

ISSN 2056-9890

Received 8 December 2020
Accepted 1 January 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; SnCl_{2} coordination compounds; 4-methylpyridine N -oxide; bondvalence calculations; coordination geometry.

CCDC references: 2053460; 2053459

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN ∂ ACCESS

Two coordination compounds of SnCl_{2} with 4-methylpyridine N -oxide

Felix Henkel and Hans Reuter*

Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany.
*Correspondence e-mail: hreuter@uos.de

In the solid-state structures of catena-poly[[dichloridotin(II)]- μ_{2}-(4-methylpyridine N-oxide) $\left.-\kappa^{2} O: O\right]$, $\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\right]_{n}, \mathbf{1}$, and dichloridobis(4-methylpyridine N-oxide- $\kappa O) \operatorname{tin}(\mathrm{II}),\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$, 2, the bivalent tin atoms reveal a seesaw coordination with both chlorine atoms in equatorial and the Lewis base molecules in axial positions. While the $\mathrm{Sn}-\mathrm{Cl}$ distances are almost identical, the $\mathrm{Sn}-\mathrm{O}$ distances vary significantly as a result of the different bonding modes (μ_{2} for 1, μ_{1} for 2) of the 4-methylpyridin- N-oxide molecules, giving rise to a onedimensional coordination polymer for the $1: 1$ adduct, $\mathbf{1}$, and a molecular structure for the 1:2 adduct, $\mathbf{2}$. The different coordination modes also influence the bonding parameters within the almost planar ligand molecules, mostly expressed in $\mathrm{N}-\mathrm{O}$-bond lengthening and endocyclic bond-angle widening at the nitrogen atoms. Additional supramolecular features are found in the crystal structure of 2 as two adjacent molecules form dimers via additional, weak O \cdots Sn interactions.

1. Chemical context

$\mathrm{Tin}(\mathrm{II})$ halides, SnHal_{2}, are nominally electron-deficient compounds and therefore strong Lewis acids. Corresponding Lewis acid/Lewis base adducts, however, have been structurally characterized in only small numbers so far. Examples are known with Lewis base molecules bearing nitrogen [$\mathrm{SnCl}_{2} \cdot{ }^{t} \mathrm{BuNH}_{2}$ (Veith et al., 1988)], phosphorus [$\mathrm{SnCl}_{2} \cdot \mathrm{Ph}_{3} \mathrm{P}$ (Lukic et al., 2019); $\mathrm{SnHal}_{2} \cdot \mathrm{Et}_{3} \mathrm{P}$ (Arp et al., 2013)], or sulfur [SnCl_{2}.thiourea (Harrison et al., 1983)] atoms as possible donor atoms, but the most prominent ones are those with oxygen atoms. Triphenylphosphine oxide (TPPO), dimethylsulfoxide (DMSO) and N, N-dimethylformide (DMF) are representative examples for such O-bearing Lewis base molecules. Typically, the $\operatorname{tin}(\mathrm{II})$ dihalides form $1: 1$ adducts [e.g. $\mathrm{SnHal}_{2} \cdot$ DMF with $\mathrm{Hal}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, and $\mathrm{SnI}_{2} \cdot$ DMSO (Ozaki et al., 2017)] where the tin (II) atoms in these complexes reach an electron octet by taking up the two donor electrons of the Lewis base molecule. In the case of 1:2 adducts [e.g. $\mathrm{SnF}_{2} \cdot 2 \mathrm{DMSO}$ (Gurnani et al., 2013); $\mathrm{SnCl}_{2} \cdot 2 \mathrm{TPPO}$ (Selvaraju et al., 1998); SnCl_{2} 2DMSO (Barbul et al., 2011); $\mathrm{SnBr}_{2} \cdot 2 \mathrm{DMSO}, \mathrm{SnBr}_{2} \cdot 2 \mathrm{THF}, \mathrm{SnBr}_{2} \cdot 2$ acetone (Schrenk et al., 2009)] the tin (II) atoms exceed the electron octet as a result of the two additional donor electrons. Both 1:1 and 1:2 compositions of one and the same tin(II) halide with one and the same Lewis base molecule have been previously reported only for SnI_{2} with DMSO (Ozaki et al., 2017).

Pyridin- N-oxide, PyNO, and its derivatives such as 4-methylpyridin- N-oxide, MePyNO, are excellent Lewis bases, which act as electron-pair donors via their exocyclic single-
bonded oxygen atom in numerous inorganic and organometallic compounds of transition metals [i.e. $\mathrm{CdHal}_{2} \cdot \mathrm{PyNO}$ with $\mathrm{Hal}=\mathrm{Cl}$ (Beyeh \& Puttreddy, 2015), Hal = I (Sawitzki \& von Schnering, 1974), $\mathrm{CuCl}_{2} \cdot 2 \mathrm{MePyNO}$ (Johnson \& Watson, 1971), $\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{PyNO}$ (Ingen Schenau et al., 1974), $\mathrm{Au}\left(\mathrm{CF}_{3}\right)_{3} \cdot \mathrm{PyNO}$ (Pérez-Bitrián et al., 2017), $\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \cdot-$ 2MePyNO (Griffith et al., 1994)] as well as of p-block metals [i.e. $\mathrm{TlBr}_{3} \cdot \mathrm{PyNO}$ (Bermejo et al., 1991); $\mathrm{TlBr}_{3} \cdot 2 \mathrm{PyNO}$ (Hiller et al., 1988); $\mathrm{TlBrI}_{2} \cdot \mathrm{MePyNO}$ (Hiller et al., 1988); $\mathrm{SnI}_{4} \cdot 2 \mathrm{PyNO}$ (Wlaźlak et al., 2016), $\mathrm{Me}_{2} \mathrm{SnCl}_{2} \cdot 2 \mathrm{PyNO}$ (Blom et al., 1969), $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{PyNO}$ (Kumar et al., 2020). With the exception of $\mathrm{SbF}_{3} \cdot \operatorname{PyNO}$ (Benjamin et al., 2012) and $\mathrm{BiI}_{3} \cdot \mathrm{PyNO}$ (Wlaźlak et al., 2020), no complexes of low-valent post-transition-metal elements have been crystallographically determined so far.

1
Here we report the crystal structures of two complexes of MePyNO with tin in oxidation state + II having different compositions, viz. $\mathrm{SnCl}_{2} \cdot \mathrm{MePyNO}, \mathbf{1}$, and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{MePyNO}, 2$. Both compounds were obtained simultaneously in the same micro-scale experiment from SnCl_{2} and MePyNO in excess using N, N-dimethylformamide as solvent. As reactions were performed on reaction plates we were able to inspect the progress of the reaction by microscopy, which allowed us to observe the intermediate compound formation as well as to study the crystal growth. No scaling-up experiments were performed but $\mathbf{1}$ has previously been mentioned in the literature with respect to its elemental analysis, X-ray-powder diffraction and IR data (Kauffman et al., 1977), giving hints of a low symmetric crystal system and coordination number of three for tin. Mössbauer investigations have been performed by Ichiba et al. (1978).

2. Structural commentary

Compound $\mathbf{1}$ crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$, and $\mathbf{2}$ in the orthorhombic space group $P b c n$, each with one formula unit in the asymmetric unit and all atoms in general positions. In both compounds, the bivalent tin atoms adopt a seesaw coordination, which results from a μ_{2}-coordination mode of the MePyNO-molecule in $\mathbf{1}$, giving rise to a one-

The asymmetric unit of $\mathrm{SnCl}_{2} \cdot \mathrm{MePyNO}, \mathbf{1}$, with the atom-numbering scheme; with the exception of the hydrogen atoms (which are shown as spheres with arbitrary radius) all atoms are drawn with displacement ellipsoids at the 40% probability level; longer $\mathrm{Sn}-\mathrm{O}$ bonds expanding the coordination sphere of the $\operatorname{tin}(\mathrm{II})$ atom from three, trigonalpyramidal, to four, seesaw, are drawn as dashed sticks.
dimensional coordination polymer along the c axis (Fig. 1) while there are two crystallographically different MePyNO molecules in 2, resulting in a molecular structure (Fig. 2).

Distortion of the pyridine N-oxide ring system as a result of its coordination is established through the $\mathrm{C}-\mathrm{C}$ [mean values: $\left.d\left(\mathrm{C}_{\text {ortho }}-\mathrm{C}_{\text {meta }}\right)=1.376(1) \AA, d\left(\mathrm{C}_{\text {meta }}-\mathrm{C}_{\text {para }}\right)=1.394(3) \AA\right]$ and the $\mathrm{N}-\mathrm{C}$ bond lengths [mean value: $d(\mathrm{~N}-\mathrm{C})=$ 1.347 (3) \AA], and through the endocyclic bond angles at the different carbon atoms [mean values: $\mathrm{C}_{\text {ortho }}=120.0(3)^{\circ}, \mathrm{C}_{\text {meta }}$ $\left.=120.8(2)^{\circ}, \mathrm{C}_{\text {para }}=117.1(2)^{\circ}\right]$ of the almost planar ligand. While these structural parameters are almost identical in both compounds, the $\mathrm{N}-\mathrm{O}$ bond lengths differ significantly in $\mathbf{1}$ $[1.363$ (2) \AA] and 2 [1.333 (3)/1.340 (3) \AA) as do the endocyclic bond angles $\left[121.9(1)^{\circ}, \mathbf{1} ; 120.9(1)^{\circ}, \mathbf{2}\right]$ at the N atom. Both effects result from the different $\left(\mu_{2}, \mu_{1}\right)$ coordination modes of the ligands, which also affect the $\mathrm{Sn}-\mathrm{O}$ bond lengths that are strongly unsymmetrical [2.280 (1) to $\left.2.733(2) \AA, \mu_{2}\right]$ in $\mathbf{1}$, and less unsymmetrical $\left[2.308\right.$ (2) to 2.423 (2) $\left.\AA, \mu_{1}\right]$ in 2.

Irrespective of the controversial discussion on the hybridization ability of atomic orbitals in the case of the heavier p-block elements (Kutzelnigg, 1984), the formation of fourelectron three-center bonds (Rundle, 1963), and on the functionality of the so-called $5 s$ lone electron pair (Dénes et al., 2013) in hypervalent (Musher, 1969) tin(II) compounds,

Figure 2
The asymmetric unit of $\mathrm{SnCl}_{2} \cdot 2 \mathrm{MePyNO}, \mathbf{2}$, with the atom-numbering scheme; with exception of the hydrogen atoms (which are shown as spheres with arbitrary radius) all atoms are drawn with displacement ellipsoids at the 40% probability level.
the fourfold coordination sphere around the tin (II) atoms of $\mathbf{1}$ and 2 can be expressed very well in terms of the VSEPR concept (Gillespie \& Hargittai, 1991): its seesaw (ss) coordination results from two equatorially bonded chlorine atoms and two more electronegative and therefore axially located oxygen atoms of the Lewis base, MePyNO.

Differences in $\mathrm{Sn}-\mathrm{Cl}$ distances are very small [2.4850 (4) and 2.4905 (4) $\AA, \mathbf{1} ; 2.4939$ (6) and 2.5068 (6) $\AA, 2$, mean value: $2.494(9) \AA$] as are the bond angles $\left[95.73(1)^{\circ}, \mathbf{1}\right.$; $\left.94.59(2)^{\circ}, 2\right]$ between them. Somewhat shorter $\mathrm{Sn}-\mathrm{Cl}$ distances are found in the six crystallographically independent molecules of $\mathrm{SnCl}_{2} \cdot$ DMF $\left[d(\mathrm{Sn}-\mathrm{Cl})_{\text {mean }}=2.458(21) \AA\right.$, $\left\langle(\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl})=92.89(7)-89.09(7)^{\circ}\right]$ with a predominant trigonal-pyramidal coordination at tin, while the values in $\mathrm{SnCl}_{2} \cdot 2 \mathrm{DMSO}\left[d(\mathrm{Sn}-\mathrm{Cl})_{\text {mean }}=2.483(8) \AA,\langle(\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl})=\right.$ $93.86(7)^{\circ}$] with a symmetrical seesaw coordination are in between.

Axes of the seesaws are bent $\left[161.40(6)^{\circ}, \mathbf{1} ; 169.66(6)^{\circ}, \mathbf{2}\right]$ towards the chlorine atoms properly due to electronic repulsion of the axial bonds through the $5 s$ free-electron pairs. The corresponding $\mathrm{Sn}-\mathrm{O}$ bonds are strongly different in both compounds, but differences are more expressed in $\mathbf{1}$ [2.280 (1) to 2.733 (1) $\left.\AA, \mu_{2}-\mathrm{O}\right]$ than in $\mathbf{2}$ [2.308 (2) to $\left.2.430(2) \AA, \mu_{1}-\mathrm{O}\right]$. Because of the great [$0.453 \AA$] difference between the two $\mathrm{Sn}-\mathrm{O}$ bonds in $\mathbf{1}$, one may suggest a threefold trigonalpyramidal (tpy) tin(II) coordination instead of a fourfold seesaw (ss) coordination but valence-bond-sum calculations [parameters used: $r_{\mathrm{o}}\left(\mathrm{Sn}^{\mathrm{II}}-\mathrm{O}\right)=1.984 \AA, r_{\mathrm{o}}\left(\mathrm{Sn}^{\mathrm{II}}-\mathrm{Cl}\right)=$ $2.335 \AA, b=0.37$; Brese \& O'Keefe (1991)] on the tpy

Figure 3
Ball-and-stick model of the one-dimensional coordination polymer of $\mathbf{1}$ viewed parallel to the glide plane (blue line); symmetry codes used to generate equivalent atoms: (') $x, \frac{3}{2}-y, \frac{1}{2}+z$; (') $x, \frac{3}{2}-y,-\frac{1}{2}+z$.
coordination result in a bond-valence sum of 1.78 v.u. while the longer $\mathrm{Sn}-\mathrm{O}$ bond in the $s s$-coordination contributes 0.13 v.u. to the bond-valence sum (1.91 v.u.). Similar calculations for $\mathbf{2}$ result in a bond-valence sum of 2.00 v.u., fully consistent with the tin oxidation state of +II .

3. Supramolecular features

A common feature of many tin (II) compounds is the nonspherical ligand distribution around the divalent tin atom for which the term 'hemidirected' has been introduced (ShimoniLivny et al., 1998). The resulting void in the hemidirected coordination sphere often gives rise to additional more or less weak intermolecular (and intramolecular if appropriate Lewis base donor atoms are sterically available) interactions with interesting supramolecular features. In case of $\mathbf{1}$, the formation of a one-dimensional coordination polymer via the μ_{2}-Oatom of the MePyNO molecule can be interpreted in terms of such supramolecular interactions: in this particular case, the hemidirected coordination sphere of a molecular, trigonalpyramidal $\mathrm{SnCl}_{2} \cdot \mathrm{MePyNO}$ complex is partially filled through the oxygen atom of a MePyNO molecule of a neighboring building unit. The resulting coordination polymer forms a zigzag chain as all atoms are situated off the crystallographic glide plane at $x, 1 / 4, z$ (Fig. 3). Between the zigzag chains no further Lewis base/Lewis acid interactions below $3.5 \AA$ are observed, but within the chains a very weak [3.460 (1) \AA] attractive interaction is found between Cl 2 and Sn 1 of two neighboring building units (Fig. 3).

In case of 2 the tin atom of the $\mathrm{SnCl}_{2} \cdot 2 \mathrm{MePyNO}$ molecules shows a similar hemidirected coordination sphere. In the solid state, neighboring molecules form dimers via attractive but very weak [3.225 (2) Å] Sn-O interactions. Both molecules of these dimers are related to each other via a crystallographic twofold rotation axis (Fig. 4). Even if the coordination sphere of each tin atom remains unsymmetrical in these dimeric

Figure 4
Ball-and-stick model of the dimeric aggregates found in the crystal structure of 2 looking down the crystallographic twofold rotation axis marked in red; additional $\mathrm{Sn}-\mathrm{O}$ distances are indicated by dashed sticks in gray [symmetry codes used to generate equivalent atoms marked ': $1-x, y, \frac{3}{2}-z$.]

Table 1
Experimental details.

	1	2
Crystal data		
Chemical formula	$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\right]$	$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{\text {r }}$	298.72	407.84
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Orthorhombic, Pbcn
Temperature (K)	100	100
$a, b, c(\AA)$	11.7934 (4), 9.4895 (3), 8.6170 (3)	19.9848 (8), 10.3723 (3), 14.4644 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 106.455 (2), 90	90, 90, 90
$V\left(\AA^{3}\right)$	924.86 (5)	2998.30 (18)
Z	4	8
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.28	2.06
Crystal size (mm)	$0.49 \times 0.17 \times 0.06$	$0.47 \times 0.11 \times 0.07$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.298, 0.817	0.442, 0.866
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	86401, 2232, 2132	136234, 3626, 3086
$R_{\text {int }}$	0.039	0.090
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.661	0.660
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.013, 0.032, 1.12	0.025, 0.064, 1.10
No. of reflections	2232	3626
No. of parameters	103	178
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.41, -0.49	0.81, -0.33

 2020) and publCIF (Westrip, 2010).
aggregates (Fig. 5), no further intermolecular interactions could be observed below 3.5 Å.

4. Synthesis and crystallization

Both complexes are formed side by side on a reaction plate in the same micro-scale experiment when small amounts (about

Figure 5
Space-filling model of the dimeric aggregates found in the crystal structure of 2 looking down into the voids on the backside of the tin atoms; color code used: $\mathrm{Cl}=$ green, $\mathrm{O}=$ red, $\mathrm{N}=$ blue, $\mathrm{C}=$ black, $\mathrm{H}=$ gray, $\mathrm{Sn}=$ yellow.

100 mg) of SnCl_{2} (Sigma-Aldrich) and an excess of 4MePyNO (Alfa Aesar) are overlaid with a few drops of N, N dimethylformamide (Fluka) as solvent. Compound 1 forms colorless, elongated plates, while 2 crystallizes in the form of small, colorless prisms.

5. Refinement

Crystal data, data collection and structure refinement details of $\mathbf{1}$ and $\mathbf{2}$ are summarized in Table 1 . All H atoms were clearly identified in difference-Fourier syntheses but were refined with idealized positions and allowed to ride on their parent carbon atoms with $0.98 \AA\left(-\mathrm{CH}_{3}\right)$, and $0.95 \AA\left(-\mathrm{CH}_{\text {arom }}\right)$ and with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

Arp, H., Marschner, C., Baumgartner, J., Zark, P. \& Müller, T. (2013). J. Am. Chem. Soc. 135, 7949-7959.

Barbul, I., Varga, R. A. \& Silvestru, C. (2011). Acta Cryst. E67, m486.

Benjamin, S. L., Burt, J., Levason, W., Reid, G. \& Webster, M. (2012). J. Fluor. Chem. 135, 108-113.

Bermejo, M. R., Castiñeiras, A., Garcia-Vazquez, J. A., Hiller, W. \& Strähle, J. (1991). J. Crystallogr. Spectrosc. Res. 21, 93-96.
Beyeh, N. K. \& Puttreddy, R. (2015). Dalton Trans. 44, 981-9886.
Blom, E. A., Penfold, B. R. \& Robinson, W. T. (1969). J. Chem. Soc. A, pp. 913-917.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dénes, G., Muntasar, A., Madamba, M. C. \& Merazig, H. (2013). Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, Wiley.
Gillespie, R. J. \& Hargittai, I. (1991). The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston.
Griffith, W. O., Slawin, A. M., Thompson, K. M. \& Williams, D. J. (1994). J. Chem. Soc. Chem. Commun. pp. 569-570.

Gurnani, C., Hector, A. L., Jager, E., Levason, W., Pugh, D. \& Reid, G. (2013). Dalton Trans. 42, 8364-8374.

Harrison, P. G., Hylett, B. J. \& King, T. J. (1983). Inorg. Chim. Acta, 75, 259-264.
Hiller, W., Castiñeiras, A., García-Fernandez, M. E., Bermejo, M. R., Bravo, J. \& Sanchez, A. (1988). Z. Naturforsch. Teil B, 43, 132-133.
Ichiba, S., Yamada, M. \& Negita, H. (1978). Radiochem. Radioanal. Lett. 36, 93-99.
Ingen Schenau, A. D. van, Verschoor, C. G. \& Romers, C. (1974). Acta Cryst. B30, 1686-1694.
Johnson, D. R. \& Watson, W. H. (1971). Inorg. Chem. 10, 12811288.

Kauffman, J. W., Moor, D. H. \& Williams, R. J. (1977). J. Inorg. Nucl. Chem. 39, 1165-1167.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Kumar, V., Rodrigue, C. \& Bryce, D. L. (2020). Cryst. Growth Des. 20, 2027-2034.
Kutzelnigg, W. (1984). Angew. Chem. 96, 262-286.
Lukic, D., Naglav, D., Wölper, C. \& Schulz, S. (2019). CSD Communication (CCDC1935104). CCDC, Cambridge, England.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Musher, J. L. (1969). Angew. Chem. Int. Ed. 8, 54-68.
Ozaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. \& Wakamiya, A. (2017). ACS Omega, 2, 7016-7021.

Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. \& Menjón, B. (2017). Chem. Eur. J. 23, 14918-14930.
Rundle, R. E. (1963). J. Am. Chem. Soc. 85, 112-113.
Sawitzki, G. \& von Schnering, H. G. (1974). Chem. Ber. 107, 32663274.

Schrenk, C., Köppe, R., Schellenberg, I., Pöttgen, R. \& Schnepf, A. (2009). Z. Anorg. Allg. Chem. 635, 1541-1548.

Selvaraju, R., Panchanatheswaran, K. \& Parthasarathi, V. (1998). Acta Cryst. C54, 905-906.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shimoni-Livny, L., Glusker, J. P. \& Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.
Veith, M., Jarczyk, M. \& Huch, V. (1988). Chem. Ber. 121, 347-355.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wlaźlak, E., Macyk, J., Nitek, W. \& Szaciłowski, K. (2016). Inorg. Chem. 55, 5935-5945.
Wlaźlak, E., Tłuścik, J. K., Przyczyna, D., Zawal, P. \& Szaciłowski, K. (2020). J. Mater. Chem. C, 8, 6136-6148.

supporting information

Acta Cryst. (2021). E77, 91-95 [https://doi.org/10.1107/S2056989021000025]
Two coordination compounds of SnCl_{2} with 4-methylpyridine N -oxide

Felix Henkel and Hans Reuter

Computing details

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).
catena-Poly[[dichloridotin(II)]- μ_{2-}-(4-methylpyridine N-oxide)- $\left.\kappa^{2} O: O\right]$ (1

Crystal data

$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\right]$
$M_{r}=298.72$
Monoclinic, $P 2{ }_{1} / c$
$a=11.7934$ (4) \AA
$b=9.4895$ (3) \AA
$c=8.6170$ (3) \AA
$\beta=106.455(2)^{\circ}$
$V=924.86(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.298, T_{\text {max }}=0.817$
86401 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.013$
$w R\left(F^{2}\right)=0.032$
$S=1.12$
2232 reflections
103 parameters
0 restraints

$$
F(000)=568
$$

$D_{\mathrm{x}}=2.145 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9441 reflections
$\theta=2.8-28.3^{\circ}$
$\mu=3.28 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.49 \times 0.17 \times 0.06 \mathrm{~mm}$

2232 independent reflections
2132 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-15 \rightarrow 15$
$k=-12 \rightarrow 12$
$l=-11 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0134 P)^{2}+0.6437 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Sn1	$0.65817(2)$	$0.77494(2)$	$0.40278(2)$	$0.01249(4)$
C11	$0.86766(3)$	$0.70601(4)$	$0.43743(5)$	$0.01738(8)$
C12	$0.57006(3)$	$0.57820(4)$	$0.21746(4)$	$0.01829(8)$
O1	$0.65673(9)$	$0.62193(11)$	$0.60614(13)$	$0.0130(2)$
N1	$0.70802(11)$	$0.49228(13)$	$0.61676(15)$	$0.0114(2)$
C2	$0.82254(13)$	$0.47923(17)$	$0.70246(18)$	$0.0142(3)$
H2	0.8666	0.5598	0.7501	$0.021(2)^{*}$
C3	$0.87519(14)$	$0.34877(17)$	$0.72050(19)$	$0.0157(3)$
H3	0.9558	0.3397	0.7812	$0.021(2)^{*}$
C4	$0.81191(14)$	$0.22964(16)$	$0.65083(19)$	$0.0146(3)$
C5	$0.69385(14)$	$0.24895(17)$	$0.5615(2)$	$0.0166(3)$
H5	0.6482	0.1704	0.5111	$0.021(2)^{*}$
C6	$0.64331(13)$	$0.38104(16)$	$0.54603(18)$	$0.0143(3)$
H6	0.5630	0.3934	0.4856	$0.021(2)^{*}$
C7	$0.86871(15)$	$0.08689(17)$	$0.6700(2)$	$0.0215(3)$
H71	0.9108	0.0742	0.5880	$0.051(4)^{*}$
H72	0.8077	0.0141	0.6566	$0.051(4)^{*}$
H73	0.9247	0.0790	0.7781	$0.051(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.01487(6)$	$0.01142(6)$	$0.01145(6)$	$0.00176(4)$	$0.00415(4)$	$0.00048(4)$
C11	$0.01430(17)$	$0.01858(18)$	$0.01902(18)$	$0.00012(14)$	$0.00435(14)$	$0.00240(14)$
C12	$0.02132(18)$	$0.01852(18)$	$0.01377(17)$	$-0.00592(15)$	$0.00295(14)$	$-0.00073(14)$
O1	$0.0161(5)$	$0.0100(5)$	$0.0138(5)$	$0.0050(4)$	$0.0055(4)$	$0.0021(4)$
N1	$0.0125(6)$	$0.0099(6)$	$0.0120(6)$	$0.0021(5)$	$0.0036(5)$	$0.0018(5)$
C2	$0.0134(7)$	$0.0136(7)$	$0.0142(7)$	$-0.0013(6)$	$0.0018(6)$	$-0.0007(6)$
C3	$0.0123(7)$	$0.0157(7)$	$0.0170(7)$	$0.0016(6)$	$0.0008(6)$	$0.0017(6)$
C4	$0.0157(7)$	$0.0113(7)$	$0.0163(7)$	$0.0009(6)$	$0.0038(6)$	$0.0012(6)$
C5	$0.0145(7)$	$0.0133(7)$	$0.0197(8)$	$-0.0025(6)$	$0.0011(6)$	$-0.0009(6)$
C6	$0.0122(7)$	$0.0146(7)$	$0.0152(7)$	$-0.0018(6)$	$0.0023(6)$	$0.0008(6)$
C7	$0.0194(8)$	$0.0121(7)$	$0.0300(9)$	$0.0024(6)$	$0.0022(7)$	$0.0006(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Sn} 1-\mathrm{O} 1$	$2.2795(10)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{Sn} 1-\mathrm{Cl} 2$	$2.4850(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.399(2)$
$\mathrm{Sn} 1-\mathrm{Cl} 1$	$2.4905(4)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.499(2)$

O1-N1	1.3626 (16)	C5-C6	1.378 (2)
N1-C6	1.343 (2)	C5-H5	0.9500
N1-C2	1.3490 (19)	C6-H6	0.9500
C2-C3	1.374 (2)	C7-H71	0.9800
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	C7-H72	0.9800
C3-C4	1.393 (2)	C7-H73	0.9800
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl2}$	85.56 (3)	C3-C4-C7	121.16 (14)
O1-Sn1-Cl1	87.92 (3)	C5-C4-C7	121.53 (14)
C12-Sn1-Cl1	95.726 (14)	C6-C5-C4	120.54 (15)
N1-O1-Sn1	121.80 (8)	C6-C5-H5	119.7
C6-N1-C2	121.88 (13)	C4-C5-H5	119.7
C6-N1-O1	119.66 (12)	N1-C6-C5	119.76 (14)
C2-N1-O1	118.44 (12)	N1-C6-H6	120.1
N1-C2-C3	119.67 (14)	C5-C6-H6	120.1
N1-C2-H2	120.2	C4-C7-H71	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2	C4-C7-H72	109.5
C2-C3-C4	120.83 (14)	H71-C7-H72	109.5
C2-C3-H3	119.6	C4-C7- H 73	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.6	H71-C7- 773	109.5
C3-C4-C5	117.31 (14)	H72-C7-H73	109.5

Dichloridobis(4-methylpyridine N-oxide- $\kappa \mathrm{O}$)tin(II) (2)

Crystal data

$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=407.84$
Orthorhombic, Pbcn
$a=19.9848$ (8) \AA
$b=10.3723$ (3) \AA
$c=14.4644(5) \AA$
$V=2998.30(18) \AA^{3}$
$Z=8$
$F(000)=1600$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.442, T_{\text {max }}=0.866$
136234 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.10$
3626 reflections
$D_{\mathrm{x}}=1.807 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9991 reflections
$\theta=2.6-27.2^{\circ}$
$\mu=2.06 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rod, colourless
$0.47 \times 0.11 \times 0.07 \mathrm{~mm}$

3626 independent reflections
3086 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.090$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-26 \rightarrow 26$
$k=-13 \rightarrow 13$
$l=-19 \rightarrow 19$

178 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0279 P)^{2}+2.7839 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.81 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sn1	0.55158 (2)	0.16754 (2)	0.64760 (2)	0.02085 (6)
Cl 1	0.55438 (3)	0.40624 (6)	0.62730 (4)	0.02477 (13)
Cl 2	0.66633 (3)	0.13226 (7)	0.58237 (5)	0.03087 (14)
O1	0.60299 (9)	0.21147 (17)	0.79652 (12)	0.0288 (4)
N1	0.63657 (10)	0.31475 (19)	0.82579 (14)	0.0218 (4)
C12	0.62539 (12)	0.3580 (2)	0.91192 (17)	0.0229 (5)
H12	0.5917	0.3191	0.9489	0.029 (4)*
C13	0.66263 (11)	0.4585 (2)	0.94668 (17)	0.0231 (5)
H13	0.6548	0.4874	1.0081	0.029 (4)*
C14	0.71145 (12)	0.5186 (2)	0.89344 (17)	0.0233 (5)
C15	0.71995 (11)	0.4734 (2)	0.80348 (17)	0.0242 (5)
H15	0.7518	0.5135	0.7641	0.029 (4)*
C16	0.68266 (12)	0.3714 (2)	0.77119 (17)	0.0243 (5)
H16	0.6894	0.3407	0.7100	0.029 (4)*
C17	0.75292 (14)	0.6270 (3)	0.9311 (2)	0.0335 (6)
H17A	0.7345	0.7095	0.9100	0.068 (7)*
H17B	0.7991	0.6183	0.9092	0.068 (7)*
H17C	0.7523	0.6241	0.9989	0.068 (7)*
O2	0.50452 (9)	0.16530 (16)	0.50191 (12)	0.0236 (4)
N2	0.53989 (9)	0.18673 (19)	0.42470 (13)	0.0193 (4)
C22	0.57330 (12)	0.0882 (2)	0.38493 (17)	0.0218 (5)
H22	0.5738	0.0058	0.4137	0.023 (3)*
C23	0.60658 (11)	0.1070 (2)	0.30287 (17)	0.0236 (5)
H23	0.6299	0.0371	0.2753	0.023 (3)*
C24	0.60656 (12)	0.2270 (2)	0.25955 (17)	0.0235 (5)
C25	0.57304 (13)	0.3268 (2)	0.30435 (17)	0.0230 (5)
H25	0.5728	0.4106	0.2778	0.023 (3)*
C26	0.54027 (12)	0.3055 (2)	0.38668 (18)	0.0214 (5)
H26	0.5179	0.3745	0.4168	0.023 (3)*
C27	0.64072 (15)	0.2477 (3)	0.16818 (19)	0.0350 (6)
H27A	0.6890	0.2567	0.1780	0.097 (10)*
H27B	0.6233	0.3261	0.1392	0.097 (10)*
H27C	0.6322	0.1736	0.1278	0.097 (10)*

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.02042 (9)	0.01901 (10)	0.02311 (9)	-0.00041 (6)	0.00035 (6)	0.00205 (6)
Cl1	0.0277 (3)	0.0191 (3)	0.0275 (3)	0.0016 (2)	0.0005 (2)	0.0005 (2)
Cl 2	0.0220 (3)	0.0358 (3)	0.0348 (3)	0.0041 (2)	0.0026 (2)	-0.0067 (3)
O1	0.0351 (10)	0.0244 (9)	0.0270 (9)	-0.0098 (8)	-0.0062 (8)	0.0017 (7)
N1	0.0213 (10)	0.0195 (10)	0.0247 (10)	-0.0023 (8)	-0.0028 (8)	0.0013 (8)
C12	0.0193 (11)	0.0250 (12)	0.0243 (12)	0.0016 (9)	0.0014 (9)	0.0039 (9)
C13	0.0218 (11)	0.0237 (12)	0.0240 (11)	0.0028 (9)	0.0002 (9)	0.0005 (9)
C14	0.0208 (11)	0.0191 (12)	0.0298 (12)	0.0008 (9)	-0.0008 (10)	0.0018 (10)
C15	0.0177 (10)	0.0270 (13)	0.0280 (12)	-0.0001 (9)	0.0013 (9)	0.0066 (10)
C16	0.0213 (11)	0.0289 (12)	0.0227 (12)	0.0016 (10)	0.0017 (9)	0.0031 (10)
C17	0.0350 (14)	0.0257 (13)	0.0398 (15)	-0.0099 (11)	0.0013 (12)	-0.0001 (12)
O2	0.0227 (8)	0.0262 (9)	0.0218 (8)	-0.0026 (7)	0.0007 (7)	0.0017 (7)
N2	0.0184 (9)	0.0193 (10)	0.0202 (10)	-0.0010 (7)	-0.0036 (7)	-0.0004 (7)
C22	0.0226 (11)	0.0149 (11)	0.0277 (12)	-0.0015 (9)	-0.0062 (9)	-0.0008 (9)
C23	0.0198 (11)	0.0231 (12)	0.0278 (12)	0.0021 (9)	-0.0037 (9)	-0.0066 (10)
C24	0.0189 (11)	0.0292 (13)	0.0225 (11)	-0.0031 (10)	-0.0038 (9)	-0.0023 (10)
C25	0.0249 (11)	0.0177 (11)	0.0262 (12)	-0.0030 (9)	-0.0031 (10)	0.0024 (9)
C26	0.0214 (11)	0.0183 (11)	0.0246 (11)	0.0022 (9)	-0.0033 (9)	-0.0007 (9)
C27	0.0352 (14)	0.0400 (16)	0.0298 (14)	-0.0019 (13)	0.0035 (11)	0.0004 (12)

Geometric parameters $\left(\begin{array}{l} \\ A\end{array},{ }^{\circ}\right)$

Sn1-O2	2.3078 (17)	C17-H17B	0.9800
Sn1-O1	2.4296 (17)	C17-H17C	0.9800
$\mathrm{Sn} 1-\mathrm{Cl} 1$	2.4939 (6)	$\mathrm{O} 2-\mathrm{N} 2$	1.340 (3)
$\mathrm{Sn} 1-\mathrm{Cl} 2$	2.5068 (6)	N2-C26	1.349 (3)
O1-N1	1.333 (3)	N2-C22	1.350 (3)
N1-C12	1.343 (3)	C22-C23	1.375 (4)
N1-C16	1.348 (3)	C22-H22	0.9500
C12-C13	1.377 (3)	C23-C24	1.393 (4)
C12-H12	0.9500	C23-H23	0.9500
C13-C14	1.390 (3)	C24-C25	1.393 (3)
C13-H13	0.9500	C24-C27	1.503 (4)
C14-C15	1.393 (3)	C25-C26	1.377 (4)
C14-C17	1.500 (3)	C25-H25	0.9500
C15-C16	1.376 (3)	C26-H26	0.9500
C15-H15	0.9500	C27-H27A	0.9800
C16-H16	0.9500	C27-H27B	0.9800
C17-H17A	0.9800	C27-H27C	0.9800
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{O} 1$	169.66 (6)	C14-C17-H17C	109.5
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl1}$	84.93 (4)	H17A-C17-H17C	109.5
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl1}$	84.76 (4)	H17B-C17-H17C	109.5
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl2}$	91.58 (5)	N2-O2-Sn1	122.98 (13)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	88.52 (5)	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 26$	119.6 (2)

supporting information

$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{Cl} 2$	$94.59(2)$	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 22$	$119.37(19)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{Sn} 1$	$130.18(14)$	$\mathrm{C} 26-\mathrm{N} 2-\mathrm{C} 22$	$121.0(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 12$	$118.6(2)$	$\mathrm{N} 2-\mathrm{C} 22-\mathrm{C} 23$	$120.0(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 16$	$120.5(2)$	$\mathrm{N} 2-\mathrm{C} 22-\mathrm{H} 22$	120.0
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 16$	$120.8(2)$	$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.0
$\mathrm{~N} 1-\mathrm{C} 12-\mathrm{C} 13$	$120.1(2)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$121.0(2)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{H} 12$	119.9	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	119.5
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	119.9	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23$	119.5
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$121.1(2)$	$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	$117.1(2)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.4	C 27	$121.4(2)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	119.4	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$	$121.5(2)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$116.9(2)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 25-\mathrm{H} 25$	$120.7(2)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17$	$\mathrm{~N} 25-\mathrm{C} 26-\mathrm{C} 25$	119.6	
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 17$	$\mathrm{C} 25-\mathrm{C} 26-\mathrm{H} 26$	119.6	
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$\mathrm{C} 24-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}$	$120.2(2)$	
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	$\mathrm{C} 24-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B}$	119.9	
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	$121.6(2)$	$\mathrm{H} 27-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B}$	119.9
$\mathrm{~N} 1-\mathrm{C} 16-\mathrm{C} 15$	119.7	$\mathrm{C} 24-\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 16-\mathrm{H} 16$	119.7	$\mathrm{H} 27 \mathrm{C}-\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	109.5
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$	$120.4(2)$	$\mathrm{H} 27 \mathrm{~B}-\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	109.5
$\mathrm{C} 14-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$		109.5	
$\mathrm{C} 14-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	119.8	109.5	

