing smaller objects. Rusu et al. (2008) recognize

kitchen furniture objects in a point cloud and approximate them as cuboids, then employ a hi-

erarchical object model to distinguish the furniture class based on smaller-scale features such as

knobs and handles. Pangercic et al. (2012) detect furniture parts in point clouds and feed them
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into an ontological knowledge base. In contrast to the system presented here, their approach

works only in a bottom-up fashion; information from the knowledge base is not used in the

recognition loop. Mason and Marthi (2012) build and update a semantic map over a long time

span by autonomously navigating a robot repeatedly through the same environment over the

course of several weeks. Their approach focuses on smaller-scale objects (not furniture) and

does not employ an explicit knowledge representation system. In the same vein, Ambrus et al.

(2014) build an environment model from repeated observations over a long time span, and use

the difference between observations to extract both static environment features (rooms) and

dynamic ones (objects), however without assigning them a semantic label. Alonso-Ramirez

et al. (2018) present a system that recognizes furniture and builds an environment map that

includes the furniture instances. Like our system, each piece of furniture is characterized by its

constituent parts (like horizontal and vertical planes) and their features (like height and area).

In contrast to our system, they use a relational graph instead of a knowledge representation

and reasoning system to generate object hypotheses.

With regards to CAD-model-based object recognition, early approaches already appeared

in the late nineties (Brenner et al., 1998; Majumdar and Seethalakshmy, 1997), but could only

recognize objects at an approximately known position. In contrast, our approach employs gen-

eral domain knowledge to generate object hypotheses before refining them using CAD models.

In this regard, our approach is more similar to those by Klank et al. (2009); Mozos et al. (2011);

Usenko et al. (2012); Wohlkinger et al. (2012). Klank et al. (2009) performs CAD matching on

2D image data, whereas we use 3D point clouds. Mozos et al. (2011) and Usenko et al. (2012)

employ probabilistic Hough voting to generate object hypotheses and apply RANSAC for pose

refinement and hypothesis verification. Wohlkinger et al. (2012) do not use the CAD model

directly; instead, the RGB-D image is compared to synthetically rendered views of the CAD

model to determine the best match.

The SLAM++ system (Salas-Moreno et al., 2013) performs real-time recognition of furniture

in RGB-D data and embeds this process into a SLAM system, demonstrating the point made

earlier that semantic interpretation of the data can be beneficial for the mapping process it-

self. More recently, McCormac et al. (2018) presented the Fusion++ system that finds object

instances (including smaller-scale furniture) in RGB-D data using the Mask R-CNN classifier,

then performs surface reconstruction on each object (with incremental refinement) and builds

a persistent 6DoF pose graph, which is optimized using a SLAM approach.

In recent years, a number of dense 3D semantic mapping approaches (Hermans et al., 2014;

Ma et al., 2017; McCormac et al., 2017; Stückler et al., 2015) have been developed, which incre-
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mentally register RGB-D frames into an internal (usually point-cloud-based) representation,

where the points of the point cloud are densely labeled with semantic categories. Since these

approaches are methodically closer to the context-aware anchoring system (Chapter 4), they

will be reviewed in Section 4.1.3.

3.2 Algorithm and Implementation

In recent years, CAD models of many kinds of objects have become widely available. One

resource of CAD models is Google’s 3D Warehouse, which allows querying and retrieving

CAD models of virtually any kind of object via the web. In the domain of furniture recognition,

CAD models are often available directly from the manufacturer or from companies specialized

in creating CAD models for interior designers. We use a database of CAD models supplied by

our university’s furniture manufacturer.

In this work, we focus on the domain of furniture recognition for several reasons: First, due

to the widespread use of CAD models in interior design, the availability of CAD models in this

domain is especially strong. Second, most kinds of furniture feature a set of planar surfaces

which can be robustly recognized in 3D point clouds. Third, due to the rigidness of furniture,

these planar surfaces are in a clearly defined relation to each other.

Figure 3.1 shows the embedding of our system in a general semantic mapping framework.

We see our model-based object recognition method as complementary to appearance-based

methods based on 2D image features or 3D shape features.

Using the information contained in CAD models for object recognition has several advan-

tages. Instead of having one classifier for each kind of object, only the geometric primitives

have to be detected. Based on these, objects are reconstructed. Also, no classifier training and

no labeled training sets are required; to add a new object class, only the CAD model is required.

In the future, it would even be conceivable that such a CAD model could be retrieved on-line

from the web. Another advantage is that once an object is recognized, the corresponding part

of the sensor data can be replaced by the CAD model, thus filling up occlusions in the sensor

data.

On the other hand, appearance-based methods have an advantage where the object that is

to be recognized is non-rigid, does not consist of clearly identifiable geometric primitives of a

certain minimum size or where labeled training data, but no CAD model is available.

We see our model-based object recognition method as an instance of a more general system

architecture (Fig. 3.1), consisting of three steps: (1) surface reconstruction (Sec. 3.2.1), as an in-
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Physical Sensors:
3D laser scanners / cameras / RGB-D sensors / TOF cameras

image-feature-based
object recognition

shape-feature-based
object recognition

geometric primitive
detection

hypothesis
generation

Knowledge Base

hypothesis
verification

model-
based
object

recognition

Figure 3.1: System overview. While the system presented here is focused on model-based object recogni-
tion, we consider this method as yielding complementary information to standard recognition methods.
So in a more general system architecture, they may well co-exist. Figure reproduced from Günther et al.
(2011).

stance of geometric primitive detection, transforms the input point cloud into a triangle mesh

and extracts planar regions; (2) planar region classification (Sec. 3.2.2), as an instance of hypoth-

esis generation, classifies the planar regions, detects furniture objects, and calculates initial pose

estimates based on the planar regions; (3) final pose adjustment (Sec. 3.2.3), as an instance of

hypothesis verification, computes the final pose using ICP, and places the corresponding CAD

model in the scene.

3.2.1 Surface Reconstruction

Surface Reconstruction is our implementation of the geometric primitive detection step in

Fig. 3.11. The input to Surface Reconstruction is a point cloud (either a single point cloud

captured by the robot’s Kinect RGB-D camera, or a fully registered point cloud of the whole

scene). The point cloud is first transformed into a mesh using the Marching Cubes imple-

mentation of the Las Vegas Surface Reconstruction Toolkit, LVR (Wiemann et al., 2012). Next,

1The part of the system described in Section 3.2.1 was developed by Thomas Wiemann and is only shortly
outlined in order to describe the part it plays in the overall system. Details can be found in Günther et al. (2017).
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the initial mesh is run through LVR’s post-processing pipeline of several mesh optimization

and segmentation algorithms. Afterward, planes in the mesh are segmented using a region-

growing approach. The output of the planar segmentation algorithm is a set of planar regions

represented by contour polygons along with their estimated size and pose.

3.2.2 Planar Region Classification

Planar region classification is our implementation of the hypothesis generation step in Fig-

ure 3.1. Once all planar regions have been extracted in the previous step, those regions cor-

responding to pieces of furniture have to be classified. Here, we make use of the fact that

most pieces of furniture are comprised of planar structures that have a certain size, orientation,

height above ground and spatial relation to each other. These features (and combinations of

features) are expressed in an OWL-DL ontology in combination with SWRL rules.

The Web Ontology Language (OWL) is the standard proposed by the W3C consortium as

the knowledge representation formalism for the Semantic Web. One of its three sub-languages,

OWL-DL, corresponds to a Description Logic (Baader et al., 2003; Dean et al., 2004), a subset

of First-Order Logic that provides many expressive language features while guaranteeing de-

cidability. It has been extended by SWRL, the Semantic Web Rule Language (Horrocks et al.,

2004), which allows writing Horn-like rules in combination with an OWL-DL knowledge base

and includes so-called built-ins for arithmetic comparisons and calculations. We decided to

use OWL-DL as the knowledge representation format for this work for several reasons: OWL-

DL ontologies can be easily re-used and linked with other sources of domain knowledge from

the Semantic Web, they easily scale to arbitrarily large knowledge bases, and fast reasoning

support is available. In our implementation, we use the open-source OWL-DL reasoner Pel-

let (Sirin et al., 2007), which provides full support for OWL-DL ontologies using SWRL rules.

The class hierarchy of the ontology we use here is shown in Figure 3.2. The basic classes are

Furniture (the parent class of all recognized furniture objects) and Plane (the planar regions of

which Furniture objects are comprised). A set of SWRL rules is applied to the extracted planar

regions to assign them classes in the Plane sub-hierarchy; for example, the lower plane of a

shelf can be characterized by the following SWRL rule:

LowShelfPlane(?p) ← HorizontalPlane(?p)

∧ hasSize(?p, ?s) ∧ swrlb:greaterThan(?s, 0.01) ∧ swrlb:lessThan(?s, 0.5)

∧ hasPosY(?p, ?h) ∧ swrlb:greaterThan(?h, 0.08) ∧ swrlb:lessThan(?h, 0.18)
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Furniture Plane

Shelf Table Chair HorizontalPlane VerticalPlane

ConferenceTable Desk TablePlane ChairSeatPlane ShelfPlane ChairBackrestPlane

LowShelfPlane MiddleShelfPlane HighShelfPlane

isPerpendicular*

isAbove*, isBelow*

Figure 3.2: Parts of the OWL-DL ontology used for classification: classes ( ), properties ( ) and is-a
relationships ( ). Figure reproduced from Günther et al. (2013), adapted.

These rules are not exclusive, so one planar region can receive multiple labels (e.g., Mid-

dleShelfPlane and ChairSeatPlane). The definitions of the classes in the Furniture sub-hierarchy

refer to these labels; e.g., the fact that a Shelf consists of three planes on top of each other can

be stated as:

Shelf ≡ LowShelfPlane

∧ (isBelow some (MiddleShelfPlane ∧ (isBelow some HighShelfPlane)))

Likewise, chairs are defined by a seat and a backrest, both with certain sizes, orientations,

heights above ground and which are perpendicular to each other. In this work, these rules

(which encode the structural model of the object) were constructed manually. The parameters

can be measured directly from the CAD model – e.g., in the example above, the lower shelf

plane has a height above ground of 0.13 m; adding a margin of 0.05 m to compensate for errors

in the estimated height, one arrives at the specified range (0.08 m; 0.18 m). We hope to automate

this process in future work.

The classification of planar patches into furniture objects is performed by the Pellet rea-

soner. Initially, each planar patch that was extracted during surface reconstruction, along with

its geometric features (size, position, orientation, bounding box) and relations to other planar

patches is added as an individual to the ontology’s ABox. Next, the reasoner jointly classifies

all planar patches, using the SWRL rules and class definitions outlined above.

For each detected object, the initial position and orientation are estimated. The position

is always the centroid of their main plane. Since chairs have two perpendicular planes (the

backrest and the seat), a unique orientation can be calculated by the vertical component of
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the difference vector between the centroids of those planes (assuming an upright position of

the chair). For tables and shelves, the PCA of the points corresponding to their main plane is

calculated to define the orientation. Note that the PCA of a rotationally symmetric object, such

as a round table, is not well-defined. This does not impact the recognition rate of our system,

only the initial orientation estimate; if the object has distinct non-planar features (such as table

legs), this orientation error can be corrected by the next processing step.

3.2.3 Final Pose Adjustment and Model Replacement

Final Pose Adjustment is our implementation of the hypothesis verification step in Fig. 3.12.

The input to Final Pose Adjustment is the initial pose estimate of an object from the previous

step along with the original point cloud. Additionally, a reference point cloud of the object is

required. This reference point cloud is computed by sampling a CAD model of the object. To

refine the object pose estimate, the reference point cloud placed at the initial pose estimate is

matched to the original point cloud using the ICP algorithm (Besl and McKay, 1992).

3.3 Results

The experiments related to the work by Thomas Wiemann and Sven Albrecht (Sections 3.2.1

and 3.2.3) have been omitted here and can be found in Günther et al. (2017). Only the results

related to the complete system are presented here.

3.3.1 Evaluation of the Complete System

To evaluate our recognition system, we captured two series of point clouds from a Kinect cam-

era mounted on a mobile robot (the “Kurtana” robot, see Figure 2.7 on page 24). In the first sce-

nario, the robot was teleoperated around an office while continuously capturing point cloud

data at 2.2 Hz, resulting in a total of 431 point clouds. The office contained 13 recognizable

objects from 5 classes (1 desk, 1 conference table, 1 office chair, 5 conference chairs and 5 book-

shelves). For the second dataset, the robot was driven through a seminar room, capturing a

total of 379 point clouds. The objects present in this dataset are 12 seminar tables and 20 chairs.

One challenging aspect of this dataset is that there is a high level of occlusion. Both datasets

are available at http://kos.informatik.uni-osnabrueck.de/furniture_recognition/.

2The part of the system described in Section 3.2.1 was developed by Sven Albrecht and is only shortly outlined
in order to describe the part it plays in the overall system. Details can be found in Günther et al. (2017).
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For both datasets, we registered the point clouds into a consistent full-scene point cloud,

using SLAM6D from 3DTK (Nüchter et al., 2007). The full-scene point clouds were used to

generate the ground truth poses for each piece of furniture by hand. These poses are used to

evaluate the results of our classification and the ICP refinement step.

Ground truth data for each frame was generated by manually labeling each frame with

the information which of the objects occur in that frame. The ground truth poses of each ob-

ject were estimated by manually placing each CAD model into a scene consisting of the fully

registered datasets. In combination with the camera trajectory obtained from the registration

process, the ground truth object poses in each frame can be computed. A detection is consid-

ered “true positive” if its distance to the nearest true object pose of the same class was below

a threshold, depending on the CAD model’s size (15 cm for chairs, 25 cm for shelves, 45 cm

for tables). If multiple detections fell into that range, only the nearest was counted as a true

positive, and the others as false positives.

These high thresholds were chosen based on experience and reflect the diminishing depth

resolution of the Kinect sensor (at 5 m the depth resolution is approx. 5 cm – even without

noise depth measurements can differ substantially from the real distance) accompanied by ad-

ditional random noise, as well as the size of the discriminating planar surfaces of the object

classes. Furthermore, if all individual point clouds are registered perfectly, there will still be

noisy “shadow points” around each object. Our ground-truth poses are located in the middle

of the noisy point cloud resembling the objects in question.

Note that the recognition system itself does not require prior registration; it can work both

directly on unregistered single-frame point clouds or a registered full-scene point cloud. Both

approaches have their advantages; directly processing each frame eliminates the computational

cost for registration, removes the risk of registration failures, and avoids artifacts arising from

combining many point clouds from a noisy sensor. Single frame processing is therefore better-

suited for online operation in an incremental semantic mapping framework. On the other

hand, the narrow field of view and occlusions – that may be recovered by viewing an object

from different angles – make it more likely that a piece of furniture is not fully visible.

The detection results both for single frames and the full scene on both datasets are shown

in Table 3.1. In addition to the detection results, the translation and rotation error of the initial

guess (based on PCA for tables and shelves, and based on the vector from backrest to seat for

chairs) and the translation and rotation error after ICP pose correction are shown. Figure 3.3 on

page 39 depicts some exemplary object detections, Figure 3.4 on page 40 shows the final results

of the system running in full-scene mode.
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Table 3.1: Detection rates of furniture recognition. Table reproduced from Günther et al. (2017).

true
pos.

false
pos.

false
neg.

initial
transl.

error

initial
rot.

error

final
transl.

error

final
rot.

error

precis. recall F1
score

(a) office dataset (single point clouds):

Shelf 82 53 237 16.2 cm 5.1◦ 60.1 cm 27.2◦ 60.7 % 25.7 % 36.1 %
OfficeChair 8 19 6 5.8 cm 61.0◦ 6.0 cm 10.8◦ 29.6 % 57.1 % 39.0 %
ConfChair 100 190 114 9.0 cm 51.9◦ 11.0 cm 56.8◦ 34.5 % 46.7 % 39.7 %
Desk 10 11 29 31.6 cm 125.6◦ 53.7 cm 118.8◦ 47.6 % 25.6 % 33.3 %
ConfTable 81 0 0 8.5 cm 8.8◦ 9.4 cm 6.2◦ 100.0 % 100.0 % 100.0 %

total 281 273 386 11.7 cm 28.7◦ 26.2 cm 34.5◦ 50.7 % 42.1 % 46.0 %

(b) office dataset (full registered scene):

Shelf 1 0 4 24.7 cm 1.0◦ 131.6 cm 4.1◦ 100.0 % 20.0 % 33.3 %
OfficeChair 1 0 0 5.2 cm 68.1◦ 4.7 cm 14.2◦ 100.0 % 100.0 % 100.0 %
ConfChair 3 2 2 10.9 cm 55.9◦ 10.1 cm 49.1◦ 60.0 % 60.0 % 60.0 %
Desk 1 0 0 41.8 cm 21.2◦ 12.8 cm 6.7◦ 100.0 % 100.0 % 100.0 %
ConfTable 1 0 0 2.5 cm 4.3◦ 6.3 cm 0.6◦ 100.0 % 100.0 % 100.0 %

total 7 2 6 15.3 cm 37.5◦ 26.5 cm 24.7◦ 77.8 % 53.8 % 63.6 %

(c) seminar room dataset (single point clouds):

Chair 358 26 257 7.3 cm 20.3◦ 8.3 cm 10.0◦ 93.2 % 58.2 % 71.7 %
SemTable 522 153 21 9.3 cm 2.5◦ 9.2 cm 2.4◦ 77.3 % 96.1 % 85.7 %

total 880 179 278 8.5 cm 9.7◦ 8.8 cm 5.5◦ 83.1 % 76.0 % 79.4 %

(d) seminar room dataset (full registered scene):

Chair 6 2 14 5.7 cm 16.3◦ 6.0 cm 9.8◦ 75.0 % 30.0 % 42.9 %
SeminarTable 11 0 1 4.2 cm 1.2◦ 3.3 cm 1.2◦ 100.0 % 91.7 % 95.7 %

total 17 4 15 4.7 cm 6.537◦ 4.3 cm 4.252◦ 81.0 % 53.1 % 64.2 %
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For the single point clouds, our approach achieves detection rates of 46.0 % and 79.4 % on

the two data sets. We expect that these results can be improved significantly in the future by

integrating information over several frames instead of treating each frame independently. The

results show that our approach is not only robust enough to deal with the noise present in low-

cost 3D sensors but also copes with occlusion and partial visibility, typical for sensors with a

small opening angle. Unexpectedly, the final ICP pose correction did not improve the average

initial guess on single frames for the first dataset. We attribute this to the fact that we matched

a complete CAD model to a partially occluded object view; possible solutions are outlined in

the next section. In the second dataset, however, ICP clearly improved the rotation of the chairs

compared to the initial guess from the SWRL rules.

The results also show varying detection success for the different classes. Shelves have one

of the lowest detection rates and highest final pose errors in our experiments. This is not sur-

prising: All shelves in our data set were completely filled with books, so only a small portion of

the actual shelf was visible. This also explains why the final pose correction performed worse

on shelves compared to the other object classes. In addition, we currently do not handle ag-

gregates of objects: If two shelf segments or two tables are positioned with no gap between

them, the planar classification will combine them into one potential object, with the possible

location at the center of the combined plane. This usually leads to one false positive (for the

non-existent object at the center location) and several false negatives for actual objects creating

the aggregated plane. Another problematic object is the big L-shaped desk: The desk is so big

that only a small part of it is visible in most single frames.

A comparison between single-frame and full-scene mode reveals that both approaches have

their complementary strengths and weaknesses. Both classification accuracy and final pose

error for most objects (especially big ones, like tables) are better in full-scene mode since there

are fewer problems with partial visibility due to occlusion or limited aperture. On the other

hand, the detection rate for chairs in the seminar table dataset is higher in single-frame mode.

The main reason for this seems to be that since chairs are relatively small compared to tables,

limited aperture doesn’t pose as much of a problem in single-frame mode. On the other hand,

since the chairs were relatively close together, registration errors and accumulated sensor noise

in full-scene mode often lead to two chairs being recognized as one object, preventing detection.
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Table 3.2: Run times of the three steps in our processing pipeline on the seminar room data set. The
results for single point clouds were averaged over all 379 point clouds. Table reproduced from Günther
et al. (2017).

single point cloud full registered scene

Surface Reconstruction 6.53 s 117.06 s
Planar Region Classification 1.02 s 2.67 s
Final Pose Adjustment 1.53 s 26.11 s

Total 9.09 s 145.84 s

3.3.2 Runtime of the System

The runtime performance of our system and its components are shown in Table 3.2. All ex-

periments have been performed on a standard laptop (2.6 GHz Core i7 CPU, 8 GB RAM). The

single point clouds are processed at full resolution (245,304 points on average), while the full

scene was downsampled to about one-tenth of all points (9,475,220 points).

Most of the processing time is spent on the surface reconstruction step. This could in prin-

ciple be replaced by faster but less accurate methods. For the RGB-D data used here, Kinect

Fusion is a good candidate, although the meshes have to be post-processed to get a topologi-

cally correct mesh representation (Wiemann et al., 2013), which is required for region growing.

For our experiments, we decided to use the Marching Cubes implementation from our LVR

library, since it computes meshes that are accurate and topologically sound. The classification

and pose adjustment steps are fast. The whole scene consisting of 379 point clouds, i.e., about

9.5 million points, was processed in about 2.5 Minutes.

3.4 Discussion and Future Work

We have presented a semantic mapping system that creates a triangle mesh of an office envi-

ronment, detects several classes of furniture, and replaces them with their corresponding CAD

models, based on Kinect point cloud data captured using a mobile robot. The system was eval-

uated both on single frames and fully registered scenes of two datasets containing 810 single

point clouds. Our system achieved a detection rate of 46.0 % for the office dataset, containing

one particularly large object and several seamlessly connected instances of shelves and 79.4 %

on the seminar room with less variation of the classified furniture.

The current system creates a hybrid semantic map (i.e., the map data contains geometric
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information as well as semantic knowledge); it does so incrementally by processing each RGB-D

frame separately; and it also does so in closed loop by feeding the output of the reasoning system

back into the low-level data interpretation routine. In future work, we intend to implement an

active data interpretation / gathering loop that identifies and actively explores regions with

potentially valuable but missing data, thereby closing the loop even down to the action level,

not just the perception level.
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Figure 3.3: Results of each step in the processing pipeline. Columns, from left to right: (a) the original
point cloud from a single Kinect frame; (b) the reconstructed triangle mesh; (c) sampled CAD models
after ICP pose correction; (d) the point cloud overlaid with the recognized CAD models. Row 1: error in
pose estimation due to only partial visibility of the desk; Row 2-3: correct placement of the recognized
objects; Row 4: several good matches and one false positive. The color of the models indicates the
quality of the recognition: cyan indicates a true positive, where the pose fits well with the actual pose,
magenta is a true positive where the final pose is not well aligned and yellow shows a false positive.
Rows 1-3 show data from single frames of the office dataset, row 4 from the seminar room dataset, while
row 5 and 6 show the full scene of the office and seminar room datasets, respectively. Figure reproduced
from Günther et al. (2017).
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Figure 3.4: Final results of our system in full-scene mode (registered full-scene point clouds overlaid
with the recognized furniture models). Top: Office dataset (431 frames). Bottom: seminar room dataset
(379 frames). Note that point color information is displayed for reader convenience, our approach does
not require it. Figure reproduced from Günther et al. (2017).
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Chapter 4

Context-Aware Anchoring

Any system for plan-based robot control must necessarily create and maintain a correspon-

dence between the symbols used by the planner to denote objects and the object percepts de-

tected in the robot’s sensor stream. This is known as the anchoring problem:

Definition 1. “We call anchoring the process of creating and maintaining the correspondence

between symbols and sensor data that refer to the same physical objects. The anchoring problem

is the problem of how to perform anchoring in an artificial system.” (Coradeschi and Saffiotti,

2003, p. 86f).

This chapter presents an anchoring module that anchors the symbols used by the high-level

robot control modules, such as the hierarchical hybrid planner CHIMP (Stock, 2017a,b), to the

output of a local object recognition method. A central feature of our anchoring module is that

it is context-aware: It improves the output of the local object recognition method by taking the

context of an object (in the sense of geometrical relations to other objects) into account.

Figure 4.1 shows the role of the anchoring module within the RACE architecture (see Chap-

ter 2). All knowledge about physical objects is exchanged between modules via object fluents

on the blackboard. Some of these fluents are created by external knowledge sources (for exam-

ple, a module that initializes the blackboard with the locations of known objects, or a module

that gathers knowledge about object locations from dialogue with a human). They are read

by the planner, which uses this information to create the initial state of the planning problem.

They are both read, updated and created by the execution monitor (for example, when the robot

Parts of the contributions described in this chapter have first been published in the following publication: Ruiz-
Sarmiento et al. (2017c). A revised version of this chapter has later been published in Günther et al. (2018).
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picks up a mug from the table, the execution monitor ends the fluent that specifies that the mug

is on the table and adds one that specifies that it is now being held by the robot gripper). The

anchoring module’s role is to anchor the object fluents on the blackboard to percepts of individ-

ual objects produced by the object recognition system and update the blackboard accordingly.

This involves updating fluents (when an object has moved or a previously untracked anchor

has been reacquired), ending fluents (when an object is found to no longer be in the location

stored on the blackboard), and creating new fluents (when new objects not yet represented on

the blackboard are detected).

Blackboard

Context-Aware
Anchoring

Local 
Object Recognition

External Knowledge
Sources

Planner

Execution Monitoring

Figure 4.1: The role of the context-aware anchoring system within the RACE architecture. Blue arrows:
fluents related to physical objects; green arrow: object recognition results.

A distinctive feature of our anchoring system is that it does not simply copy the classifica-

tion results from the object recognition system, but instead uses the relations between objects

(their spatial context) to improve those classification results. This is motivated by the fact that

objects rarely occur in independent configurations at identically distributed locations. Rather,

there is a coherent structure inherent to most real-world scenes. For example, a longish object

in front of a monitor has a high probability of being a keyboard, whereas an object with the

same local appearance next to a bread knife is more likely a cutting board.

In cases where local appearance features are not sufficient, contextual features can disam-

biguate object appearance in object recognition tasks (Galleguillos and Belongie, 2010). Jointly

considering context-based object categorization and anchoring as parts of a context-aware an-

choring system benefits both sub-problems: Anchoring receives better and more stable object

classification results, while context-based object categorization can use contextual relations

with anchored objects that extend beyond the sensor aperture.

As an example of this, consider Figure 4.2. Due to the position of the robot and the aperture

of the RGB-D camera, only part of the table scene is visible in the current sensor frame, so the

full context is not available. This poses a problem for most existing context-aware object recog-
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nition systems, which fall roughly into one of the following two categories. The first category is

single-frame recognition systems, which recognize objects relying on single observations of the

scene in the form of RGB, depth or RGB-D images (Galleguillos et al., 2008; Hoiem et al., 2008;

Ren et al., 2012; Shotton et al., 2009; Torralba et al., 2003; Xiang et al., 2010). Regarding the ex-

ploitation of contextual information, single-frame systems are seriously limited by the sensor

aperture and occlusions, given that they can only observe a portion of the objects and rela-

tions appearing in the whole scene. The second category is offline recognition systems, which

register several observations before the recognition process to obtain a wider view of the scene

(Alberti et al., 2014; Anand et al., 2013; Koppula et al., 2011; Kunze et al., 2014a; Ruiz-Sarmiento

et al., 2014, 2015a; Thippur et al., 2015; Valentin et al., 2013; Xiong and Huber, 2010). This solves

the problems caused by sensor aperture and occlusions; however, the need to finish recording

the sensor data before running the object recognition process prevents online operation, which

is a requirement for most plan-based robot control systems.

Figure 4.2: Robot observing a partially visible tabletop scene. Notice that the RGB-D camera only cap-
tures part of the table, but the world state model maintained by the anchoring process still retains pre-
viously observed objects. See Figure 4.7 on page 66 for a description of the visualization elements.

Our approach is to continually process single frames using a local object recognition method

and integrate the object recognition results into a persistent probabilistic world model. We
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then use a Conditional Random Field (CRF; Koller and Friedman, 2009) to exploit contextual

relations between objects in the current scene as well as relations with previously perceived

objects from the world model to improve the recognition results.

This approach has the following advantages:

• Our system can exploit contextual relations with objects that are currently out of view

while still being capable of online operation (meaning that the output of the system is

updated as soon as new sensor data comes in).

• The world model allows us to consistently assign the same object ID to an object without

requiring that the object be constantly tracked. By anchoring fluents on the blackboard to

the objects reported by the local object recognition method, the planner and plan executor

can refer to an object by the same symbol even after the object has disappeared from view

for a prolonged period.

• The proposed system can integrate any state-of-the-art local object recognition system

that processes single frames and supplement it with additional context information, which

achieves a significant boost in classification accuracy at a low computational overhead.

The next section relates our work to the state of the art. In Section 4.2, we describe the

proposed context-aware anchoring system, and experimental results are reported in Section 4.3.

Finally, Section 4.4 contains the discussion of the contributions in this chapter and possible

future work.

4.1 State of the Art

The related work is grouped into four subsections: offline context-aware object recognition;

single-frame context-aware object recognition; dense 3D semantic mapping; and anchoring

and world modeling.

4.1.1 Offline, Full-Scene Context-Aware Object Recognition

As mentioned in the introduction to this chapter, the first group of related systems performs

offline object recognition. That is, prior to object recognition, the recording of point clouds must

have finished, and all point clouds must have been registered into one global point cloud. No

world model is kept and updated between classifications. In contrast, the method presented
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here continually fuses new information into a world model, which is required for robotic ap-

plications that require online feedback, such as plan-based task execution.

One of the most influential systems in this area is the one by Koppula et al. (2011). Start-

ing from a registered point cloud of a room (obtained from RGBDSLAM), all planar segments

in a scene are extracted. An object can consist of multiple planar segments (such as “print-

erFront” and “printerSide”). The system uses a probabilistic graphical model (concretely, a

Markov Random Field combined with structural SVMs) to label the planar segments, exploit-

ing local features and the geometric context between segments. An extension to the original

paper shows that this model can also be used for contextual object search on a robot (Anand

et al., 2013). Given a partially recognized scene, a “hallucinated” segment is inserted into sev-

eral sampled locations in the scene. Based on the contextual relations to already recognized

segments, the most likely location of the target segment can be inferred. The robot then moves

closer to this location and repeats the one-shot recognition process.

Xiong and Huber (2010) present a similar system to semantically label a registered point

cloud of the interior of a whole building that was obtained using a high-definition 3D laser

scanner. Planar patches are extracted and labeled according to four object classes (“wall”,

“floor”, “ceiling” and “clutter”) using a CRF that employs both local features and context be-

tween patches. A comparison between the CRF method and a method using only local features

reveals that the CRF method performs better, demonstrating that context is important in dis-

tinguishing challenging objects.

Ruiz-Sarmiento et al. (2014, 2015a) present a method that incorporates semantic knowledge

from human experts into the training process of a CRF. The semantic knowledge is modeled

in an OWL-DL ontology and describes the occurrence frequency, Gaussian distribution of geo-

metric properties, and typical geometric context of each object class. This information is used

to generate a synthetic dataset for training the CRF, which reduces the need for a large real

data training set. The trained CRF is then used to label planar patches extracted from a full

registered point cloud.

Valentin et al. (2013) first reconstruct a mesh of the whole scene from a series of depth im-

ages. Then, a CRF on the mesh is established, with each node representing a mesh face and

edges being added between neighboring faces. As unary features, the CRF uses both vari-

ous geometric features as well as appearance features from the corresponding RGB images.

Pairwise features between two nodes represent the similarity in orientation and color between

neighboring faces. In contrast to the previously presented approaches, no planar patches or

individual objects are extracted; instead, each face of the mesh is assigned a semantic label.
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In contrast to the proposed system, none of the systems above incorporates confidence val-

ues from a local object recognition method. Also, no system labels individual objects with ar-

bitrary shapes; instead, they either work in the image domain (assigning a label to each pixel),

the mesh domain (assigning a label to each mesh face) or on extracted planar patches. This is

different in a group of papers that has emerged from the STRANDS project, where table-top

objects are segmented.

In the first of these papers (Alberti et al., 2014), a Gaussian Mixture Model (GMM) is used to

model the distribution of geometric features of each object category, and another set of GMMs

models each object–object relation where the objects are of a different class. For each object in

a scene, the objects’ GMMs are used to predict the most probable class. However, context is

not taken into account; instead, the object–object relations are used to compute the similarity

between the current scene and trained scene types.

In the second paper (Kunze et al., 2014a), an underlying 3D local object recognition method

assigns a confidence value for each object class to each object. Just as in the proposed system,

the task is to improve the local recognition results using spatial context. Kunze et al. (2014a)

represent context using two different types of object–object relations: Metric Spatial Relations

(MSRs) and Qualitative Spatial Relations (QSRs). Based on those, two different probabilistic

inference procedures are developed: a GMM-based voting scheme for the metric relations and

an approach based on Bayesian inference for the qualitative relations. The two different ap-

proaches were not combined but instead evaluated separately. In the experiments, the metric

relations slightly outperformed the qualitative relations. Both approaches showed better per-

formance than the bottom-up perception alone, demonstrating that context is helpful for object

recognition.

The third paper (Thippur et al., 2015) builds on the previous work by Kunze et al. (2014a)

and applies the MSR- and QSR-based classifiers presented there to a new dataset consisting of

snapshots of several tables that have been taken over a longer time period, i.e., with variations

in the number and arrangement of objects. Again, the MSRs outperform the QSRs except in

cases where not enough training samples are available. However, the authors note that QSRs

are better suited for knowledge transfer, either between human and robot or from robot to

robot.

The spatial relations used in this work (Section 4.2.3.2) resemble the MSRs used in Kunze

et al. (2014a) and Thippur et al. (2015); however, we do not require external information about

a canonical viewpoint of a scene, but only information intrinsically available to the robot.
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4.1.2 Single-Frame Context-Aware Object Recognition

Early computer vision approaches that exploit context in object recognition are based on RGB

images (see Galleguillos and Belongie (2010) for an overview). Torralba et al. (2003) first cal-

culate a global descriptor (the “gist”) of the image to classify the image as one type of scene

(e.g., street or office) and use that as a prior for the objects in the scene without exploiting the

relations between objects in the scene. Hoiem et al. (2008) estimate the 3D geometry of a scene

from a single RGB image and use the corrected 3D position and size of objects as a prior. Gal-

leguillos et al. (2008) use spatial context between objects and demonstrate that this improves

accuracy for most object categories compared to only using co-occurrence. Shotton et al. (2009)

exploit relations between objects (represented as regions in the image) in different configura-

tions using a CRF based on inter-pixel statistics. Xiang et al. (2010) model object co-occurrence

using a CRF for the task of automated image annotation (i.e., assigning multiple labels to an

image without detection or segmentation of the image).

With the introduction of the Microsoft Kinect, interest in 3D computer vision has increased

dramatically. Popular tasks in RGB-D scene understanding include:

1. Image Classification: Each input frame contains exactly one object. The task is to classify

the type of object in each image, without estimating the pose of the object (for example,

Eitel et al., 2015; Lai et al., 2011; Socher et al., 2012).

2. Semantic Labeling / Semantic Segmentation: This is currently the most popular task in

RGB-D scene understanding (Song et al., 2015). The task is to label each pixel in the RGB-

D image with the object class of that pixel (for example, Eigen and Fergus, 2015; Khan

et al., 2014; Müller and Behnke, 2014; Ren et al., 2012; Silberman et al., 2012; Stückler

et al., 2012).

3. 3D Object Detection and Pose Estimation: In this task, not only the objects’ class but

also their 6D pose is retrieved (Ciocarlie et al., 2010; Fäulhammer et al., 2016; Kasaei et al.,

2015; Kehl et al., 2016; Krull et al., 2015, 2017; Oliveira et al., 2014; Tremblay et al., 2018;

Xiang et al., 2017), which is useful for actions like pick and place. An interesting example

of its application is the Amazon Picking Challenge (Schwarz et al., 2017; Zeng et al., 2017).

By definition, the Image Classification algorithms do not take context between objects into

account, since there is only one object in each image. Regarding the Semantic Labeling al-

gorithms dealing with single frames and context, most of them work by recognizing over-

segmented regions from the images and then apply a spatial consistency method such as
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CRF (Khan et al., 2014; Müller and Behnke, 2014; Ren et al., 2012; Silberman et al., 2012). Most

relevant to the system presented here is the third class of algorithms (3D Object Detection and

Pose Estimation). However, these algorithms usually do not take context into account (except

geometric consistency), but only local object features (which is why we dubbed them local object

recognition systems here). Our system processes output from one such system and uses context

between objects (even extending beyond the current sensor frame) to improve the recognition

results. We have integrated two different local object recognition systems into our anchoring

framework: The ROS tabletop_object_detector (Ciocarlie et al., 2010), and the spin-image-based

object recognition system developed within the RACE project (Kasaei et al., 2015; Oliveira et al.,

2014). In the experiments section (4.3), we only report results for the latter, since the former can

only handle rotationally symmetrical objects and is based on CAD models, which makes it un-

suitable for the objects present in the dataset. Our system could be combined with any of the

other local object recognition systems to improve its output.

4.1.3 Dense 3D Semantic Mapping

The approaches discussed in the previous subsections (offline and single-frame context-aware

object recognition) neither build nor maintain an internal world model. In other words, they

only process the single frame (or registered set of point clouds) one at a time and do not take

into account objects that are not in the current input data.

In contrast, dense 3D semantic mapping approaches (Hermans et al., 2014; Ma et al., 2017;

McCormac et al., 2017; Stückler et al., 2015) incrementally build an internal representation by

integrating each incoming RGB-D frame. Each incoming RGB-D frame is processed by a se-

mantic image labeling method to get initial recognition guesses for each pixel/point, and this

information is propagated to a point-cloud-based representation of the environment, where

CRFs (or similar methods) are exploited for ensuring spatially consistent labels. The single

frames are registered into the point cloud using either a SLAM method (i.e., with global loop

closure) or visual odometry (without loop closure). The result is a point cloud of the full scene

that is densely labeled with semantic categories.

Hermans et al. (2014) present a dense 3D semantic mapping system that is based on a ran-

dom forest classifier for semantic labeling and visual odometry for point cloud registration.

Stückler et al. (2015) propose a system that combines RGB-D SLAM on multi-resolution surfel

maps with a random forest classifier for semantic labeling. McCormac et al. (2017) combine

Convolutional Neural Networks (CNNs) for semantic labeling with a 3D-surfel-map-based
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RGB-D SLAM system. The system by Ma et al. (2017) also uses CNNs together with an RGB-D

SLAM method, but the system also imposes multi-view consistency during CNN training by

transforming the CNN feature maps into a common reference system.

There are certain similarities between the proposed system and dense 3D semantic mapping

approaches: Both incrementally fuse new data with an online model, which is a requirement

for plan-based task execution, because the robot can immediately react to incoming sensor

data. Furthermore, both exploit context from outside the current sensor frame to improve the

classification results. However, the work presented here differs from dense 3D semantic map-

ping approaches in two aspects: the considered object categories, and critically the underlying

world model. Since dense 3D semantic mapping strives for a dense labeling of all points in the

environment, the considered object categories tend to be rather coarse and focus on large-scale

structures, e.g. “wall”, “table”, “floor”, and a general “objects” category (from the popular

NYUDv2 dataset), whereas our system focuses on distinguishing objects that are relevant for

robot manipulation (e.g. “plate”, “spoon”, “fork” etc.), so the challenges faced by both types

of systems are very different. Regarding the representation, the proposed system represents

individual objects and their 6DoF pose, which is a requirement for manipulation, planning and

execution. Also, in a dynamic environment, an object-based representation can more easily be

updated from other sources (such as another robot that is moving objects, or knowledge from

human-robot interaction or other data sources).

4.1.4 Anchoring and World Modeling

The works presented so far have mainly focused on recognizing objects without distinguishing

between different instances of an object type. The following approaches are different in the

sense that they keep track of previously seen objects to support long-term robot operation and

tackling the anchoring problem (i.e., resolving object identities).

The anchoring problem was first formally introduced by Coradeschi and Saffiotti (2003).

Starting from a study and characterization of the problem, the authors lay out challenges aris-

ing from the anchoring problem and present several implemented systems that perform an-

choring. This approach was later enhanced by Fichtner (2009, 2011), where first-order logic

and the Fluent Calculus were used to formally model and represent incomplete knowledge in

the anchoring problem.

Blodow et al. (2010) present an anchoring system that detects objects in the environment

based on a clustering algorithm (but without doing object recognition). They use Markov
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Logic Networks (a form of statistical relational learning) to assign identities to object percep-

tions. Like our system, it is passive, i.e., it builds a model of the objects in the robot’s envi-

ronment while the robot is performing its tasks. The RoboSherlock framework (Beetz et al.,

2015; Blodow, 2014) builds on the idea of unstructured information management to create a

framework for realizing robot perception systems. Different recognition algorithms and anal-

ysis engines can be integrated as so-called annotators, and linked to knowledge bases using

first-order probabilistic reasoning.

Elfring et al. (2013) introduce probabilistic multiple hypothesis anchoring to create and up-

date a world model. Their algorithm can track multiple models so that various kinds of prior

knowledge can be accommodated. Several different experiments were performed both on 2D

and 3D data, which showed that their anchoring system can successfully perform anchoring

and even correct previous object–anchor associations based on new evidence.

Blumenthal et al. (2013) present a scene-graph-based world model that allows storing ob-

jects and other elements of the robot’s environment while supporting uncertainty, tracking and

sharing of data. Another such framework is EnViRe (Hidalgo Carrió et al., 2016), which is

mainly geared towards navigation and planning systems. Both of these systems focus on the

storage and exchange of data, without providing an anchoring functionality.

A basic anchoring process is also performed in the paper by Ruiz-Sarmiento et al. (2017b),

where the system checks the location of two percepts, the overlapping of their bounding boxes,

and their appearance to decide if they refer to the same physical element. The output of

this anchoring is used to maintain a probabilistic representation of the elements in the robot

workspace.

Coradeschi et al. (2013) gives a short review of further research in Symbol Grounding, in-

cluding anchoring.

4.2 Algorithm and Implementation

The proposed context-aware anchoring system is a combination of i) a local object recognition

method, ii) an anchoring process, and iii) a Conditional Random Field (see Figure 4.3). The

local object recognition method1 (Section 4.2.1) segments the sensor point cloud into object point

clusters and yields a local recognition result for each isolated object (in the form of confidence

1In the following, we use the term local object recognition for this process to distinguish it from the joint object
recognition performed by the CRF, which performs joint classification of all objects in the scene and takes contextual
relations into account.
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values for each object class). This provides the input for the anchoring process (Section 4.2.2),

which updates its persistent world state model (a set of so-called anchors) with the new in-

formation. The anchoring module then creates a scene graph consisting of all the currently

observed objects and all nearby objects that are currently out of view of the camera; it also

adds edges between objects that are close to each other. A CRF is then built incorporating the

nodes and edges of the scene graph along with their features, and the confidence values from

the local object recognition (Section 4.2.3.2). Finally, a probabilistic inference process over the

CRF computes the joint object recognition results, and the anchors are updated accordingly

(Section 4.2.3).

Segmentation +
Tracking

Local
Object Recognition

World State Modeling
+ Anchoring

segmented +
tracked point clusters

world state model
(known objects)

MAP recognition results

Feature Extraction

CRF Inferencenode + edge features

tracked objects
+ class confidences

scene graph

RGB-D sensor
point cloud

Blackboard

Figure 4.3: Overview of the proposed system. Ovals represent consumed/produced data, while boxes
stand for processes. Locally tracked objects are anchored to previously observed (known) objects, and a
scene graph of objects is built that includes all currently tracked objects and nearby known objects that
are out of view of the camera. All objects in the scene graph are jointly classified by an inference process
over a CRF, and the set of known objects is updated. Our contribution is highlighted in the dotted box.

4.2.1 Segmentation, Tracking and Local Object Recognition

The first steps in our processing pipeline segment the input point cloud into individual objects

and perform local object recognition, which classifies each segmented object separately. The

output of the local object recognition system is a set X = {x1, . . . , xn} of objects found in the in-

put point cloud, and for each object its position, 3D bounding box and a vector cxi = [c1, . . . , ck]

of confidence values, representing the confidence with which object xi belongs to the respec-

tive class in the set of possible classes L = {l1, . . . , lk}. The objects detected by this stage are the

basic units for all later stages of the pipeline.

Here, we use the spin-image-based object recognition system developed within the RACE

project (Kasaei et al., 2015; Oliveira et al., 2014). This object recognition system first performs

table-top segmentation on the input point cloud: a parametric plane model is fitted to the input
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point cloud using random sample consensus (RANSAC), and points that lie within a threshold

of the identified plane are removed. The remaining points are clustered into objects, and tiny

clusters are discarded to remove outliers. Object recognition is performed on each object xi by

computing spin-image descriptors on certain keypoints of each object and comparing the result

with a trained database of objects, which results in the confidence vector cxi .

Apart from segmentation and local object recognition, the local object recognition system

used here also provides real-time tracking of the recognized objects: a unique track ID is at-

tached to all observations of the object in subsequent camera frames. Tracking is lost when the

object is no longer in view of the RGB-D camera.

Note that the proposed anchoring system makes no assumptions about the local object

recognition system. For instance, although the spin-based object recognition system requires

that objects are separated by a certain minimum distance in order to segment them, this is not a

requirement of the anchoring system. This means that the anchoring system can integrate any

other 3D local object recognition method that is capable of providing a bounding box and con-

fidence vector for each object (such as Fäulhammer et al. (2016); Kehl et al. (2016); Krull et al.

(2015, 2017)). Specifically, although we make use of the tracking functionality in Section 4.2.2,

our system does not strictly require it; when tracking is not provided by the local object recog-

nition system, our system relies on its anchoring functionality alone. In fact, we have used our

system to process output from the ROS tabletop_object_detector recognition system (Ciocarlie

et al., 2010), which does not perform tracking, but only recognition. We did not use it in the

experiments (Section 4.3), since it requires CAD models of all objects and can only handle rota-

tionally symmetrical objects, which makes it unsuitable for the objects present in the dataset.

4.2.2 Anchoring

The anchoring module has two closely related functions:

1. creating and maintaining over time a persistent, probabilistic world model of the loca-

tions, identities and categories of objects perceived so far; and

2. grounding object names from a symbolic knowledge base to object identities in this world

model.

As pointed out in the introduction to this chapter, even without symbolic names for objects,

having a persistent world model of objects outside the robot’s field of view (1.) is already

beneficial to context-based joint object classification. Grounding a shared symbolic knowledge
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base to this model (2.) is essential for the creation and execution of robot plans in a plan-based

robot control architecture.

Our anchoring module has a persistent internal representation (the world model) of the ob-

jects in the environment. Following the terminology of Coradeschi and Saffiotti (2003), we call

the representation of an object anchor. An anchor in our system is a richer representation than

the purely symbolic object fluents and contains:

• the symbolic name of the object on the blackboard that corresponds to this object;

• the last known 6DoF object pose (position and orientation);

• the last observed 3D bounding box;

• the vector cxi = [c1, . . . , ck] of confidence values reported last by the local object recogni-

tion for this object (see previous section);

• the MAP object type computed by the CRF (see Section 4.2.3); and

• the track ID, if the object is currently tracked by the local object recognition.

Note that an anchor contains a probabilistic representation of the possible object types in

the form of the vector of confidence values cxi . This vector is used by the CRF (see Section 4.2.3)

when computing context relations with anchored objects outside the current camera frustum.

An anchor in our framework can be in one of two different states (Figure 4.4): untracked

or tracked. If an object is currently in the robot’s field of view and thus being tracked by the

local object recognition, we call the corresponding anchor a tracked anchor and otherwise an

untracked anchor. Figure 4.4 also shows the functionalities that create or destroy anchors and

perform the transitions between states: Find, Reacquire, Track, Lose, Discover and Destroy. The

first three functionalities are inspired by Coradeschi and Saffiotti (2003); the last three are addi-

tional functionalities made necessary by the bottom-up part of our framework.

Find creates a new anchor whenever a new object fluent is added to the blackboard by

an external module. For example, the initial knowledge loader adds initially known object

fluents during startup, and the plan executor adds an object fluent when an object is placed on

a table by the robot. These anchors start in the untracked state. As soon as a matching object

is detected by local object recognition, Reacquire binds the anchor to this object, and the anchor

enters the tracked state. While Find performs top-down anchoring, Discover performs bottom-

up anchoring: Whenever an object is reported by the object recognition module that cannot be

associated with a known untracked anchor, Discover creates a corresponding tracked anchor.
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untracked

tracked destroyed

from blackboard

from object recognition

Reacquire

Destroy
Lose

Track

Find

Discover

Figure 4.4: State diagram showing the two possible states of an anchor (green) and the functionalities
that perform the transitions between them (blue).

While an object is tracked by local object recognition, Track updates the properties of its anchor.

When it stops being tracked, Lose transitions the anchor to the untracked state. Finally, Destroy

checks whether an object corresponding to an untracked anchor has been physically removed

and deletes the corresponding anchor.

In our framework, these functionalities are implemented by executing the following steps

whenever a new set of objects is reported by the local object recognition. These will be detailed

in the remainder of this subsection and the following subsections.

1. Object–Anchor Similarity Computation (Section 4.2.2.1): Anchoring attempts to match

the new objects to the nearby untracked anchors in the current world model. To do so,

the similarity between each pair of objects is calculated.

2. Object–Anchor Data Association (Section 4.2.2.2): Using these similarity values, the

best assignment of new objects to untracked anchors is calculated using the Hungarian

method (Kuhn, 1955). If the cost of assigning an object does not exceed a certain thresh-

old (i.e., the object is “similar enough” to the anchor), the object is assigned to the anchor

(Reacquire); otherwise, a new anchor is created (Discover). If the object is already tracked,

its track ID will be used to instantly match the new observation to its anchor and update
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the anchor (Track). All tracked anchors that have not been assigned a tracked object are

transitioned to the untracked state (Lose). It is also possible to integrate a local object

recognition system that does not provide tracking information. In that case, all anchors

are transitioned to the untracked state and must be reacquired in the next step.

3. Removed Object Detection (Section 4.2.2.3): Check for physically removed objects: All

remaining nearby untracked anchors are checked whether their last known bounding box

is fully within the robot’s current field of view and empty; if so, the anchor is removed

(Destroy).

4. Joint Object Recognition (Section 4.2.3): A scene graph for the local scene is created

from the tracked anchors and nearby untracked anchors (i.e, anchors of objects that are

close to currently observed objects, but occluded or outside the camera frustum). Unary

features (such as size or elongation) and pairwise features (such as distance between two

objects or relation between two objects with respect to the table) are extracted and added

to the graph. A CRF inference procedure over the graph computes the MAP object types,

which are used to update the corresponding anchors.

5. Blackboard Synchronization (Section 4.2.4): The changed anchors are propagated to the

corresponding object fluents in the blackboard. Also, new anchors are created for object

fluents that have been added to the blackboard by an external module (Find).

4.2.2.1 Object–Anchor Similarity Computation

A prerequisite for matching newly tracked objects to existing untracked anchors is to compute

the similarity between each tracked object and each nearby untracked anchor. Here, a higher

similarity between a tracked object and an anchor means a higher likelihood that the tracked

object corresponds to the physical object represented by the anchor, and thus the anchor should

be assigned to that object (reacquired).

In our framework, there are two main features of objects that influence similarity: the dif-

ference of the two objects’ classification results (specifically, the difference of their class con-

fidence vectors cxi , cxi ) and the euclidean distance between the two objects. In other words,

if local object recognition reports an object with roughly the same classification in roughly the

same location as one of the untracked anchors, chances are good that it is the object represented

by the anchor. The importance of those two features can be explained by the assumptions we

make about the information available to our algorithm and by our formulation of the problem.
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We assume that the set of possible classes L is already as fine-grained as possible; i.e., it is im-

possible to subdivide any of the classes into meaningful sub-classes based on the appearance of

objects. In particular, we do not assume that any object (like “Joachim’s mug”) can be directly

recognized based on its appearance alone. If there was such a one-to-one mapping between

object appearance and object identity, the anchoring problem would be much simplified. The

fact that we do not make this assumption has two consequences: first, if an object is replaced

by one of similar appearance while the robot is not observing the scene, our algorithm will

anchor it incorrectly; and second, if an object is moved over a large distance while the robot

is not observing the scene, the anchor will be destroyed when the robot revisits the scene (see

below), and the object at its new location will be assigned a new anchor when observed by the

robot.

To compare different possible assignments of tracked objects to anchors (see next subsec-

tion), we need to combine the features (difference in classification results and distance) into

a single similarity function. To approximate this function, a Support Vector Machine (SVM)

was trained on a dataset of object/anchor pairs manually labeled as “same object”/“different

object” (i.e., whether the tracked object is the same represented by the anchor).

Apart from the two features presented so far (difference of confidence vectors and distance

between objects), additional SVMs were trained on different sets of features; however, the eval-

uation showed that the two features presented above were sufficient. All evaluated features

are listed in Table 4.1. For details on the training procedure and a comparative evaluation of

different sets of these features, see Section 4.3.3.

Using the trained SVM, the similarity between two objects s(x1, x2) can easily be derived

by computing the signed distance from the point in feature space that represents the object

pair to the hyperplane that forms the SVM’s decision boundary (in Hesse normal form). If this

signed distance is zero, the object pair lies exactly on the decision boundary. Object pairs with a

negative distance lie between the origin and the hyperplane and would be classified as “same

object” by the SVM (and vice versa for positive distances). In general, the higher the signed

distance, the less similar the two objects are to each other. Figure 4.10 on page 78 shows the

decision boundary and the two classes (same/different) of object pairs. Note that the similarity

function can also be used to compute the similarity between an object and an anchor s(x, a)

since all relevant properties are stored with each anchor.
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Table 4.1: Similarity features for objects x1 and x2 with centroids p1 and p2 and confidence vectors cx1
and cx2 (see Section 4.2.3.3). The functions area_h, area_v, elong_h and elong_v refer to the CRF unary
features in Table 4.2 on page 69, discussed in Section 4.2.3.2.

Feature name Definition Description

distance |p1 − p2| Distance between object centroids
diff_object_types

(norm)
|cx1 − cx2 | Aggregated difference of the two

objects’ classification results (as re-
ported by the local object recogni-
tion)

diff_object_types
(vector)

(cx1i − cx2i)
2 Component-wise difference of the

two objects’ classification results
(one feature for each object class i)

diff_h_area (area_h(x1)− area_h(x2))2 Squared difference between hori-
zontal bounding box areas

diff_h_elong (elong_h(x1)− elong_h(x2))2 Squared difference between hori-
zontal bounding box elongations

diff_v_area (area_v(x1)− area_v(x2))2 Squared difference between vertical
bounding box areas

diff_v_elong (elong_v(x1)− elong_v(x2))2 Squared difference between vertical
bounding box elongations

volume_ratio volume(x1)/volume(x2) Ratio of bounding box volumes

4.2.2.2 Object–Anchor Data Association

Data association is “the process of determining the origin of sensor measurements” (Leonard

and Rikoski, 2001), i.e., the process of associating uncertain sensor measurements of objects (or

environment features) to existing object tracks (or features in a map). In the context of our work,

the uncertain measurements are the object detections reported by the local object recognition

method which we want to associate with the existing anchors.

There are numerous approaches to the data association problem. The simplest algorithm

is Nearest Neighbor (NN): each detected object is greedily associated to the nearest anchor (or

rather, the anchor with the highest similarity s, as defined above). However, NN often results

in a non-optimal assignment, as illustrated in Figure 4.5. This problem is solved in the Global

Nearest Neighbor (GNN) algorithm, which computes a jointly optimal assignment. A variant

of GNN was used in our system.

Many more elaborate alternatives to the GNN algorithm can be found in the multi-target

tracking and data association literature (Bar-Shalom et al., 2011). The most prominent represen-
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(a) Nearest Neighbor (NN)

⋆a2
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⋆a3

△ x2

△ x1

△ x3

(b) Global Nearest Neighbor (GNN)

Figure 4.5: A comparison between the assignments produced by the NN and GNN algorithms. For NN,
the order of assignments (here: x1, x2, x3) is significant. For simplicity’s sake, this figure only shows
the distance between the objects, whereas the actual assignment costs are computed from the similarity
function s(xi, aj) between object and anchor, which is based on distance and appearance. (⋆: anchors,
△: detected objects)

tatives are the Joint Probabilistic Data Association Filter (JPDAF; Blom and Bloem, 2002) and

approximations of Multiple Hypothesis Tracking (MHT; Reid, 1979). These algorithms delay

the decision of which object to assign to which anchor and use information from future frames

to help disambiguate the assignment. This improves the assignment accuracy especially in sit-

uations with a lot of clutter, where GNN suffers from its eager assignment strategy and can

produce many false positives. However, this improved ability to deal with clutter comes at

the cost of a hugely increased computation time and a slight loss of real-time capability, since

there is a fixed delay until final assignments are made. Since the local object detection method

used here already performs some short-term tracking and clutter removal, GNN was deemed

sufficient, which is confirmed by our experiments (Section 4.3.3).

Before the OBJECTANCHORASSOCIATION procedure is run, the set of objects reported by

local object recognition is preprocessed. If an object is already tracked and associated with an

anchor, its track ID will be used to instantly match the new observation to its anchor and update

the anchor. Conversely, all anchors that are tracking an object which is no longer reported by

the local object recognition method are transitioned to the “untracked” state. The remaining

set of newly detected objects X is passed on to the OBJECTANCHORASSOCIATION procedure

shown in Algorithm 4.1, along with a set of nearby untracked anchors A, i.e., anchors that

are in some specified gating region around the objects in X and that are not associated to a

currently tracked object. The output of the algorithm is a set M of assignments that assigns

each object xi ∈ X to an anchor and an updated set of anchors A′ ⊇ A that includes any newly

created anchors in case new objects have been discovered. The first step is to build a cost

matrix C, where the i-th row and j-th column represents the cost of assigning xi to aj = s(xi, aj).
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Using these similarity values, the optimal assignment of new objects to untracked anchors

is calculated using the Hungarian method (Kuhn, 1955). Also known as the Kuhn–Munkres

algorithm or Munkres assignment algorithm, the Hungarian method solves the assignment

problem in O(n4). A later modification by Edmonds and Karp reduced this runtime to O(n3).

The implementation used here (Pedregosa et al., 2011) includes this optimization; it also does

not require C to be a square matrix, in contrast to the original algorithm. The output of the

Hungarian algorithm is a set I of index pairs of C representing the optimal assignment.

Algorithm 4.1 ObjectAnchorAssociation

Input: a set of newly detected objects X = {x1, . . . , xn}; a set of nearby untracked anchors
A = {a1, . . . , am}; a similarity function s(x, a)

Output: a set of object–anchor assignments M = {⟨x1, a′⟩, . . . , ⟨xn, a′′⟩}; an updated set of
anchors A′ = {a1, . . . , ak}, where k ≥ m

1: function OBJECTANCHORASSOCIATION(X, A)
2: M← ∅
3: A′ ← A

4: C ←

⎛⎜⎜⎜⎜⎝
s(x1, a1) s(x1, a2) . . . s(x1, am)

s(x2, a1) s(x2, a2) . . . s(x2, am)
...

...
. . .

...
s(xn, a1) s(xn, a2) . . . s(xn, am)

⎞⎟⎟⎟⎟⎠
5: I ← HUNGARIANALGORITHM(C)
6: for each ⟨i, j⟩ ∈ I do
7: if s(xi, aj) < 0 then
8: M← M ∪ {⟨xi, aj⟩} ▷ Reacquired anchor
9: else

10: a∗ ← CREATEANCHOR(xi) ▷ Discovered new object
11: A′ ← A′ ∪ {a∗}
12: M← M ∪ {⟨xi, a∗⟩}
13: end if
14: end for
15: return M, A′

16: end function

If the cost of assigning xi to aj (where ⟨i, j⟩ ∈ I) does not exceed a certain threshold (i.e.,

the object is “similar enough” to the anchor), the object is assigned to the anchor. The natural

choice for this threshold is 0 due to the definition of s(xi, aj), where a negative value means

that the SVM would classify this pair as “same object”, a positive value would mean “different

object”, and 0 is the decision boundary.

If the cost exceeds this threshold 0, there is no anchor corresponding to this object (i.e., a
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new object has been discovered). In this case, a new anchor is created and the object is assigned

to that anchor.

4.2.2.3 Removed Object Detection

Using the algorithm in the previous subsection, our system can discover new objects and reac-

quire and track existing ones. However, when the robot revisits a scene, it also has to check

whether anchored objects have been physically removed in the meantime. Since the local object

recognition method only yields positive information (a set of objects that have been detected),

the algorithm described here has to process the raw input point cloud to perform this task.

The general idea behind the REMOVEDOBJECTDETECTION algorithm is the following. For

each nearby untracked anchor (i.e., an anchor that could not be assigned to an existing object in

the scene by the Object–Anchor Data Association), the following steps are performed:

1. check whether the bounding box of an anchor lies within the view frustum of the sensor

at the current camera pose (i.e., the object is expected to be visible);

2. if yes, check whether there are any points visible inside the anchor’s bounding box, or

between the bounding box and the camera (that could occlude the object);

3. if the number of such points is below a certain threshold, the object is neither present nor

occluded, and the anchor is destroyed.

Algorithm 4.2 on page 63 shows how these steps can be performed efficiently, given two

requirements: The input point cloud C must be organized and projectable. An organized point

cloud is a set of points that is indexed in two dimensions, similar to a matrix or organized

image. A point cloud is projectable if it is organized and the 3D coordinates of all its points

can be computed from the (u, v) index of a point according to a pinhole camera model. Or-

ganized, projectable point clouds are commonly produced by projective devices such as stereo

cameras, Time-of-Flight cameras or structured light cameras such as the ASUS Xtion used in

the experiments.

From the anchor’s bounding box dimensions d, the set B of the eight bounding box corner

points is computed and represented in homogeneous coordinates (as a four-dimensional vec-

tor, where the last component is 1). These corner points are first transformed into the camera

frame by multiplying each point with the 4× 4 transformation matrix R (resulting in B′) and

then projected into the 2D image plane (resulting in B′′ by multiplying with the 3× 4 camera

projection matrix P.
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The matrix P has the form

P =

⎛⎜⎜⎜⎝
f 0 cx 0

0 f cy 0

0 0 1 0

⎞⎟⎟⎟⎠ , (4.1)

where f is the camera’s focal length and cx, cy are the coordinates of the camera’s principal

point. The resulting elements of B′′ have the form b′′ = (u v w)T, where w is an arbitrary scale

factor, so the true pixel coordinates in the image plane are u/w and v/w. Using B′ and B′′, the

algorithm checks whether all eight bounding box corners are inside the camera frustum. This

is the case when each corner’s z coordinate lies within the minimum and maximum camera

measurement depth ẑ, ž, and the pixel coordinates u/w, v/w are between 0 and the image width

ǔ and height v̌ respectively. If at least part of the bounding box lies outside the camera frustum,

the algorithm cannot confirm that the object was removed and thus returns false.

Switching back to 3D coordinates, the next step is to compute the convex hull H of the

bounding box corners in B′ and the camera origin; since the elements of B′ are in the camera

frame, the camera origin is always at (0 0 0 1)T. The function CONVEXHULL can be im-

plemented efficiently using Delaunay triangulation; an example result is shown in Figure 4.6.

Delaunay triangulation splits each rectangular face of the bounding box into two triangles. To

increase efficiency when checking the inclusion of a point in the convex hull, such coplanar

faces are removed in a post-processing step.

Any point inside this convex hull is either inside the object’s bounding box (and therefore

considered a potential point on the object), or between the camera and the bounding box (and

therefore considered an occluding point). The final step of the algorithm is to count the number

of points inside the convex hull.

This process can be sped up by making use of the fact that the input point cloud is orga-

nized. First, we compute the image-axis-aligned 2D bounding box (umin, umax, vmin, vmax) from

the minimum (resp. maximum) of the (u, v) coordinates of the eight bounding box corners in

B′′. Any point outside this 2D bounding box cannot be inside the 3D convex hull. Therefore, it

suffices to only check the points inside the 2D bounding box for inclusion in the convex hull,

greatly speeding up computation.

The actual ISINSIDE check (whether a point is inside the convex hull or not) is both straight-

forward and efficient. By representing the faces of the convex hull as planes in Hesse normal

form, it only takes one vector multiplication for each of the 9 faces to check if the point lies on
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Figure 4.6: The convex hull of the eight corners of an object’s bounding box and the camera origin (top
center, at (0 0 0 1)T). The convex hull was calculated using Delaunay triangulation, which split the
rectangular faces of the bounding box into two triangles each. Such coplanar faces are removed in a
postprocessing step.

the “inside” side of each plane.

If the number of points inside the hull exceeds a threshold, the algorithm returns “false”

(i.e., the object is either present but could not be detected by the local object recognition, or

it is occluded). Otherwise, it returns “true” (the object was removed). As was discussed in

Section 4.2.2.1, an object that has been removed while the robot was not observing the scene

cannot be anchored again. For this reason, when REMOVEDOBJECTDETECTION returns “true”

for an anchor, the anchor is destroyed.

4.2.3 Joint Object Recognition

As part of our context-aware anchoring system, we need to solve the joint object recognition

problem, where the aim is to assign to each of the objects in a scene their respective class (e.g.,

mug, dish, spoon), taking into account both the local features of each object and their contex-

tual relations. To this end, we build a scene graph from the tracked anchors and all nearby

untracked anchors and use a Conditional Random Field (CRF; Koller and Friedman, 2009) to

compute the most probable classes of all objects, considering their context.
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Algorithm 4.2 RemovedObjectDetection

Input: an untracked anchor’s bounding box dimensions d =
(︁
dx dy dz

)︁T and pose, given as
a rigid transformation R from the bounding box frame to the camera frame; an organized,
projectable point cloud C = {p11, p12, . . . , pǔv̌}, where ǔ is the width and v̌ is the height of
the image; a camera projection matrix P; minimum and maximum camera measurement
depth ẑ, ž; a threshold on the number of points n below which the object is considered
removed

Output: true if the object was removed, false if occluded or outside camera field of view
1: function REMOVEDOBJECTDETECTION(d, R, C, ǔ, v̌, P, ẑ, ž, n)

2: B←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
−dx/2

−dy/2

−dz/2

1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
−dx/2

−dy/2

dz/2

1

⎞⎟⎟⎟⎟⎠ , . . . ,

⎛⎜⎜⎜⎜⎝
dx/2

dy/2

dz/2

1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

3: B′ ← {Rb | b ∈ B}
4: B′′ ← {Pb′ | b′ ∈ B′}
5: if ∃b′ = (x y z 1)T ∈ B′: z /∈ [ẑ, ž] then
6: return false
7: else if ∃b′′ = (u v w)T ∈ B′′: (u/w /∈ [0, ǔ]) ∨ (v/w /∈ [0, v̌]) then
8: return false
9: else

10: H ← CONVEXHULL
(︂

B′ ∪
{︂
(0 0 0 1)T

}︂)︂
11: umin, umax, vmin, vmax ← minu/w

{︂
(u v w)T ∈ B′′

}︂
, . . .

12: C′ ← {puv ∈ C | (umin ≤ u ≤ umax) ∧ (vmin ≤ v ≤ vmax) ∧ ISINSIDE(puv, H)}
13: return |C′| ≥ n
14: end if
15: end function

4.2.3.1 CRF Formulation for Joint Object Recognition

We model the joint object recognition problem as a CRF as follows. Let X = {x1, . . . , xn} be

a set representing n observed objects within a given scene, where each object xi is character-

ized through a vector of m features f xiu = ( fxiu1 . . . fxium)
T, e.g., size, height or elongation,

L = {l1, . . . , lk} the set of the k possible object classes, and Y = {yi, . . . , yn} a set of discrete

random variables over L, that assign to each object in X a class from L. Thus, the joint object

recognition problem, modeled by a CRF, is the problem of maximizing the probability distri-

bution P (Y|X), i.e., to find the most probable classes assignation to Y given the characterized

objects’ observations in X.

A CRF is represented through a graph structure H = (V, E), where V is a set of nodes
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representing random variables, and E a set of edges linking related nodes. Concretely, in the

joint object recognition problem, each variable in Y introduces a node in V, and two contex-

tually related variables2 set an edge in E between their respective nodes. Then, according to

the Hammersley–Clifford theorem (Koller and Friedman, 2009), a number of functions called

factors are defined over parts of H, encoding each one a piece of P (Y|X). In this work, we rely

on two factor types: unary, related to nodes, and pairwise, associated with edges. The insight

behind this is that unary factors encode the likelihood of a variable yi to be assigned to a certain

class li given the characterized object xi, while pairwise factors express the compatibility of two

related variables belonging to a certain pair of classes.

Concretely, unary factors U(·) and pairwise factors I(·) are defined by a linear classification

model as follows:

U(yi, xi, ω) = ∑
l∈L

δ(yi = l)ωl f (xi) (4.2)

I(yi, yj, xi, xj, θ) = ∑
l1∈L

∑
l2∈L

δ(yi = l1)δ(yj = l2)θl1,l2 g(xi, xj) (4.3)

where f (xi) is the function that computes the vector of unary features f xiu of the object xi,

g(xi, xj) provides the pairwise features f xixj p = ( fxixj p1 . . . fxixj pq)
T for objects xi and xj, ωl =

(ω1,l . . . ωm,l) and θl1,l2 = (θ1,l1,l2 . . . θq,l1,l2) are vectors of weights associated to the class l and

the combination of classes l1 and l2 respectively, both learned during the CRF training, and

δ(yi = l) is the Kronecker delta function.

Once these factors have been defined, the computation of P (Y|X) can be expressed through

log-linear models as:

P (Y|X, ω, θ) =
1

Z(X, ω, θ)
e−ϵ(Y, X, ω, θ) (4.4)

where Z(·) is the partition function, which plays a normalizing role so that ∑ξ(Y) P (Y|X, ω, θ) =

1, with ξ(Y) being a possible assignation to the variables in Y, and ϵ(·) is the so-called energy

function defined as the sum of all the factors defined over the graph:

2Two variables yi and yj are related if their associated objects xi and xj are located close to each other in the
scene.
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ϵ(Y, X, ω, θ) = ∑
i∈V

U(yi, xi, ω) + ∑
(i,j)∈E

I(yi, yj, xi, xj, θ) (4.5)

The CRF training yields the weights ω and θ that maximize the likelihood function:

max
ω,θ

LP(ω, θ : D) = max
ω,θ

∏
d∈D

P (yd|xd) (4.6)

where D is the set of all the scenes used for training, xd is a set containing the characterized

objects in the scene d ∈ D, and yd are their corresponding ground truth classes.

Since solving Equation 4.6 requires the computation of the partition function, which is in-

tractable in practice, usually an approximated function replaces it. In this work, we employ the

pseudo-likelihood function, which has shown that, given a large number of training samples,

the optimization results converge to the ones yielded by the likelihood function (Koller and

Friedman, 2009).

Despite this simplification, the learning process remains complex if the number of consid-

ered object classes |L| and features used to describe them
⃓⃓⃓
f xiu

⃓⃓⃓
and their relations

⃓⃓⃓
f xixj p

⃓⃓⃓
is

high, which results in a large number of weights as well. On the other hand, it is desirable

to account for a comprehensive variety of features to properly characterize both objects and

relations. In Section 4.2.3.3 we describe our approach to tackle this issue.

4.2.3.2 Scene Graph Construction and Feature Extraction

A scene graph for the local scene is created by first adding one node for each tracked anchor,

then recursively adding nodes for untracked anchors that are closer than a certain context range

to a node already in the graph (which can include known objects that are close to currently

observed objects, but outside the camera frustum). An edge is added to the graph between

each pair of nodes that are within context range of each other (see Figure 4.7).

The scene graph corresponds to a CRF graph structure H = (V, E), where V is the set of

nodes, each one associated with a random variable from Y representing the class of an object

xi, and E is the set of edges/relations E between those objects.

These objects and relations are subsequently characterized through the vectors of features

f xiu and f xixj p respectively, which are integrated into the CRF model as introduced in Equa-

tion 4.2 and Equation 4.3 on the facing page.

The features are based on the objects’ bounding boxes and the table boundary and center.
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(a) robot observing a tabletop scene (b) a later observation of the same scene from a dif-
ferent viewpoint

(c) top-down view of (a) (d) top-down view of (b)

Figure 4.7: Two subsequent robot observations of a tabletop scene. Transparent boxes: bounding boxes
of anchored objects with their CRF classification result (CRF nodes; green: currently tracked, blue: not
currently tracked); lines: context edges between nearby objects (CRF edges). Also shown is the bound-
ing polygon of the currently observed table surface and its center.
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The bounding boxes are computed so that their z-axis aligns with the map frame’s z-axis, which

is pointing upwards. The table boundary is computed from the sensor data and represented as

a (not necessarily rectangular or convex) polygon. Figure 4.8 illustrates the table boundary and

some of the features that relate to it.

pt

p1 p2

α
d1

d2

d3d4

Figure 4.8: Illustration of some of the CRF unary and pairwise features (Tables 4.2 and 4.3).
p1, p2: object centroids
pt: table center
d1, d2: distance from p1 (resp. p2) to pt (table_center_distance(x1), table_center_distance(x2))
d3: horizontal distance between p1 and p2 (hdist_centroids(x1, x2))
d4: distance from p1 to table border (table_border_distance(x1))
α: angle between p1, p2 and pt (table_angle_diff(x1, x2)).

The unary features used here are listed in Table 4.2. They describe the shape, size and

position on the table of an object independent of other objects. This allows the CRF to learn

both the typical shape and size of different object classes as well as their typical position on the

table: some objects might occur more often near the center of a table, while others are usually

near the table border.

The pairwise features are listed in Table 4.3 and describe the relative size and position on

the table of two objects. These features allow the CRF to exploit context between the objects;

for example, some objects usually occur close to each other or at the same distance from the

table border.

We chose the features to fulfill two criteria. The first criterion is that the features should be

continuous/quantitative and not discrete/qualitative. The reason for preferring quantitative

over qualitative features is that it avoids hard discrete jumps in the value of the feature near

thresholds, which would negatively impact the classification performance and would intro-

duce another set of parameters (namely, the thresholds).
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The second criterion is that the features should not rely on any implicit reference poses that

arise from peculiarities of how the robot has recorded its data. For example, Anand et al. (2013)

use the node feature “Distance from the scene boundary”. In their system, the scene boundary

is implicitly given by the fringe of the area mapped by the robot. Since in their experiments, the

robot has always mapped exactly one room, this feature gives the distance to the room’s walls;

however, this feature is not applicable when only part of a room or multiple rooms are mapped.

Another example from Anand et al. (2013) is the edge feature “Relative position from camera

(in-front-of /behind)”. Since their system runs offline on a pre-registered dataset from many

camera poses, there is no unique reference camera pose. The paper does not include details, but

presumably the “camera pose” here refers to the origin of the registered map, which is usually

arbitrarily set to the pose of the first camera frame. This again introduces a dependency on

a particularity of the used dataset. Likewise, the features used by Kunze et al. (2014a) use a

reference system that is based on the front-left table corner. This is only meaningful because all

of their datasets have been recorded from the “front” of the office desks, i.e., with the monitor

in the back and the keyboard closer to the robot.

The only assumption made in the features used in this work is that the sensor data is rep-

resented in (or can be transformed into) a coordinate frame where the z-axis points up, which

is the case on all ground-based robots. Some of the features are expressed in relation to a table,

but that table center and boundary are extracted from the sensor data by our system and are

independent of any reference poses. Without a reference pose, it is not directly possible to cap-

ture “in front of / behind / left of / right of” relations; however, the table_center_distance

and table_border_distance features capture some of the “in front of / behind” information,

and the signed table_angle_diff feature approximates the “left of / right of” relation.

4.2.3.3 Integrating Local Object Recognition Results

Our CRF model can be enriched with the results from any local object recognition method (or

a combination of them) able to provide a confidence vector of its results, which permits the

recognition system to take advantage of methods exploiting specialized feature descriptors.

For that, we introduce the confidence vector cxi of an object xi into the usual CRF unary factors

formulation (see Equation 4.2) in the following way:

U(yi, xi, ω) = ∑
l∈L

δ(yi = l)ωl f (xi)cxi (l) (4.7)
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Table 4.2: CRF unary features. The variables dx, dy, dz used in the first five features are the dimensions
of the object’s bounding box; the z-axis is oriented upwards. The two features table_border_distance
and table_center_distance are illustrated in Figure 4.8.

Feature name Definition Description

volume dxdydz Volume of the bounding box
area_h dxdy Horizontal area of the bounding box

area_v dz

√︂
(dx)2 + (dy)2 Vertical area of the bounding box

elong_h max(dx ,dy)/min(dx ,dy) Horizontal elongation of the bounding box
elong_v dz/

√
(dx)2+(dy)2 Vertical elongation of the bounding box

table_border_distance — (see Figure 4.8) Distance to the table border polygon
table_center_distance — (see Figure 4.8) Distance to the table center

Table 4.3: CRF pairwise features for an edge between objects x1 and x2 with centroids p1 =(︁
px1 py1 pz1

)︁T and p2 =
(︁

px2 py2 pz2
)︁T. The functions refer to the unary features in Table 4.2. The

three table-related features are illustrated in Figure 4.8.

Feature name Definition Description

bias 1 Bias term (models co-occurrence
probability between object
classes)

volume_ratio volume(x1)/volume(x2) Ratio of bounding box volumes

hdist_centroids
√︂
(px1 − px2)2 + (py1 − py2)2 Horizontal distance between

centroids
table_border_diff table_border_distance(x1)

− table_border_distance(x2)

Difference of distances to the ta-
ble border

table_center_diff table_center_distance(x1)

− table_center_distance(x2)

Difference of distances to the ta-
ble center

table_angle_diff — (see Figure 4.8) Signed angle between p1, p2 and
table center
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Thus, the components of the confidence vector play the role of an additional feature, not

related to any weight, that have a different value for each object class. This integration also

leads to a reduction in the number of weights present during the CRF learning, alleviating the

training complexity. In this way, the CRF focuses on exploiting high-level features of objects

and relations and releases the work with specialized feature descriptors to the local method,

which modeling into the CRF typically involves a large number of weights. For example, in our

experiments, we have considered 9 different object classes, 7 unary and 6 pairwise features (see

Section 4.2.3.2). The number of weights associated with features of objects is
⃓⃓⃓
f xiu

⃓⃓⃓
· |L| = 7 · 9 =

63, while the number of those related to contextual features is
⃓⃓⃓
f xi ,xj p

⃓⃓⃓
· |L|2 = 6 · 81 = 486,

giving a total of 549 weights. The local object recognition system represents each object by a

set of 10 shape features, each one with a descriptor vector of 45 components, resulting in a

total descriptor length of 450. Thus, their modeling into a CRF would suppose the addition of

450 · |L| = 4050 weights, which clearly would increase the training complexity, even dropping

the recognition performance.

4.2.3.4 Probabilistic Inference

Once the CRF has been modeled including: a graph representation H = (V, E), the extracted

features of the graph components, and the confidence values from the local object recognition

method, a probabilistic inference process over such a CRF performs joint object classification.

Concretely, it finds an assignment of classes Ŷ to the objects X that maximizes the probability

P (Y|X), that is:

Ŷ = arg max
Y

P (Y|X, ω, θ) (4.8)

This calculus is commonly referred to as the Maximum a Posteriori problem (MAP), which

in this work is carried out utilizing the Iterated Conditional Modes method (Besag, 1986), an

approximated solution that mitigates the heavy computational burden required by exact ap-

proaches. We have made our implementation of the aforementioned training and inference

processes available as open source (Ruiz-Sarmiento et al., 2015b).

4.2.4 Blackboard Synchronization

The context-aware anchoring system is embedded in the rest of the plan-based robot control

architecture via the blackboard (see Figure 4.1 on page 42). The anchoring system however
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maintains its own internal world model (see Section 4.2.2) instead of directly storing all anchors

on the blackboard for the following reasons: (1) the anchors in the internal world model are

a richer representation of the objects (including a probabilistic representation of the possible

object types) than the purely symbolic fluents on the blackboard, and (2) the internal anchors

have to be updated at a high frequency, while the blackboard is designed to store knowledge

over longer time horizons with slower update rates.

In order to make the poses and identities of objects available to other modules (e.g., the

planner and plan executor), the internal world model of the anchoring system is continually

synchronized with the blackboard. This synchronization happens in two directions, as ex-

plained next: (1) reading fluents from the blackboard and (2) writing fluents to the blackboard.

Reading fluents from the blackboard When starting up, all already existing object-related

fluents are retrieved from the blackboard using the following SPARQL query:

SELECT DISTINCT ?instance WHERE

{

?instance upper:hasBoundingBox ?any .

?instance a ?subclass .

{

{?subclass rdfs:subClassOf+ race:Kitchenware}

UNION {?subclass rdfs:subClassOf+ race:PersonalItem}

}

}

This query is also registered with the blackboard, so whenever a new fluent is added to the

blackboard that matches this query, the anchoring system is immediately notified.

A sample set of object fluents retrieved by this query is shown in Listing 4.1 on page 73.

Each object is represented by a set of fluents. The main object fluent (here: mug1) states the

object’s class and a list of poses and bounding boxes. Each bounding box fluent specifies the

dimensions of the bounding box and its centroid pose. Note that this results in each object

having two poses. The reason is that when a CAD-model-based local object recognition is used,

the object’s pose relates to the CAD model’s reference frame, and the pose of the bounding

box is always the bounding box’s centroid (see Figure 4.9 for an illustration). For local object

recognition methods that are not based on CAD models, the object’s pose and the bounding

box’s pose coincide.
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Figure 4.9: CAD model of the object “mug”. The colored axes show the object’s reference frame, and the
white box is the object’s bounding box.

Writing fluents to the blackboard When a new object is discovered, a corresponding fluent

is immediately created on the blackboard. Conversely, when an anchor is destroyed, the corre-

sponding fluent is ended immediately.

When an existing fluent is updated (via Reacquire or Track), the object’s pose is updated as

shown in Listing 4.2 on page 74:

• The existing pose, bounding box and bounding box pose fluents are ended (i.e., the

FinishTime is set to the current time).

• New pose, bounding box and bounding box pose fluents are created which start at the

current time and are open (i.e., the FinishTime is unknown, signified by the special value

0).

• The new fluents are added to the main object fluent (here: mug1).

By storing each object pose in a new fluent (instead of simply overwriting the old fluents),

the blackboard enables reconstruction of an object’s full trajectory over time. This was one
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Listing 4.1 Initial fluents about the object mug1 from an external knowledge source. Properties
not explicitly specified (like hasRoll, hasPitch) have the default value 0.

!Fluent
Class_Instance: [Coffee, mug1]
StartTime: [0.0, 0.0]
FinishTime: [0.0, 0.0]
Properties:

- [hasPose, Pose, poseMug1_0]
- [hasBoundingBox, BBox, bBoxMug1_0]

---
!Fluent
Class_Instance: [Pose, poseMug1_0]
StartTime: [0.0, 0.0]
FinishTime: [0.0, 0.0]
Properties:

- [hasX, xsd:float, 5.59]
- [hasY, xsd:float, 10.30]
- [hasZ, xsd:float, 0.71]
- [hasYaw, xsd:float, -1.40]

!Fluent
Class_Instance: [BBox, bBoxMug1_0]
StartTime: [0.0, 0.0]
FinishTime: [0.0, 0.0]
Properties:

- [hasPose, Pose, poseBBMug1_0]
- [hasXSize, xsd:float, 0.070]
- [hasYSize, xsd:float, 0.094]
- [hasZSize, xsd:float, 0.084]

---
!Fluent
Class_Instance: [Pose, poseBBMug1_0]
StartTime: [0.0, 0.0]
FinishTime: [0.0, 0.0]
Properties:

- [hasX, xsd:float, 5.59]
- [hasY, xsd:float, 10.29]
- [hasZ, xsd:float, 0.75]
- [hasYaw, xsd:float, 0.0]

of the blackboard’s design goals since this functionality is essential for other tasks within the

RACE project (such as learning from experiences).

To avoid overloading the blackboard with minute pose changes at a high frequency, the ob-

ject poses are only updated if the pose difference is above a certain threshold or after a timeout.

4.3 Results

To evaluate our system, we collected a dataset of 15 different scenes. After a description of

the dataset and cross-validation scheme, we first present a separate evaluation of the object

association part of our system (Section 4.3.3). This is followed by an evaluation of the complete

system (Section 4.3.4).

4.3.1 Data Recording and Preparation

In recent years, many RGB-D datasets have become available; a recent survey (Firman, 2016)

lists 102 different 3D datasets, with the majority having been recorded with an RGB-D camera,

mostly the Microsoft Kinect 1. Some of the best-known datasets are:
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Listing 4.2 Updated fluents about the object mug1 after one observation

!Fluent
Class_Instance: [Coffee, mug1]
StartTime: [0.0, 0.0]
FinishTime: [0.0, 0.0]
Properties:

- [hasPose, Pose, poseMug1_0]
- [hasBoundingBox, BBox, bBoxMug1_0]
- [hasPose, Pose, poseMug1_1]
- [hasBoundingBox, BBox, bBoxMug1_1]

---
!Fluent
Class_Instance: [Pose, poseMug1_0]
StartTime: [0.0, 0.0]
FinishTime: [1423225357.28, 1423225357.28]
Properties: # unchanged

- [hasX, xsd:float, 5.59]
- [hasY, xsd:float, 10.30]
- [hasZ, xsd:float, 0.71]
- [hasYaw, xsd:float, -1.40]

---
!Fluent
Class_Instance: [BBox, bBoxMug1_0]
StartTime: [0.0, 0.0]
FinishTime: [1423225357.28, 1423225357.28]
Properties: # unchanged

- [hasPose, Pose, poseBBMug1_0]
- [hasXSize, xsd:float, 0.070]
- [hasYSize, xsd:float, 0.094]
- [hasZSize, xsd:float, 0.084]

---
!Fluent
Class_Instance: [Pose, poseBBMug1_0]
StartTime: [0.0, 0.0]
FinishTime: [1423225357.28, 1423225357.28]
Properties: # unchanged

- [hasX, xsd:float, 5.59]
- [hasY, xsd:float, 10.29]
- [hasZ, xsd:float, 0.75]
- [hasYaw, xsd:float, 0.0]

!Fluent
Class_Instance: [Pose, poseMug1_1]
StartTime: [1423225357.28, 1423225357.28]
FinishTime: [0.0, 0.0]
Properties:

- [hasX, xsd:float, 5.63]
- [hasY, xsd:float, 10.24]
- [hasZ, xsd:float, 0.79]
- [hasRoll, xsd:float, 0.015]
- [hasPitch, xsd:float, 0.001]
- [hasYaw, xsd:float, 2.186]

---
!Fluent
Class_Instance: [BBox, bBoxMug1_1]
StartTime: [1423225357.28, 1423225357.28]
FinishTime: [0.0, 0.0]
Properties:

- [hasPose, Pose, poseBBMug1_1]
- [hasXSize, xsd:float, 0.101]
- [hasYSize, xsd:float, 0.107]
- [hasZSize, xsd:float, 0.076]

---
!Fluent
Class_Instance: [Pose, poseBBMug1_1]
StartTime: [1423225357.28, 1423225357.28]
FinishTime: [0.0, 0.0]
Properties:

- [hasX, xsd:float, 5.63]
- [hasY, xsd:float, 10.24]
- [hasZ, xsd:float, 0.79]
- [hasRoll, xsd:float, 0.015]
- [hasPitch, xsd:float, 0.001]
- [hasYaw, xsd:float, 2.186]
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1. NYU Depth v2 (Silberman et al., 2012), the successor of the popular NYU Depth v1

dataset (Silberman and Fergus, 2011)

2. Berkeley B3DO (Janoch et al., 2013)

3. SUN3D (Xiao et al., 2013)

4. SUN RGB-D (Song et al., 2015)

The first three datasets are geared solely towards the evaluation of semantic segmentation

and labeling algorithms, i.e., they contain per-pixel class labels for each frame, but no bounding

box or object pose. The SUN RGB-D dataset addresses this shortcoming by incorporating se-

lected images from the NYU Depth v2, Berkeley B3DO and SUN3D datasets and own images,

and adding additional ground truth information, like 3D bounding boxes and object orienta-

tion. Also, the SUN RGB-D dataset provides a transformation for each frame that aligns the

frame to the gravity direction. Since this information was missing from the original datasets,

the annotation was done semi-automatically using the distribution of normals as a heuristic

and correcting errors manually.

What is missing from all standard benchmark datasets however is a transformation of each

RGB-D frame to a global coordinate frame, not only gravity direction. This is due to the fact

that the datasets were recorded using a handheld camera. In robotics, it is commonplace to

have access to this information from laser scanner-based localization, so our algorithm uses it

to get an initial guess for the position of previously encountered objects. Also, the two local

object recognition methods (Ciocarlie et al., 2010; Oliveira et al., 2014) that were integrated with

our system only deal with tabletop scenarios, whereas in the standard benchmarking datasets

many large-scale structures are labeled (e.g., wall, ceiling, book cabinet). This is also the case in

the recent Robot@Home dataset (Ruiz-Sarmiento et al., 2017a), that although includes a global

coordinate frame, also contains those structures. For this reason, we decided to record our own

dataset using a mobile robot.

This dataset consists of 15 scenes inspected by a robot equipped with an RGB-D camera

driving around a table and turning towards it from different locations. To demonstrate that the

approach is independent of the used robot, 5 of the scenes were recorded using the PR2 robot

and 10 were recorded using the Calvin robot (see Section 2.6.2). The table contained several

objects in varying table settings. In total, the dataset contains 1387 seconds of observation and

144 unique objects from 9 categories: sugar pot, milk pot, coffee jug, mug, dish, fork, knife,
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spoon, and table sign.3

Segmentation, tracking and local object recognition were run on the recorded sensor data,

and its output (tracked objects and local recognition results) was added to the dataset. Since

the objects were observed from multiple perspectives and tracking was lost while the robot

was moving from one observation pose to another, the dataset contains more than one track

ID for most objects (one for each subsequent observation of the object). Each track ID was

manually labeled with the ground truth class of the object it represented. Additionally, all track

IDs belonging to the same object were manually grouped to allow evaluation of the anchoring

process. Track IDs that did not correspond to any object on the table (but instead to objects on

different tables, pieces of the table itself or other artifacts) were manually removed. In total, out

of 432 track IDs, 410 (94.9 %) were associated with true objects, while 22 (5.1 %) were removed

as artifacts.

4.3.2 Cross-Validation

For evaluation, k-fold cross validation was performed. When choosing the splitting scheme of

the data into folds, it is important to account for the fact that the samples in the dataset are

not independently and identically distributed. Instead, there is a high statistical dependency

between samples from each of the 15 scenes, since the configuration of objects within a scene

did not change (only the perspective of the robot changed). A random split of the samples

into the k folds would result in overfitting and an inflated validation score since the system

would be tested on samples that are artificially close to the training samples. For this reason, a

splitting scheme was chosen where iteratively all samples from one scene were left out of the

dataset during training, and those samples were then used for testing. This cross-validation

scheme is sometimes called leave-one-label-out4 (LOLO; scikit-learn documentation, 2021). In

the neurosciences, it is called leave-one-subject-out (LOSO; Esterman et al., 2010).

4.3.3 Object Association

This section evaluates the capabilities of the anchoring process carried out before contextual re-

lations are exploited. This step first computes the similarities among the objects being observed

and the set of anchors already present in the system (Section 4.3.3.1) and then associates these

3The dataset is available at the following URL: https://doi.org/10.5281/zenodo.1257047
4The term “label” in this context denotes the scene to which a sample belongs, not the more common usage of

the target class of a sample.
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observations to anchors (Section 4.3.3.2). As illustrated in Figure 4.3 on page 51, the outcome

of this anchoring is further updated after contextual object recognition is carried out.

4.3.3.1 Object–Anchor Similarity Computation

We used the dataset to train and evaluate the SVM that computes the similarity between

two object observations to decide if they are observations of the same object or not (see Sec-

tion 4.2.2.1). To transform the dataset into training and test data for the SVM, we ran our system

while simulating “perfect” object association: instead of using the combination of the SVM and

the Hungarian Algorithm for object–anchor data association, we used ground truth to associate

new track IDs to the correct anchors. For each combination of new track IDs and untracked

anchor, the similarity features were computed, and a sample was added to the transformed

dataset. The sample was labeled as “same object” if the association was correct according to

ground truth and “different object” otherwise.

Figure 4.10 shows a scatter plot of the transformed data set. For visualization purposes,

only two similarity features are used in the figure (distance and diff_object_types (norm)). As

expected, samples labeled “same object” are grouped in the lower right corner: Both distance

and object type difference are low. Somewhat surprisingly, the distance between object ob-

servations ranges up to 0.3 m; since the objects were not moved during the recording of the

dataset, this observed distance is fully caused by localization errors. The figure also shows that

the two classes are not linearly separable and that both the distance between observed posi-

tions over time (feature “distance”) and similar appearance (feature “diff_object_types”) are

useful features to correctly associate an object to previous observations.

To evaluate which features yield the best classification results, the SVM was trained on four

different sets of features:

(a) distance + diff_object_types (norm): Distance between the centroids of the object observa-

tions + norm of the difference vector between the object types. This feature set corre-

sponds to Figure 4.10.

(b) distance + diff_object_types (vector): Same as (a), but instead of the norm of the object

type difference vector, each object type difference is used as a separate feature.

(c) distance + diff_object_types (norm) + additional features: Same as (a), but with additional

features (diff_v_elong, diff_h_elong, diff_v_area, diff_h_area, volume_ratio).
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Figure 4.10: Distribution of samples in the transformed dataset. Red dots: samples labeled “same ob-
ject”, blue dots: samples labeled “different object”. The only two similarity features used here are the
euclidean distance between object centroids (x-axis) and the norm of the difference vector between the
object types (y-axis). Blue line: decision boundary learned by the SVM.

(d) distance + diff_object_types (vector) + additional features: Same as (b), but with the ad-

ditional features from (c).

The results are shown in Table 4.4. Even the smallest set of features (a) already yields good

classification results (F1 score: 0.97), which shows that the distance between objects and the

aggregated difference of object types (a) is sufficient information for the classifier to decide

whether two objects are the same. Providing additional information (b–d) does not further in-

crease the classification performance significantly. Since simpler models with fewer parameters

are more robust and less prone to overfitting, the simplest model (a) was chosen for the rest of

this evaluation. To investigate whether a combination of features that is not included in a–d

would yield a better result, Recursive Feature Elimination (RFE) was applied to the full feature

set (c). During RFE, the features are removed one-by-one by eliminating the least informative

feature. On some classification problems, this increases accuracy by reducing overfitting. RFE
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Table 4.4: Classification reports of the SVM trained on different sets of features

precision recall F1 score support

(a) distance + diff_object_types (norm)
different object 0.99 0.98 0.98 1816
same object 0.88 0.90 0.89 249
avg / total 0.97 0.97 0.97 2065

(b) distance + diff_object_types (vector)
different object 0.99 0.98 0.99 1816
same object 0.89 0.92 0.90 249
avg / total 0.98 0.98 0.98 2065

(c) distance + diff_object_types (norm) + additional features
different object 0.99 0.98 0.98 1816
same object 0.86 0.91 0.89 249
avg / total 0.97 0.97 0.97 2065

(d) distance + diff_object_types (vector) + additional features
different object 0.99 0.98 0.99 1816
same object 0.88 0.92 0.90 249
avg / total 0.98 0.98 0.98 2065

results in the following ranking of features by importance:

1. distance

2. diff_object_types (norm)

3. diff_v_elong

4. diff_v_area

5. diff_h_area

6. volume_ratio

7. diff_h_elong

None of the iteratively generated feature sets outperformed (a) significantly. This indeed

confirms that the feature set consisting of distance and diff_object_types (norm) is the best choice.
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Table 4.5: Decisions made by the data association process when using the SVM from Table 4.4(a). Row
labels: Whether in the best assignment found by the Hungarian algorithm, the track ID and the assigned
untracked anchor corresponded to different objects or the same object according to ground truth. Column
labels: Whether the algorithm decided to create a new anchor for the track ID or whether to associate it
to the assigned anchor, based on the similarity rating from the SVM. Correct decisions are highlighted
in bold. Total accuracy is 94,12 %.

created new anchor associated to existing anchor total

different object 28 (84,8 %) 5 (15,2 %) 33 (100 %)
same object 11 (4,6 %) 228 (95,4 %) 239 (100 %)

Table 4.6: Classification report of the data association process when using the SVM from Table 4.4(a).
The data in this table corresponds to Table 4.5.

precision recall F1 score support

different object 0.72 0.85 0.78 33
same object 0.98 0.95 0.97 239
avg / total 0.95 0.94 0.94 272

4.3.3.2 Object–Anchor Data Association

To assess the performance of the complete object–anchor data association algorithm that com-

bines the SVM trained in the previous subsection and the Hungarian algorithm, another exper-

iment was performed. We ran the object–anchor data association algorithm (see Section 4.2.2.2)

in its normal mode of operation on the untransformed dataset. For each frame, the Hungar-

ian algorithm first found the globally best assignment between new track IDs and untracked

anchors (as determined by the similarity value from the SVM). Next, for each assignment, a

threshold on the similarity value was used to determine whether to create a new anchor for an

object or whether to associate it with the assigned anchor. The results are shown in Table 4.5.

In 256 out of 272 cases (94,12 %), the algorithm made the correct decision. These numbers do

not include the trivial cases where no untracked anchors are present (such as at the beginning

of each run of the algorithm), because in this case, the Hungarian algorithm is not needed;

instead, a new anchor is created directly for each track ID. If these cases were included, the

reported accuracy would be even higher.

Since the decisions reported in Table 4.5 ultimately depend on the classification made by the

SVM, we also show the classification report of the data association process in Table 4.6, for easy

comparison with the SVM results on the transformed dataset (Table 4.4). However, one should
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note that the two tables are not directly comparable: Table 4.4 contains multiple entries for each

new track ID (one for each possible assignment of the track ID to an untracked anchor), whereas

Table 4.6 only has one entry for the best assignment. This results in two opposing effects on the

classification accuracy. On the one hand, the Hungarian algorithm ensures that in those cases

where the SVM would accept two or more possible matches, only the best match is counted,

thereby increasing accuracy on the hard-to-decide cases near the class boundary and improving

the accuracy of the category “same object”. On the other hand, this step also eliminates all the

easy-to-decide cases of different objects far away from the class boundary (the ones in the top

right corner of Figure 4.10 on page 78), which results in lower reported accuracy for the class

“different object”. This is also evident in the fact that in Table 4.6, the support of class “different

object” is much lower than in Table 4.4. Also, the transformed dataset used “perfect object

association” (from ground truth), whereas, in the actual data association, errors can propagate:

When a track ID is assigned to the wrong untracked anchor, that anchor is not available for the

correct assignment later on. However, even given those interactions between the Hungarian

algorithm and the SVM, the object–anchor data association still reaches an F1 score of 0.94

(compared to 0.97 for the SVM alone on the transformed dataset), which demonstrates that our

data association step is able to correctly assign almost all track IDs to the correct anchor.

4.3.4 Complete System

The collected dataset of table-top settings has two characteristics that are especially challeng-

ing for object recognition methods that use local appearance and the current sensor data alone,

which further motivates the exploitation of contextual features and relations with objects out-

side the current sensor view. On the one hand, the small objects (fork, knife and spoon) only

produce a small set of points in the captured point clouds (or pixels in the RGB-D images); they

are almost the same size and contain reflective parts, so only the handle is actually visible. This

combination makes them hard to be distinguished based only on local features. On the other

hand, the robot normally sees only a part of the scene, which means that the full object context

information is not available from the current sensor data (see Figure 4.7 on page 66).

Since an object is assigned a new track id when it leaves and then re-enters the robot’s field

of view, the number of tracks (387) is higher than the number of unique objects (144). The

predicted category was determined by the class that was reported most often by the CRF for

one particular track ID.

The results are summarized in Table 4.7. As expected, recognizing small objects yields poor
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accuracy results when using only the local object recognition method. However, our combined

system exploits context to achieve a significant improvement (29.22 % increase in accuracy).

For the remaining six objects, the local object recognition method already delivers a high ac-

curacy (91.15 %), so the improvement from exploiting context is not as large (2.0 % increase in

accuracy). This shows that exploiting context is most useful in those cases where objects are

ambiguous and hard to distinguish based on local appearance alone, but also improves accu-

racy in the other cases. The results also demonstrate the performance boost by using context

with objects outside the current field of view (CRF+A, Section 4.2.2) and integrating local object

recognition results into the CRF (CRF+Loc, Section 4.2.3). In total, the complete combined sys-

tem (CRF+A+Loc) achieved an increase of 10.18 % in accuracy over the employed local object

recognition method (Oliveira et al., 2014). Figure 4.11 shows the aggregated confusion matrix

yielded by the proposed system on the dataset.
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Figure 4.11: Confusion matrix of the combined method (CRF+A+Loc in Table 4.7) – classification accu-
racy: 86.82 %.

Notice that the achieved accuracy partially depends on the success of the local object recog-

nition method, as mentioned in Section 4.2.1. Since this method could be replaced by any other
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Table 4.7: Classification accuracy on sub-datasets. Loc: local object recognition only (base line; Oliveira
et al., 2014); CRF+A: CRF only, but with objects outside the field of view supplied by Anchoring;
CRF+Loc: CRF integrated with local object recognition; CRF+A+Loc: complete, proposed system (CRF,
anchoring, local object recognition)

Loc CRF+A CRF+Loc CRF+A+Loc

small objects (fork, knife, spoon) 46.32 % 75.00 % 72.58 % 75.54 %
other objects 91.15 % 90.73 % 94.38 % 93.15 %
total 76.64 % 85.05 % 85.43 % 86.82 %

method providing the same output, the important thing here is not the absolute reported accu-

racy, but the fact that the exploitation of contextual relations largely improves its performance.

Regarding computational costs, training, which has to be completed only once, took on

average 1421.5 s per fold. The runtime of feature extraction was 0.064 s and for MAP inference

0.005 s per scene graph (excluding time for the local object recognition). All experiments have

been performed on a standard laptop (2.6 GHz Core i7 CPU, 8 GB RAM).

4.4 Discussion and Future Work

This chapter has presented an anchoring system that creates and maintains the correspondence

between object symbols used by the higher-level modules in the RACE architecture, such as

the planner, and the sensor data concerning these objects in the form of object recognition

results from an arbitrary local object recognition method. Moreover, the anchoring system is

able to exploit the contextual relations of the objects in the scene to improve the local object

recognition results. To achieve this, we employ a probabilistic, context-aware representation

of the environment based on Conditional Random Fields (CRF). These Probabilistic Graphical

Models are typically used to model and exploit the relations in a given scene, but by using

the world model created through anchoring, our system also considers nearby objects beyond

the field of view of the sensor, which also improves its performance. With this combination of

techniques, our system is capable of online operation, continually processing and integrating

single frames, which is a requirement for online plan-based robot control.

The usefulness of the system has been demonstrated in the RACE project, where it was

employed for anchoring object symbols used by the planner, execution monitor and human-

robot interaction to object perceptions from 3D sensor data produced by an object recognition

system.
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To evaluate the performance of the proposed system, we collected a dataset of 15 scenes

with table-top settings. This dataset is especially challenging for both local and contextual

object recognition methods, so it results in a good testbed for the system. The conducted ex-

periments assessed both the object association and object recognition capabilities of the system.

For object association, the system achieved a precision of 0.95, a recall of 0.94, and an F1-score

of 0.94. The full context-aware anchoring system achieved 86.82 % accuracy in object classi-

fication (compared to 76.64 % accuracy when using the local object recognition alone), which

demonstrates that our system successfully exploits contextual relations between objects. The

computational costs of the method were shown to be low (0.064 s for feature extraction and

0.005 s for CRF inference per scene graph).

In the future, we plan to employ our system to predict the most promising locations of non-

perceived objects of a target class to support active object search, which will be covered in the

next chapter.
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Chapter 5

Forward-Looking Active Perception

Many robot tasks involve objects in the robot’s environment. For example, in RACE’s

restaurant domain, the robot needs to bring objects such as a pepper mill or a cup to the guest’s

table. In a home service robot scenario, the robot might be instructed to bring a TV remote or

other object to the owner. However, in a dynamic environment such as a restaurant or home,

the robot does not always know about the exact location of the target object, which requires the

robot to search for it.

This chapter presents the active perception system FLAP4CAOS (Forward-Looking Active

Perception for Context-Aware Object Search). It controls the robot, based on sensor feedback,

in order to autonomously explore an environment and actively search for target objects. In

doing so, it exploits probabilistic information about the likely whereabouts of the target object

and plans several steps ahead to minimize the expected time to find the object.

The anchoring system from Chapter 4 and the active perception system presented in this

chapter are complementary. The anchoring system passively processes the sensor data gener-

ated by the robot, while the active perception system brings the robot’s sensors into configu-

rations that are most likely to contain the target object (see Figure 5.1). The two systems are

largely independent: The anchoring system does not care whether the robot movements are

generated by teleoperation, pre-planned sequences of actions or fully autonomously through

the active perception system, and the active perception system does not care directly what hap-

pens with the sensor data that is being produced during its operation. This independence be-

tween the two systems allows to exchange each system independently of the other, depending

The contributions described in this chapter have first been published in the following publication: Gedicke et al.
(2016)
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on the task - for example, the active perception system could just as well be used to explore an

environment in combination with the semantic mapping system from Chapter 3. Most of the

high-level autonomous robot behavior emerges from the interplay between the two systems

purely indirectly, via the sensor data. However, there are two more direct ways in which the

two systems can interact: First, the anchoring system signals to the active perception system

when the target object has been found, so the object search can be aborted. Second, the active

perception system processes probabilistic knowledge about probable locations of the target ob-

ject. This information can be supplied by a number of sources, for example, user input or

background knowledge that is stored in a semantic map. Conceivably, this information could

also come from the context probabilities computed by the anchoring system, thereby closing

the loop; however, this is still future work.

Robot

Anchoring Active Perception

sensor data
action commands

cancel when
object found

object location
probabilities

Figure 5.1: Simplified data flow between the robot, the anchoring system (Chapter 4) and the active
perception system (this chapter). In the actual implementation, the anchoring and active perception
systems do not interact directly, but via the executive and blackboard; this is omitted here for clarity.

The main contribution of this chapter is an object search and exploration algorithm that has

the following distinctive features:

• it can exploit prior knowledge about probable object locations,

• it includes an efficient anytime 3D view sampling technique for calculating the next best

views (Section 5.2.1), and

• it plans multiple steps ahead in order to minimize the expected time to find the target

object (Section 5.2.2).

The system has been demonstrated on several different robots and has been thoroughly

evaluated qualitatively and quantitatively (Section 5.3).
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5.1 State of the Art

This section begins with reviewing the state of the art related to the main features of our algo-

rithm: prior knowledge in object search (Section 5.1.1), 3D view sampling (Section 5.1.2) and

planning ahead (Section 5.1.3). Afterward, the state of the art in fields that are adjacent to ob-

ject search is reviewed: exploration and coverage path planning (Section 5.1.4) and continuous

exploration trajectories (Section 5.1.5).

5.1.1 Object Search Exploiting Prior Knowledge

An important aspect of object search is the creation of a prior hypothesis regarding probable

locations of the target object so that the search process can be directed towards promising lo-

cations. Ye and Tsotsos (1999) model this using a probability distribution function for a single

target object that assigns to each cell in a discretized workspace the probability of the target be-

ing located there. Shubina and Tsotsos (2010) revisit and build upon this. Several approaches

have been examined that allow robots to obtain and access the required kind of world knowl-

edge. These include probabilistic environment models (Kunze et al., 2012), indirect search us-

ing spatial relations to intermediate targets (Anand et al., 2013; Kunze et al., 2014b), relational

affordances (Moldovan and De Raedt, 2014), visual saliency (Rasouli and Tsotsos, 2014), se-

mantic maps based on probabilistic programming languages (Veiga et al., 2016), probabilistic

conceptual maps (Hanheide et al., 2011) and general semantic knowledge of indoor spaces

(Aydemir et al., 2011, 2013).

5.1.2 Next Best Views

A typical trait of collision-free active perception systems is a phase during program execution

that determines the next best view, i.e., the next sensor configuration that the robot should as-

sume to optimize some utility function. This function incorporates a measure of the expected

information gain and often also the predicted action cost. Ye and Tsotsos (1999) and Shubina

and Tsotsos (2010) use a concept called sensed sphere to identify the visible area for each can-

didate of a discrete set of camera poses and calculate the expected probability of detecting the

target at that pose. A cost function then combines this probability with the expected execution

time to generate a final score. Sensing actions may also be guided by targeting frontiers, i.e., the

boundary between free and unknown space. This concept was proposed by Yamauchi (1997)

for 2D and later extended by Surmann et al. (2003) to 3D. Blodow et al. (2011) combine the size
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of visible frontier regions with other factors in a cost function to evaluate a discretized pose

space to find the next best view. As part of a multi-level process, they cast rays towards fron-

tiers to precisely evaluate promising candidates in three dimensions, as Surmann et al. (2003)

have done in a 2D projection of 3D space. A similar approach is pursued by Dornhege and

Kleiner (2013), where rays are cast from unknown regions towards their associated frontiers

as a method to explore enclosed areas with poor visibility. The original deterministic form

of this approach is modified in later research by Dornhege et al. (2016) to employ sampling.

Atanasov et al. (2014) present a system for classification and pose estimation of an object of in-

terest in a cluttered scene. The system employs a detailed probabilistic model of the quality of

a given view that takes degrees of occlusion into account and plans a sequence of views using

a POMDP approach. The result outperforms popular greedy viewpoint selection approaches.

McGreavy et al. (2016) developed a Next Best View planning approach for object recognition

that into account under which angles an object is best recognized. Possible views are evaluated

based on the proportion of the camera’s field of view that is filled by the object, taking occlu-

sions and the camera pose relative to the object into account. However, the system requires

a good initial 6DoF pose estimation of the candidate object (or object hypotheses, in case of

uncertainty about the object class).

5.1.3 Planning Ahead

Most of the above-cited next best view selecting systems follow a greedy approach in the way

that only a single sensing action is planned ahead of time. The objective in the works by Ye and

Tsotsos (1999) and Shubina and Tsotsos (2010) is to maximize the probability of finding the ob-

ject within a given time constraint, and the greedy approach is shown to deliver good results.

The workspace exploration system described by Renton et al. (1999) recursively pushes future

view poses on a stack to ensure that a region is explored before the sensor is moved inside.

Sarmiento et al. (2003) examine a planning strategy with the goal to minimize the expected

time until the target is found. They prove the planning problem to be NP-hard but develop a

fast heuristic method that yields a good approximate solution. Dornhege et al. (2016) use an

approximation of a set cover/TSP decomposition of the problem to speed up the planning pro-

cess. Rasouli and Tsotsos (2016) experimentally compare three different search strategies: GSC

(a variant of a greedy strategy), EGS and DLAS (two planning strategies). In their experiments,

the greedy strategy outperformed the other two; however, the initial plans were calculated

without any knowledge of the environment, and in contrast to our method, replanning was
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not done continually, but only when an action could not be performed (for example, due to

obstacles), probably due to the high cost of replanning in their system. On the other hand, for

the greedy variant, only the next action was chosen at each time, so it could incorporate knowl-

edge gathered during the search in its action selection. This might have biased the results in

favor of the greedy variant.

5.1.4 3D Exploration and Coverage Path Planning

Closely related to the task of object search is the task of exploration, in particular 3D exploration

(Dang et al., 2018; Dornhege et al., 2016; Renton et al., 1999; Shade and Newman, 2011; Surmann

et al., 2003). While the objectives of these two tasks differ, it can be argued that exploration is

a special case of object search: The only differences are that first, exploration is not guided

by prior probabilities of a target object’s location, but will treat the whole target region equally;

and second, exploration only terminates after the search space is exhausted. For this reason, the

system presented here can also be used for the exploration of a 3D volume by providing it with

a uniform probability distribution for the (non-existent) target object, and never canceling the

search before it has exhausted the search space. The 3D map of the environment is not known

to our algorithm in advance, since we assume the presence of dynamic obstacles that can cause

occlusions, and so our algorithm always performs a limited form of exploration during object

search. However, the 2D map is assumed to remain static and used by our algorithm for path

planning. For our algorithm to perform a full exploration of an unknown environment, it

would have to be extended to perform frontier-based exploration of the 2D map as well.

Another field related to Object Search is that of Coverage Path Planning (CPP; Galceran and

Carreras, 2013). In CPP, the task is to find a motion plan that covers a given area or volume

with a tool (e.g., in cleaning robots) or with a sensor’s field of view (e.g., in inspection robots).

The difference between Object Search and CPP is that Object Search minimizes the time to find

a target object, whereas CPP minimizes the time to full coverage of an environment.

While the majority of CPP algorithms only address planar 2D environments, the approach

by Englot and Hover (2012) – which was later extended by Papadopoulos et al. (2013) – per-

forms a full 3D inspection of a complex 3D structure. The target application is autonomous

ship hull inspection, where the whole surface of the hull (including the complex parts of the

running gear) has to be covered by a sonar mounted to a 6DoF UAV. Given an a-priori 3D

model of the hull, they employ random sampling-based path planning to construct an off-line

plan which solves the coverage path planning problem.
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Exploration Coverage Path Planning combines exploration and path planning; in other

words, no a-priori map of the environment is required. Jia et al. (2016) present a CPP ap-

proach that performs exploration in a 2D environment with a simplified sensor model. Similar

to FLAP4CAOS, the Receding Horizon Next-Best-View (RH-NBV) planner (Bircher et al., 2016,

2018) computes a random tree of possible view poses that is limited by a receding horizon and

executed in a continuous replanning loop. By switching out the objective function for evaluat-

ing the quality of the nodes in the random tree, RH-NBV can be used either for the exploration

of an unknown volume or coverage planning of a given surface manifold.

5.1.5 Continuous Exploration Trajectories

A drawback of the methods presented above (and of FLAP4CAOS as well) is that they employ

random sampling to limit the complexity of the planning problem. This means that the sensor

orientation is only evaluated at discrete view poses, and sensor readings that occur on the path

between view poses are not considered in the planning process. FLAP4CAOS attempts to still

take advantage of those sensor readings by keeping the camera turned towards the center of the

target volume while moving, and continuously updating the 3D map with all received sensor

data (even if it was not planned for). However, this is only a heuristic; optimal behavior might

include turning the camera away from the center of the target volume while moving.

An exploration system that does not share the trait of explicit evaluation and selection

of a next best view pose is presented by Shade and Newman (2011), where a potential field

method inspired by fluid dynamics is used to generate smooth exploration trajectories directed

towards frontiers. Charrow et al. (2015) use a two-stage approach, where they first use low-

frequency global planning combined with local motion primitives to generate an exploration

trajectory. In a second stage, they run trajectory optimization at a higher frequency to maxi-

mize an information-theoretic objective function, leading to exploration trajectories that point

the robot’s sensor towards unexplored space.

5.2 Algorithm and Implementation

Our system searches for an object of a target class (e.g., a mug) within a given target region.

It is designed as a sub-component of a cognitive architecture that is capable of recognizing

individual objects when they are detected by the sensor and maintains a belief state regarding

probable object locations. When the object search component is triggered by the system, it is
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Figure 5.2: PR2 during a search process. The target volume on top of the table has several occlusions
and a cavity. Figure reproduced from Gedicke et al. (2016).

given a set of bounding volumes (e.g., a box that encompasses the top of the table shown in

Figure 5.2) and the degree of belief for each of these volumes to contain an object of the target

class. The actions available to the robot are navigating to a new position (using a path planner),

pointing the head, and raising or lowering the telescoping torso, and any combination of these

may be used to transition between view poses. The search process is terminated when the

target is detected within the sensor’s field of view.

Figure 5.3 shows an overview of the data flow between the involved components and high-

lights the active perception components that make up the FLAP4CAOS system in a darker

shade. A 3D map is continually built from sensor data and is used by a view sampling mod-

ule, which computes a set of possible view poses along with the expected information gain for

each pose. These samples are per request fed to an object search planning and execution mod-

ule, which aims to minimize the expected time until the target is found and iterates between

requesting view samples, planning, moving the robot, and sensing.

Figure 5.4 shows a flowchart of the algorithm. At the beginning of each iteration, a set of
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3D Mapping Planning/execution

Robot controlLocalization

View sampling
Map

Target region

InstructionsSamples

Search request,
prior knowledge

Pose transforms

Sensor driver

Point
clouds

Figure 5.3: Structural overview of inter-component data flow. Figure reproduced from Gedicke et al.
(2016).

view poses is sampled (Section 5.2.1). If none of the sampled views observes an unexplored part

of the target region of interest, the algorithm terminates. Otherwise, three steps are performed

(Section 5.2.2): First, pairwise transition times between views are calculated as a prerequisite

for view planning. Next, a sequence of views is planned that minimizes the expected time

to find the object. Finally, the camera is moved to the first view pose in that sequence by

sending commands to the robot navigation and commanding other joints on the robot such as a

telescoping spine or pan-tilt head. While moving, all incoming sensor information is integrated

into a 3D occupancy map. If the object was found or the probability of finding the object in

the remaining unobserved part of the region of interest falls below a certain threshold, the

algorithm terminates; otherwise, all steps are repeated in the next iteration, incorporating the

updated information in the 3D map.

5.2.1 Mapping and View Sampling

The system maintains an octree representation of the robot’s workspace with cells that take val-

ues of either free, occupied, or unknown. The OctoMap library (Hornung et al., 2013) provides

a mapping framework that allows to efficiently query the map and to integrate point clouds us-

ing a probabilistic sensor model. We maintain a set of frontier cells that consists of all unknown

cells with at least one known free neighbor cell, akin to Blodow and colleagues’ (2011) “fringe

voxels”. The map is built incrementally by continual integration of preprocessed sensor data.

Arbitrary regions of the map can be reset to unknown to express that the region is assumed

to have changed and should be observed anew. This can be triggered manually or by exter-

nal modules that use semantic knowledge to deduce that the information regarding a certain

region is out of date based on the observation of some situation or activity. Future work may

implement a version of fading knowledge that gradually decreases confidence in individual

cells when they have not been observed for a certain amount of time.
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Sample view poses

Predict transition times

Generate full plan

Move to next view pose
while updating map

end

good views left?

yes

no

noyes

start

object found or
success probability
below threshold?

Figure 5.4: Flowchart of the main phases of the algorithm

The map constitutes the basis of the view sampling process that determines and evaluates

possible sensor poses for the observation of unknown cells within some region of interest. View

sampling is an anytime operation that allows to adjust the amount of computational effort

invested on the fly and, given enough time, will find all feasible view poses. The sampling

system’s output consists of 2-tuples, wherein the first element is a sensor pose and the second

element is a set of unknown cells that are expected to be visible from this pose. In the following,

such pairs shall be called views.

A query to the sampling system consists of a region of interest (ROI), defined as a set of

bounding volumes V . For each volume Vi ∈ V , the set of all frontier cells inside Vi is gathered.

Unknown cells at the boundary of Vi that are not marked as frontiers are additionally included

as frontiers for this volume only to enable the system to find views for regions even if they are

enclosed in unknown space. The union of all collected frontier cells within the ROI is in the

following denoted as F .

The position of each view sample is picked from a constrained space around a randomly
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chosen target frontier cell f ∈ F . All views are oriented to point directly towards their re-

spective target cell. View poses are randomly chosen such that they obey the following three

general constraints. The first constraint simply demands the position to be within the sensor’s

range limits relative to the target cell. Secondly, the sensor pose must be attainable according

to a configurable model of the robot’s kinematics; for example, the sensor’s height is limited to

certain bounds for robots with a telescoping spine, and also the pitch angle is variable within

limits for robots with a pan-tilt head. Finally, all potential camera poses should be located at the

known-space side of the frontier, looking towards the ROI. This constraint is enforced by esti-

mating the frontier plane’s normal vector at f and restricting the angle between the line of sight

and the frontier normal to be less than 90◦. The frontier normal of a target cell is calculated by

connecting the mean of the center points of all unknown neighbors with the mean of the center

points of all free neighbors. While a straightforward implementation could simply pick ran-

dom coordinates and reject those samples which lie outside the constrained region, we reduce

the number of rejects significantly using a local consistency approach in the above-outlined

constraint network.

To determine the set of cells that are expected to be revealed by the sensor at a sample pose,

we scan the field of view of a virtual camera and compile the set of all unknown cells within the

ROI that are traversed by rays. When a ray hits an unknown cell, it is allowed to pass through;

hence, view sampling assumes unknown space to be free and is, in this sense, optimistic.

The sampling procedure loops until either the required number of views is generated or

a timeout is reached. See Figure 5.5 and Figure 5.6 for visualizations of the generated view

samples.

5.2.2 Planning and Execution

The object search component acts on search tasks that define a target object and a search region

and runs until either the target is located or the search region is exhausted. A planner constructs

sequences of views with the aim to minimize the expected duration of a search process that

successively visits all views in the sequence.

The search region defined in each task is represented as a set of bounding volumes V . Each

volume Vi ∈ V is annotated with a probability Pi of the volume containing at least one object

of the target type according to the robot’s current state of belief. Since all Pi are independent

of each other, it is not necessary that ∑ Pi = 1. Each cell ck ∈ Vi is assumed to equally and
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(a) Initial set of views. Part of the ROI was already
observed by the robot in its initial position.

(b) After the first few actions, most of the ROI is
already observed.

(c) When the robot reaches the other side of the ta-
ble, only a few unobserved voxels inside the cavity
remain unobserved.

(d) Finally, the robot drives as far as possible away
from the table while remaining within the sensor’s
maximum range and lowers its torso completely to
look inside the cavity.

Figure 5.5: Object search execution on a real PR2 robot. Views are visualized as arrows with color-coded
normalized target space visibility (blue for zero visibility). Unknown cells within the ROI on the table
are marked yellow; occupied cells in the environment are marked in gray. The planned path is shown
in white.

independently contribute to Pi, resulting in a probability value for each cell of

∀ck ∈ Vi : p(ck) =

⎧⎨⎩ 1− Ni
√

1− Pi if unknown(ck)

0 else ,
(5.1)

where Ni is the number of cells in Vi. Comparable object search systems, such as those of

Ye and Tsotsos (1999) and Shubina and Tsotsos (2010), model the probability distribution of a

single target object’s location. In such a model, the sum of all location probabilities necessarily

equals 1, and all probabilities must be updated accordingly when a set of cells is seen without

locating the target. Because our approach makes no assumption about the number of target
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(a) Overview of the setting. (b) Initial samples.

(c) Unknown cells after partially observing the
ROI. The unknown cells closest to the robot are
below the sensor’s field of vision.

(d) After observation from a second angle, few oc-
cluded cells remain.

Figure 5.6: View sampling during different stages of object search in a Gazebo simulation. Views are
visualized as arrows with color-coded normalized target space visibility (blue for zero visibility). Un-
known cells within the ROI on the table are marked yellow. Note: We show an orthographic projection;
all parts of the algorithm work in 3D. Figure reproduced from Gedicke et al. (2016).

objects, all Pi and all p(ck) can be considered independent and no update step is necessary.

View sampling is called for the region of interest to generate a set of n views S . The returned

views include only unknown cells so that the total detectable space according to the view set is

V̂(S) =
⋃︂

si∈S
cells(si) ⊆ V , (5.2)

where cells(si) yields the set of all cells expected to be seen from the view pose si. We disregard

the reliability of detection algorithms and assume that if a target is in view of the sensor, it will

be detected every time. The probability of detecting at least one instance of the target type by

moving the sensor to a view pose si can be defined in terms of the set of cells seen C = cells(si)
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as

p(C) = 1− ∏
ci∈C

(1− p(ci)) . (5.3)

The total expected probability to see a target using all views is simply p(V̂(S)). The object

search task contains a termination criterion in the form of a threshold probability ω. The search

process terminates when p(V̂(S)) < ω.

An external path planner is used to generate paths from the current robot location to all

view locations. All unreachable views are filtered out. Subsequently, predicted transition times

t(si, sj) between the remaining views are calculated. Since these times are needed in every step

of the planning process, a lot of time is saved by pre-computing them as a lookup table. Further

time is saved by clustering close-by view poses together to reduce the quadratic number of

path planning requests necessary. Transition times comprise the driving time (predicted using

a linear regression over path costs returned by the planner), the time needed to lift the robot’s

torso to achieve different sensor heights, the time needed to move the pan/tilt head, and a fixed

amount of sensing time at the target pose.

Let a sequence of views be denoted as L = ⟨L0, . . . , Ln⟩, where L0 is the current state and

each Lk has a corresponding view sL,k ∈ S . The goal is to find a sequence L̂ that minimizes the

expected time until the target is found which is given by

E[T|L] =
n−1

∑
i=0

i

∏
k=0

(︁
1− p(sL,k|⟨L0, . . . , Lk−1⟩)

)︁
t(Li, Li+1) , (5.4)

where p(si|L) is the probability to find a target with observation si after having already seen

the sequence L. Accounting for all cells already seen by L, this is calculated as

p(si|L) = p

(︄
cells(si) \

n⋃︂
k=0

cells(Lk)

)︄
. (5.5)

Sarmiento et al. (2003) examine this optimization problem in a similar context and employ a

heuristic algorithm called utility greedy to quickly compute approximate solutions. Our planner

uses the key heuristics of utility greedy in a depth-first branch and bound approach to construct

plans without consuming too much memory. Since the objective function is the plan’s expected

runtime, the obvious greedy heuristic to determine the order in which new views si ∈ S are

appended to partial plans is to minimize the local increase in expected runtime. However, this

performs poorly, confirming the observation made by Sarmiento et al. who propose to improve
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efficiency using a different utility function given by

util(si|L) =
p(si|L)
t(Ln, si)

. (5.6)

Since this function proves to be effective, we adopt it for our planner1. To further accelerate

planning, Sarmiento et al. sacrifice optimality and introduce a pruning heuristic that discards

strictly dominated views sk given a partial plan L according to

dominated(sk|L) :⇔ ∃si ∈ S : p(si|L) > p(sk|L) ∧ t(Ln, si) < t(Ln, sk) . (5.7)

In other words, a view is discarded if another view exists that is both faster to reach and more

likely to reveal the target. During the discussion of the experimental results (Section 5.3), we

will use the flag ξ ∈ {0, 1} to denote whether this pruning heuristic was enabled.

We introduce two additional mechanisms to reduce the amount of branching in the planner.

First, branching is only allowed up to a depth limit ψ. After the depth limit is reached, the

plan is completed by greedily picking remaining views with the highest utility value (5.6) until

the termination criterion (5.9) is reached. Second, only expansions are allowed for which the

utility value is not smaller than the best utility value divided by a branch limit factor ϕ. As

the value of ϕ increases, more branching takes place, since fewer views are discarded. These

parameters allow balancing the optimality of the planner versus speed. At one extreme, for

ψ = ∞, ϕ = ∞ and ξ = 0, the full search space will be exhausted, guaranteeing optimality. At

the other extreme, for ψ = 0 or ϕ = 1, the planner constructs a single greedy sequence without

branching.

As evidenced by (5.4) to (5.7), the planner needs to perform set operations to track a plan’s

quality and to evaluate heuristic functions. It should be noted that, although (5.5) is formulated

in terms of set union, the planner is implemented using only set difference, resulting in faster

set operations with increasing planning depth. Since the number of search nodes increases

exponentially with depth, this reformulation results in a huge total speedup.

The total probability of success for a plan can be calculated analogously to (5.3) as

p(L) = 1− ∏
Li∈L

(︁
1− p(Li|⟨L0, . . . , Li−1⟩)

)︁
. (5.8)

1See Sarmiento et al. (2003) for an analysis of the relation between the utility function and the objective function
and why the naive utility function performs poorly.
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A plan is complete when the remaining probability to encounter a target by adding more view

poses falls below the termination threshold ω, as expressed by

complete(L|S) :⇔ p(L) > 1− 1− p(V̂(S))
1−ω

. (5.9)

After planning finishes, the robot navigates to move the sensor into the first planned posi-

tion, senses and waits for sensor data integration. If the search process is not externally inter-

rupted, that means that no target object has yet been found, and the procedure starts another

cycle. Each cycle retains the previously planned views, which are reevaluated and augmented

with additional views using the view sampling system. A new plan is constructed continually

in each cycle until p(V̂(S)) < ω.

5.3 Results

The FLAP4CAOS system has been tested in reality on a variety of robots, including the Wil-

low Garage PR2 (Figure 5.2 on page 91), Osnabrück University’s Calvin robot (Figure 2.6 on

page 24) and a team of three Turtlebots (Figure 5.7). This demonstrates that FLAP4CAOS can

easily be deployed on a range of different robot kinematics and also already has limited support

for multi-robot collaboration; for a more detailed discussion, see Section 5.4.

Figure 5.7: A team of Turtlebots using FLAP4CAOS to collaboratively explore an environment during
the Lucia Winter School on Artificial Intelligence and Robotics in Örebro, Sweden (December 11-16,
2016).

The remainder of this section presents the results of a series of quantitative experiments in

simulation. The robot used in these experiments is a Willow Garage PR2 with a head-mounted

RGB-D camera which can be panned 350◦ and tilted 115◦. The head is mounted on a telescoping
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torso with a lift range of 31 cm. The real-world functionality of the active perception system

has been shown as part of the final demonstration of the RACE project2. We evaluated the

system in detail using the Gazebo simulator with a simplified robot model that retains the

physical limitations of the real version. Robot motion is replaced by updating poses directly

in the simulation with simulated transition times that are obtained from the same model that

is used by the planner to predict execution times. Robot localization is obtained directly from

the simulated ground truth. This intentionally eliminates any influence that imperfect robot

localization and navigation, as well as an inaccurate execution time model, may have on object

search performance. Figure 5.8 shows an overview of the simulated environment used in all

experiments. Run times of all algorithms were measured on an Intel Core i7 870 CPU.

Figure 5.8: Top-down view of the simulated environment used in the experiments, consisting of two
connected rooms with various target volumes (red boxes: two shelf arrangements, one single shelf,
three cluttered tables). Figure reproduced from Gedicke et al. (2016).

We ran three series of experiments evaluating several planner configurations, and, while

computing the optimal solution was not feasible, compared the performance of the planning

algorithm with a greedy approach as a baseline. It should be noted that instead of implement-

ing a naïve greedy approach, where the view with the highest probability of observing the

target would be picked, our baseline greedy approach instead uses the same utility function

as the planner (5.6), which also takes the time to reach the view pose into account. The only

2A video of the system running on the PR2 can be found at http://kos.informatik.uos.de/flap4caos/
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Table 5.1: Average algorithm run times. Table reproduced from Gedicke et al. (2016).

View sampling (200 views) 2.4± 0.1 s
Transition time prediction (50 clusters) 6.4± 0.6 s

difference between the baseline greedy approach and the planner is that the greedy approach

does not perform tree search. The task in all experiments is to locate a target within the vol-

umes shown in Figure 5.8 with a probability of Pi = 0.2 for each volume to contain at least one

instance of the target. Each experiment comprises 20 trials starting with a random initial robot

pose and ending when the remaining probability of detecting the target falls below ω = 0.05.

To measure object search efficiency, we determine the mean expected value of the time needed

to complete search tasks as the sum of an execution time component (motion and sensing), and

a planning time component3.

We generate 200 view samples for each trial, sufficient for almost complete coverage of our

test environment, and share them between all planner configurations to enable a direct com-

parison. Accordingly, a lookup table for predicted transition times between views is generated

once per trial and shared between all planner configurations. Table 5.1 shows the average com-

putation times for these operations over all experiments. The total probability to find a target

is determined by the structure of the environment, the set of available view poses, the choice

of target volumes, and their target encounter probabilities, and is hence equal for all planner

configurations within each trial. In the first two experiments, we test offline and continual

planning given a full 3D map of the environment, thereby enabling our planner to fully op-

timize the search process from the start. In the third experiment, we test continual planning

without an initial map (only walls are known in advance), so that the system is forced to adapt

the search strategy on the go.

In total, 112 different planner configurations (i.e., combinations of ψ, ϕ and ξ) were tested on

each of the 20 trials (37 configurations for the first experiment, 48 for the second and 27 for the

third). Figure 5.9 shows the results for the best-performing configuration in each experiment;

for the full results, see Gedicke (2015). As shown in Figure 5.9, the object search planner outper-

forms the greedy strategy in all experiments with regard to the expected execution time of the

resulting plan as well as the combined expected run time of the search process (i.e., planning

time plus execution time). In case a map is available beforehand, continual planning achieves

3See (5.4) for the calculation of expected values
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150 160 170 180 190 200 210 220 230

expected time [s]

continual (ψ = 2, φ = 1.3, ξ = 1)

greedy (ψ = 0, φ = 1.0, ξ = 0)

Without initial map

continual (ψ = 2, φ = 1.3, ξ = 0)

offline (ψ = 3, φ = 1.4, ξ = 0)

greedy (ψ = 0, φ = 1.0, ξ = 0)

With initial map

Figure 5.9: Mean expected execution times (dark) and mean expected total planning times (bright) for
the greedy strategy vs. the best performing planner configuration in each experiment. ψ: depth limit;
ϕ: branch limit factor; ξ: use pruning heuristic (5.7). Note: The x-axis is truncated and starts at 150 s.
Figure reproduced from Gedicke et al. (2016).
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Figure 5.10: Cumulative probability of success over time for one run of greedy search (yellow) vs. contin-
ual planning (brown) with initial map. Vertical steps: sensing actions; horizontal steps: pose transitions;
dashed lines: expected execution times. ψ: depth limit; ϕ: branch limit factor; ξ: use pruning heuristic
(5.7). Figure reproduced from Gedicke et al. (2016).
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run times that are on average 10 % shorter compared to greedy, and it compares favorably to

offline planning, which is remarkable considering the computational cost of repeated planning.

This is due to the fact that sensor data is continuously integrated into the map while the robot is

moving between planned view poses, as discussed in Sections 5.1.5 and 5.2.1. Since the contin-

ual planner can react to these additional “free” observations, it generally has to move to fewer

view poses than the offline planner. The reactivity also means that the optimal parameters

for continual planning turned out to be stricter depth limit ψ and branch limit factor ϕ than

the optimal parameters for offline planning, which reduces the total planning time despite the

additional overhead of repeated planning.

While the advantage of planning decreases when no initial map is available, we still achieve

a 7 % reduction of average search time using knowledge acquired during the ongoing search

process itself. A visualization of search progress during a single task is shown in Figure 5.10.

The planning algorithm achieves coverage of the search region using fewer sensing steps (11

vs. 13) and also tends to reduce average transition times between sensing poses. Although

the planning algorithm yields a shorter total search time, the simple greedy strategy is still a

viable alternative with the advantages of being parameter-free and computationally cheap. The

relative competitiveness of greedy strategies is not uncommon in related work as reviewed in

Section 5.1.

5.4 Discussion and Future Work

This chapter has presented a plan-based active perception system for object search. The results

demonstrate that although a greedy baseline approach already performs very well in this do-

main, planning several steps results in a faster total time for completing the object search task,

even taking the additional time required for planning into account.

It is part of future work to examine how appropriate planner parameterizations change

with different search tasks and working environments. The speed of plan generation may be

less important in applications with different cost functions, e.g., energy consumption or risk

of failure, which our planner can be adapted for by choosing appropriate parameters with

enlarged planning scope.

As stated in Section 5.2.2, the current approach disregards issues of object recognition. Fu-

ture developments will have to address the fact that objects in real applications cannot be rec-

ognized with full reliability and may be only partially visible due to occlusion or field of view

limits. Additionally, some unexplored volumes could be excluded from the search simply be-
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cause they are too small to contain the target object. It is also worthwhile to explore biasing

the view sampling towards candidates that are more likely to yield reliable detections similar

to Atanasov et al. (2014) or McGreavy et al. (2016).

Our experiments used a simple model of target location probabilities and manually selected

target volumes. In principle, both can come from arbitrary sources (see Section 5.1) and can be

updated during the search process. A source for target object location probabilities is available

with the probabilistic anchoring module (Chapter 4), based on a probabilistic model of spatial

relations. Future work will investigate the integration of both systems.

Another possible direction of future research is multi-robot collaboration. While initial ex-

periments were performed with a team of three Turtlebots (Figure 5.7), there was very limited

collaboration. Each robot was running its own instance of FLAP4CAOS while sharing the gen-

erated 3D map between them. This means that while the observations of the other robots were

taken into account as they occurred, they were not considered by the planner beforehand, leav-

ing room for future improvements.

Lastly, the view sampling module exploits the assumption that the pose of the robot’s base is

fully determined by the camera pose. This means that the kinematic model currently supports

robots in which the camera is rigidly linked to the robot’s base (such as the Turtlebots or the

Calvin robot) or which have a telescoping spine or pan-tilt head (such as the PR2 or Tiago

robots). Most UAVs can also already be used with FLAP4CAOS if a suitable 3D navigation

system is provided. However, for eye-in-hand configurations, where the camera is fixed to a

robot arm’s end-effector (such as DFKI’s Mobipick robot), the kinematic model becomes much

more involved. Obviously, the robot’s movements can be restricted to conform to the existing

kinematic model, but to fully exploit the robot’s range of movements, a motion planner needs

to be used, which will drastically increase the computation time. Finding a solution to this

problem is a topic of ongoing work.
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Conclusions

One of the challenges of plan-based robot control is that it needs a world model of the task-

relevant aspects of the robot’s environment. In unstructured, every-day environments, such a

world model has to be actively created and continually updated based on noisy sensor data.

The symbols used in high-level planning and reasoning have to be anchored to objects and

structures detected in the environment. To do this effectively, robot perception cannot be

treated as a passive bottom-up process alone. Exploiting top-down knowledge and context can

be useful to complete the robot’s interpretation of sensor data and guide further exploration.

In this dissertation, we have presented three contributions that tackle the challenges of

building a world model:

First, a model-based semantic mapping system was presented that recognizes larger-scale struc-

tures like furniture based on semantic descriptions in an ontology. Here, ontological knowledge

about the composition of compound objects was be used to recognize larger-scale structures

from their parts.

Second, a context-aware anchoring process was presented that creates and maintains the links

between object symbols and the sensor data corresponding to those objects while exploiting

the geometric context of objects. Here, knowledge about the spatial context of an object and

common relations to other objects was exploited to improve the quality of the world model.

Third, an active perception system was presented that plans several steps ahead to actively

search for a required object that is missing from the world model. Here, knowledge about the

probable locations of the object from other parts of the system can be used.

Possible avenues for future research in each separate system have already been discussed at

the end of each chapter. In the following, we will therefore focus on the ongoing work and the
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bigger picture. The work that was started in this dissertation is currently being continued in the

ongoing project “CoPDA” (Comprehensive Perception and Dynamic Anchoring; Günther et al.,

2020). In this project, several enhancements of the anchoring and active perception systems

presented here are planned:

Multi-Hypothesis Tracking (MHT) The probabilistic anchoring module will track multiple

hypotheses that are continually updated with new observations and model predictions,

which avoids committing too early to the most likely hypothesis when there is insufficient

evidence for either hypothesis.

ASP-based Anchoring The probabilistic anchoring module will work in tandem with a logic

anchoring module based on Answer Set Programming (ASP). The logic anchoring mod-

ule exploits knowledge about the evolution of objects and their dynamic attributes for

anchoring.

Knowledge-based Prediction A physics-based model for prediction will be complemented by

a prediction module based on common sense knowledge and domain knowledge to allow

for more precise anchoring.

Active Perception for Object Recognition The active perception system will be enhanced to

bias view selection towards views that are more likely to produce good object recognition

and pose estimation results.

Closer integration of anchoring and active perception The anchoring system will trigger the

active perception system for lost or missing objects of interest and provide a probabil-

ity distribution of likely object locations, based on its current world model and domain

knowledge.

Looking at the bigger picture, we hope that this dissertation can be a stepping stone towards

comprehensive scene understanding and long-term autonomy.
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