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Abstract

The design and adjustment of convolutional neural network architectures
is an opaque and mostly trial and error-driven process. The main reason
for this is the lack of proper paradigms beyond general conventions for the
development of neural networks architectures and lacking effective insights
into the models that can be propagated back to design decision.

In order for the task-specific design of deep learning solutions to become
more efficient and goal-oriented, novel design strategies need to be devel-
oped that are founded on an understanding of convolutional neural network
models. This work develops tools for the analysis of the inference process in
trained neural network models. Based on these tools, characteristics of convo-
lutional neural network models are identified that can be linked to inefficien-
cies in predictive and computational performance. Based on these insights,
this work presents methods for effectively diagnosing these design faults be-
fore and during training with little computational overhead. These findings
are empirically tested and demonstrated on architectures with sequential and
multi-pathway structures, covering all the common types of convolutional
neural network architectures used for classification. Furthermore, this work
proposes simple optimization strategies that allow for goal-oriented and in-
formed adjustment of the neural architecture, opening the potential for a less
trial-and-error-driven design process.
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Zusammenfassung

Das Design und die Anpassung von Neuroarchitekturen für Convolutional
Neural Networks ist gegenwärtig ein erratischer Entwicklungsprozess, der
stark auf dem Entwicklungsprinzip von “Versuch und Irrtum” aufbaut. Es
existieren zwei vorrangige Gründe für diesen Umstand: Zum einen, ein Man-
gel an Entwicklungsparadigmen für Neuroarchitekturen, die über allgemeine
Konventionen hinaus gehen. Zum anderen, ein Mangel an Analysetech-
niken für neuronale Netze, die belastbare Rückschlüsse vom Verhalten des
trainierten Netzwerkes auf Designentscheidungen in der Neuroarchitektur er-
lauben. Damit der Entwicklungsprozess von Convolutional Neural Networks
aufgabenspezifischer, zielgerichteter und letztlich effizienter werden kann, be-
darf es an neuartigen Designstrategien, die auf einem Verständnis der In-
formationsverarbeitung (Inferenz) innerhalb von Convolutional Neural Net-
works beruhen. In dieser Arbeit werden Analysewerkzeuge vorgestellt, mit
denen die Inferenz von neuronalen Netzen analysiert werden kann. Auf Basis
dieser Analysewerkzeuge werden Ineffizienzen in trainierten Convolutional
Neural Network Modellen identifiziert und auf Designentscheidungen in der
Neuroarchitektur zurückgeführt. Diese Einsichten erlauben die Entwicklung
von Methoden, die eine schnelle, praxistaugliche Diagnose von Ineffizienzen
während und vor dem Training eines neuronalen Netzes erlauben. Die An-
wendung dieser Methoden wird empirisch auf sequenziellen und Multi-Pfad
Architekturen getestet, um deren Zuverlässigkeit zu demonstrieren. Ferner
werden auf Basis dieser Methoden einfache Optimierungsstrategien entwick-
elt, die es erlauben, die charakterisierten Ineffizienzen zielgerichtet zu entfer-
nen und damit die Effizienz und Vorhersageleistung des Modells zuverlässig
zu steigern. Mit diesen Strategien wird dargelegt, dass die Optimierung von
Neuroarchitekturen auch ohne das “Versuch und Irrtum”-Prinzip möglich ist
und infolgedessen ein informierter, effizienterer und zielgerichteterer Design-
prozess ebenfalls prinzipiell möglich ist.
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Abbreviations

Border Layer The first layer to receive input from a layer with rl−1 > i.

CNN Convolutional Neural Network

Classifier Refers to a CNN that solves classification tasks. In context of neural
architectures, classifier refers to the layers after the the convolutional
part of the network.

Feature Extractor The part of the convolutional neural network that consists
of convolutional layers. Generally seperates from the classifier by a
"readout" (usually a Global Average Pooling layer)

Feature Map The input and output of a convolutional operation. Can be
viewed as a stack of equally sizes matrices containing local pattern in-
formation.

Feature Space The feature space Zl of a layer l is the space the output of this
layer exists in.

Filter Sometimes also referred to as Channel (in case of color information).
An output feature map of a convolution operation can be viewed as a
stack of filters, where each filter is detecting a different pattern.

GAP Global Average Pooling. A Layer in a CNN architecture that pools a
stack of filters into a vector by computing the average of each filter.

Latent Representations An intermediate state of the data between input and
output. Usually the output of a layer. Also referred to as zl.

LRP Logistic Regression Probes, a logistic regression trained on the same
(classification) task as the model, using the output of hidden layer of
this model as input.

Relevant Eigenspace A subspace of a layers feature space. When the data is
projected into this space the output of the model does not change it‘s
behavior.

Maximum Receptive Field The largest receptive field present in the output
of a layer l. Can be seen as spatial upper bound regarding the locality
of information integrated into a single feature map position
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Minimum Receptive Field The smallest receptive field size present in the
output of a layer l, can be seen as a spatial lower bound regarding the
locality of information integrated into a single feature map position. For
sequential architectures rl = rl,min = rl,max, since only a single receptive
field size is present in l

Multi-path Architecture A feed-forward neural network architecture where
the information passes through more than one sequence of layers to
reach the output. Examples: ResNet by He et al. (2016a) and GoogLeNet
by Szegedy et al. (2015).

Probes Logistic Regression Probes (see LRP)

Probe Performance See pl.

Saturation The percentage of dimensions of the lossless eigenspace in a layer
relative to the available dimension.

Receptive field The are on an image that can influence the output of a single
position on the feature map.

Sequential Neural Network A neural architecture is called sequential, when
it can be described as a sequence of layer, where each layer has at most
one predecessor and consecutive layer.

Skip Connection Architectural component in a convolutional neural network.
Usually a parameter-less shortcut between layers that allows the infor-
mation to "skip" layers.

Tail A unproductive subsequence of convolutional layers that does not con-
tribute qualitatively to the prediction.

Tail Pattern See Tail.

VGG A family of sequential neural networks by Simonyan, Zisserman (2015),
the number refers to the number of layers. (for instance VGG16 has 16

layers).
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Symbols

b The first layer to receive input from a layer with rl−1 > I.

bmin The border layer in a multi-path architecture that is based on the mini-
mal receptive field of the layers rl−1,min > I. In sequential architectures
equivalent to bmax

bmax The border layer in a multi-path architecture that is based on the maxi-
mum receptive field of the layers. Equivalent to the border layer.

Ek
l The approximation of the relevant eigenspace. A k-dimensional space

spanned by the largest eigendirections of the covariance matrix of the
output data in layer l.

I The input resolution of a given training setup.

l An arbitrary layer in a convolutional neural network architecture.

pl The test accuracy a logistic regression probe has achieved when trained on
the output of the layer l. Sometimes also referred to as "probe perfor-
mance".

rl The receptive field of layer l, equivalent to rl,max

rl,max The largest receptive field present in the output of a layer l. Can be seen
as spatial upper bound regarding the locality of information integrated
into a single feature map position

rl,min The smallest receptive field size present in the output of a layer l, can be
seen as a spatial lower bound regarding the locality of information in-
tegrated into a single feature map position. For sequential architectures
rl = rl,min = rl,max, since only a single receptive field size is present in l

sl The saturation value of layer l computed on the training data during the
final epoch of training.

Zl The feature space of a layer l. This is the space where the output of l exists
in.

zl The output data of layer l.
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1 Introduction

1.1 Motivation

Convolutional Neural Networks (CNN) have dominated the field of deep
learning and image classification in recent years. Ever since the publication
of AlexNet by Krizhevsky et al. (2012), neural architectures were a key factor
in improving the predictive performance and computational efficiency of the
trained model (Khan et al. (2020)). From the multitude of published architec-
tures certain design conventions have developed like the use of 3× 3 convolu-
tions, the overall pyramidal shape of the architecture and an input resolution
of 224× 224 pixels. However, these design decisions can be regarded as com-
promises, driven mostly by the desire to construct larger architectures while
keeping the computational power required on a manageable level. Further-
more, the design process itself is inherently driven by trial and error, since
the effect of architectural changes on the predictive performance can only be
measured by comparative evaluation of trained models. This is exemplified
when looking at state-of-the-art neural architecture search (NAS) solutions
like NasNet by Zoph et al. (2018) and AmoebaNet by Real et al. (2019). These
NAS solutions divert to using brute-force meta-heuristics with a search space
limited only by aforementioned conventions in neural network design. Fi-
nally, on a larger scale, this mode of development has favored an increase
in model parameters as the most reliable source of predictive performance
improvement, making the resulting architectures ever more computationally
expensive to train and develop (Huang et al. (2019)). In the long term, this
mode of development is unsustainable and strongly limits the potential de-
velopers and application scenarios in which a modern CNN can be deployed.

To achieve widespread adoption of convolutional neural networks in a
wide variety of applications, a more efficient design process is required. This
design process needs to be driven by some degree of understanding regard-
ing causes of inefficiencies and the general processing of information inside
convolutional neural networks.

In this work, the foundation of a novel convolutional neural architecture
design and optimization is proposed. This foundation is based on the un-
derstanding of the information processing inside convolutional neural net-
works on a layer-by-layer basis, allowing informed decision-making with a
high probability of success.

1



1.2 On the Usage of the Third-Person Plural

While this monography is written by only one person, many results this
work discusses were separately published as papers (Richter et al. (2021a,
2022, 2021b,c); Shenk et al. (2019)). The main reason this work is written as
a monography instead of a cumulative style is for aesthetic reasons, since I
am of the opinion that a book provides a better reading experience with a
streamlined storyline and is thus better suited to summarize the research I
have done in the last three years with the aid of my colleagues. To honor the
co-authors of these papers, I will from here on stick to the first-person plural:
we.

With few notable exceptions, namely the concept of the saturation metric
(see section 8.1), the initial version of the framework delve (see section 6.1)
these co-authors contributed to the publications as internal peer-reviewers
and proofreaders for experimental results and drafts I produced over the
years. The aforementioned exceptions are correctly noted in the text of the
respective section as well. In any other case, it can be assumed that formu-
lating hypothesis, conceptualizing experiments, conducting experiments as
well as result analysis and writing drafts of the respective conclusions and
publications was done by me.

1.3 Structure of this Work

We will first discuss the foundation of deep learning and convolutional
neural networks in general in chapter 2. This part of the work covers the
most relevant datasets, basic functionality and setup of convolutional neural
network training and evaluation. Chapter 3 is focused on the design of con-
volutional neural architectures, summarizing the current state of research in
this regard. Design criteria will be discussed, as well as structural conven-
tions and components in neural networks for computer vision. The following
chapter 4 proceeds to discuss the related work regarding the analysis of con-
volutional neural networks. In this chapter, we also establish important met-
rics like logistic regression probes and the receptive field, which are central to
the empirical part of this work.

The empirical part of this work is headed by chapter 5, a brief discussion
of the central research questions and goals. Before the work moves to the
original research, we present our software in chapter 6. This chapter will
primarily focus on the OpenSource-Libaries PHD-Lab and Delve for experi-
ment control, reproducibility and evaluation. Both Libraries were developed
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as an integral part of this work and serve as the backbone for all empirical
studies on neural architectures. We then move on to the first experimental
part of the work, which is dedicated to analyzing the information process-
ing inside convolutional neural networks. By approximating the subspaces
inside neural network layers that are critical for the quality of the predic-
tion (chapter 7), we can derive a novel metric, "saturation" (chapter 8). By
exploring the properties of saturation and logistic regression probes, we can
demonstrate that both metrics can be used to find a pathological pattern (tail
pattern) indicating inefficiencies in convolutional neural networks. Based on
these findings, we investigate the cause of the inefficiencies in chapter 9. Fi-
nally, we demonstrate the ability to predict the occurrence and location of
architectural inefficiencies in the network solely based on the evolution of the
receptive field from layer to layer. This is demonstrated first for sequential
neural architectures in chapter 9. In chapter 10 this capability is expanded
to architectures with multiple pathways and attention-mechanisms. Based on
these results, we can propose design guidelines in chapter 11 for optimizing
convolutional neural architectures that can be applied without the need for
comparative evaluation.
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2 Basics

This section will briefly elaborate on the foundations and general concepts
of classifiers and deep convolutional neural networks in computer vision. In
section 2.1 we conceptually introduce classifiers as black-box models. The fol-
lowing section 2.2 briefly introduces the most relevant datasets that are used
throughout this work and discusses their relevance in the field of computer
vision. After that, section 2.3 introduces the convolution operation, and its
properties that are most relevant for this work, before we elaborate on the
general training and evaluation methodology for deep convolutional neural
network classifiers in section 2.4.

2.1 Deep Convolutional Neural Network Classifiers

With the submission of Krizhevsky et al. (2012) to the ImageNet compe-
tition, deep computer vision and deep learning in general gained a surge of
popularity. The historically central problem that these deep computer vision
algorithms solve is the scene categorization problem also known by the more
general term of classification problem (Krizhevsky et al. (2012)). The figure
below illustrates a simplified structure of the inference process of a neural
network classifier.

Figure 1: A simple hypothetical example of a cat-dog-classifier: The classifier receives an
input image and predicts a label from a set of discrete symbols.

The problem requires the model to assign one discrete symbol (colloqui-
ally referred to as "label") to a given data point (image). Due to its simplicity,
image classification has served as a benchmark task for many innovations in
convolutional neural architecture design. For instance, the architectures and
design concepts popularized by Simonyan, Zisserman (2015), Szegedy et al.
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(2015) and He et al. (2016a) were first utilized and designed for the ImageNet-
Classification challenge and later adopted to more complex tasks like object
localization (Ren et al. (2015)), segmentation (He et al. (2017)) or similarity
measurement (Koch et al. (2015)). For the same reason, this work will also
focus on deep convolutional classifiers.

2.2 Benchmarks

In this work, we define a benchmark problem as a task consisting of a
training and test set, on which a model can be trained and evaluated on. De-
pending on the size, visual-domain and the complexity of the classification
problem a benchmark may be utilized for different purposes like serving as a
proxy problem for a more complex task, proof-of-concept testing or pushing
the state-of-the-art in predictive performance. Thus, benchmark problems are
crucial in deep learning research for the comparison of convolutional neural
architectures, since they provide standardized scenarios that greatly simplify
comparative evaluation. Since benchmark problems are central for empirical
research on convolutional neural networks, we will briefly present the classifi-
cation benchmarks relevant to this work and elaborate their typical use-cases
in the wider area of deep learning research and their utilization in this partic-
ular work.

2.2.1 MNIST

The MNIST dataset by LeCun, Cortes (2010) is a dataset for handwritten
digit recognition. The dataset consists of 28× 28 pixel binary images of hand-
written digits ranging from 0 to 9 (10 class classification problem). The data
is split into a training and a test set. The training set consists of 50,000 images
(5,000 per class), the validation set consists of 10,000 images (1,000 per class).

Due to the low dimensionality and relatively low difficulty of the clas-
sification problem compared to other popular classification datasets like Ci-
far10 and ImageNet (Scheidegger et al. (2021)), MNIST is often considered the
"Hello World" of deep learning. For this reason, MNIST is mostly used for
proof of concepts like in the publication of Li et al. (2018a) and foundation
work like the experiments of Zhang et al. (2017) on the properties of gener-
alization with deep neural networks. This work uses MNIST primarily as a
redundant testing ground to demonstrate that insights gained from experi-
ments on other datasets generalize to datasets with different visual domains
and difficulty.
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Figure 2: The dataset consists of 10 classes of hand-written digits, the images are 28× 28
binary images, which can be considered a very low dimensional visual domain compared to
other popular datasets like Cifar10 and ImageNet. Due to its simplicity, MNIST is mostly
used for proof of concept work.

6



2.2.2 Cifar10 / Cifar100

Cifar10 and Cifar100 are datasets of small images belonging to 10 and
100 categories, respectively. The datasets were published by Krizhevsky et al.
(2015) and consist of 32× 32 pixel color images. Cifar10 and 100 are composed
of a training and a validation subset each. The training subset consists of
50,000 images and the validation subset consists of 10,000 images for both
datasets. The classes of both datasets are balanced, resulting in 5,000 training
and 1,000 validation samples for Cifar10 and 500 training samples and 100

validation samples for Cifar100. The categories are composed of a wide range
of different objects, animals and scenarios, like Frogs, Bears, Bridges, Rockets,
Forests and Mountains. In figure 3 we can see a collage of images taken from
all categories of Cifar10.

Due to the relatively low resolution of 32× 32 pixels, both datasets can
be used for quickly training and evaluating models. Compared to MNIST,
their respective visual domains are also more realistic and can thus be con-
sidered more complex. The difficulty of the classification problem can be con-
sidered harder as well, based on the performances achieved by classifiers in
recent years (Scheidegger et al. (2021)). This makes the Cifar datasets popular
in proof of concept work for neural architecture innovations, since perfor-
mance improvements can be observed more clearly compared to MNIST. Fur-
thermore, improvements made in Cifar10 often generalize to more complex
datasets of real-world imagery like ImageNet. For instance, Simonyan, Zis-
serman (2015) and He et al. (2016a) demonstrate the predictive performance
of their neural architectures on Cifar10 as well as ImageNet. For the same
reason, Cifar10 and Cifar100 are also used in automated neural architecture
search as proxy problems for the more complex ImageNet dataset (Real et al.
(2019); Zoph et al. (2018)).

Due to the aforementioned combination of a realistic visual domain, non-
trivial classification problem and economical training compared to ImageNet,
we use Cifar10 as our primary proofing ground for the empirical research
presented in this paper.
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Figure 3: Similar to MNIST, the Cifar datasets consist of uniformly sized low resolution
(32× 32 pixel) images, making them very economical for model training compared to higher
resolution datasets like ImageNet. The datasets consist of colored real-world images. The
classes are real-world objects. For these reasons, the Cifar-datasets can be considered more
complex than MNIST. For the same reasons, these datasets can be used as more economical
proxy problems for computationally demanding tasks such as ImageNet (Real et al. (2019);
Zoph et al. (2018)).

8



2.2.3 ImageNet

ILSVRC12, colloquially referred to as "ImageNet-Dataset" or just "Ima-
geNet" is a 1,000 category classification dataset by Deng et al. (2009). The
name of the dataset is an acronym and stands for "ImageNet Large-Scale Vi-
sual Recognition Challenge", an annual competition held from 2010 to 2017.
The dataset consists of roughly 1,280,000 training and 50,000 validation im-
ages. The categories are balanced in both subsets. The images have neither
a uniform resolution nor aspect ratio. The average resolution of the dataset
is 469× 387 pixels and all images are RGB-colored photographs. The cate-
gories are composed of WordNet-IDs, which reference entries in the WordNet
database. A WordNet-ID is therefore referring to such things as animals, ob-
jects and scenery. For instance, the category "meerkat" has the WordNet-ID
n02138441 and the category of the WordNet-ID n04532670 contains images
depicting Viaducts. While the classes are mostly clean and free of errors, they
are not completely free of mislabeled and corrupted images.

The large number of classes with strongly varying inter- and intra-class
homogeneity makes the ImageNet dataset very challenging, with 90% accu-
racy being reached by a model trained by Pham et al. (2021), 9 years after the
publication of the dataset. For this reason, model performance is reported
with two metrics: The regular Accuracy (in this context also referred to as
"Top1-Accuracy") and the Top5-Accuracy. The latter counts a prediction as
true positive if the true class is contained within the top 5 classes with the
highest predicted probability.

The ImageNet dataset can be considered the historical starting point of
modern deep learning research. The significance of the AlexNet convolu-
tional neural network by Krizhevsky et al. (2012) was demonstrated on the
ImageNet dataset, beating the competition by 10 percent points top5-accuracy
in the year 2012. Since then, convolutional neural network classifiers are gen-
erally optimized for the ImageNet dataset and improvements on the predic-
tive performance are generally used as validation in various works ranging
from efficient parallelization techniques for large models (Huang et al. (2019))
over optimizers and preprocessing techniques (Cubuk et al. (2019); Kingma,
Ba (2014); Liu et al. (2020)) to entire neural architectures (He et al. (2016a);
Huang et al. (2017); Real et al. (2019); Simonyan, Zisserman (2015); Szegedy
et al. (2015, 2016); Tan, Le (2019)). Furthermore, models trained on ImageNet
are known to generalize well to other problems and are thus well suited for
transfer-learning applications (Smith, Topin (2017a)).

Due to the great demand in computational resources, it is not possible to
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Figure 4: The ImageNet dataset features RGB-images of various aspect ratios and image qual-
ities belonging to a heterogeneous set of 1,000 classes. These properties render the ImageNet-
dataset a very challenging classification problem, which makes it ideal for training well gen-
eralizing models. From the early days of deep learning until today improving the predictive
performance of ImageNet-trained models can be considered an active field of research and
central to innovations in deep convolutional neural network classifier design (Dosovitskiy
et al. (2021); Khan et al. (2020); Krizhevsky et al. (2012); Tan, Le (2019)).

conduct large numbers of experiments required for the research presented in
this work. However, we train models on ImageNet in a selected number of ex-
periments to demonstrate that certain key-observations made on Cifar10 and
other datasets can be reproduced on a much more complex, high-resolution
classification problem.
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2.3 The Convolution Operation

While there are many properties of the convolution that can be discussed,
we will focus for readability on the properties that are most significant for un-
derstanding this work. For further details, we refer to the work of Dumoulin,
Visin (2016), which is a detailed compilation of the properties of convolution
operations commonly used in deep learning.

The convolution operation is one of the key components in any convolu-
tional neural network architecture. The operation itself has been derived from
cross correlation and has many applications in computer vision, which pre-
date the application in neural networks, like smoothing, blurring and edge
detection. The basic principle is illustrated in figure 5.

Figure 5: This example of a convolution operation using a 3 × 3 kernel illustrates how a
convolutional layer integrates local context into a position in its output. The left matrix is
the input feature map, the right matrix is the output feature map. The highlighted area
illustrates the kernel being convolved over the input feature map. Every position of the
output is computed from the region of the input feature map covered by the kernel.

A filter of a fixed size (kernel size) is moved (convolved) step by step
over the input. Every position on the input produces a single scalar output,
resulting in a grid-structure of outputs, which we will refer to as a "feature
map" from now on. An example of an application of a convolutional kernel
on an image can be seen in figure 6.

The (in this case hand-crafted) kernel by Kanopoulos et al. (1988) is con-
volved over a gray scale image. The depicted kernel is sensitive towards
strong vertical color gradients and will thus produce high values when placed
over vertical edges. The resulting feature map therefore contains information
on the presence of vertical edges on the image. While the convolution op-
eration and the depicted application is linear. Non-linearity is created by
applying an activation function on the output of a convolution operation e.g.
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Figure 6: A simple example of a convolution operation using a vertical Sobel filter (Kanopou-
los et al. (1988)). The kernel (middle) is convolved over the input image (left), which results
in a feature map (right) containing information on the presence of vertical edges.

the ReLU-activation function (Krizhevsky et al. (2012)) or the SWISH-function
by Ramachandran et al. (2018).

The application of a convolution operation inside a neural network struc-
ture has many advantages. Since each output depends only on the positions
on the input feature map under the kernel, the computations are reduced
drastically. Since the size of the kernel is limited, the extracted features are
limited in their locality. This forces convolutional neural networks to extract
local patterns like edges and gradually construct a more complex pattern
when the data is passed from layer to layer, thereby expanding the receptive
field.

(a) Original:
54% persian cat
13% siamese cat
8 % tabby cat

(b) Texture:
53.74% ind. elephant
24.37% black swan
21.60% indri

(c) Stylized:
32.48% ind. elephant
18.57% black swan
14.35% indri

Figure 7: Predictions of an ImageNet pretrained ResNet50. The texture of the figure 7(b) is
transferred on figure 7(a) using the style transfer GAN by Ghiasi et al. (2017). While the cat
is still recognizable the texture transfer results in the top 3 classes being closer to the texture
image compared to the predictions of the original cat-image. This indicates that textures are
weighted over the general silhouette of objects, suggesting a bottom-up pattern recognition
process (Geirhos et al. (2019)).

This enforces a bottom-up process of pattern recognition in the neural ar-
chitecture. While this inductive bias of convolutional layers is by its nature
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more biased towards textures (see figure 7) compared to human perception,
it is also strategically limiting the search space of detectable patterns benefi-
cially. This has lead to almost all state-of-the-art classifiers in computer vision
being convolutional neural networks (Khan et al. (2020)). Transformers have
recently shown to be able to produce similar predictive performance without
this inductive bias, but require orders of magnitude more data and computa-
tional resources to do so. For example, Dosovitskiy et al. (2021) successfully
trained transformers that achieved similar performance to the best contempo-
rary convolutional neural networks on the ImageNet dataset. However, the
authors required 300 million additional weakly labeled images to do so (Ima-
geNet contains roughly 1.3 million images). The last property of convolution
operations we want to discuss is that convolutions are agnostic to the dimen-
sionality of the axis the kernel is convolved over. In terms of images, this
generally means that a convolution operation is agnostic towards the height
and the width of the image. This contrasts with the matrix multiplication
used in densely connected layers, which requires a fixed dimensionality of
input and output. Fully convolutional neural networks can thus process arbi-
trarily large input images, while neural networks containing dense layers are
fixed to a specific resolution. This property can be exploited to avoid scale
variance in the trained model. For example, Redmon, Farhadi (2017) devise a
multi-scale training scheme with a randomized input resolution, which force
the model to learn patterns invariant to scale. We exploit this property in
chapter 9 to deepen our understanding of the relationship between neural
architecture and input resolution.

2.4 Conventions in Training and Evaluation Methodology

Besides the neural architecture, the more general setup used for training
can have a great influence on the performance of the model, as many pub-
lications show (Kingma, Ba (2014); Liu et al. (2020); Smith, Topin (2017b)).
Before we can discuss neural architectures and their properties, it is also im-
portant to look into the general methodology used for training models that
achieve state-of-the-art performance on ImageNet. This section will focus on
supervised learning of classifiers in particular, since it is the simplest and
commonly used for evaluating novel architectures and thus the most relevant
for this work.

Similar to general neural architecture designs, there is currently no pre-
cise, agreed upon standard on how exactly training of a convolutional neural
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network is conducted on ImageNet or any other dataset. However, the basic
setup consists of an optimizer, and two preprocessing pipelines (one for train-
ing, one for evaluation), a loss-function and the (untrained) model instance
based on a neural architecture. We will briefly discuss the aforementioned
components and explain their most significant effects on the training process.
We will also briefly describe the general training and evaluation methodology
used for training convolutional neural network classifiers.

2.4.1 Loss

When thinking about a trained model as an answer, then the loss-function
can be considered the question. The goal of any gradient descent algorithm
is minimizing the loss during training. In effect, the minimization of the loss
should result in a stable, well generalizing model, given a good context, which
is provided by the dataset. In supervised classification tasks the cross entropy
between the ground truth and the predictions is used as target function for
minimization, since the mean squared error can lead to bad estimators if the
probability distribution is not normal, which cannot be guaranteed for arbi-
trary classification problems (Kosheleva, Kreinovich (2017)). In more complex
tasks like cancer mammography, classification and object detection, a combi-
nation of losses may be used to phrase the "question" more precisely and
ensure that concepts like "objectness" and "locality" are learned properly (He
et al. (2017); Rakhlin et al. (2018); Redmon et al. (2016); Ren et al. (2015); Shen
et al. (2021); Wu et al. (2020)). However, since the main focus of this work
are classifiers, we will primarily focus on cross-entropy loss which can be
considered the standard loss for classification tasks. Cross Entropy can be
considered a measure of difference between a probability distribution p and
an approximation of the same distribution q.

The cross entropy is computed as follows:

H(p, q) = − ∑
x∈X

p(x)log(q(x)) (1)

The variable x is a discrete instance value of the set of possible discrete
values X of the probability function p and its approximation q.

If the probability distributions are equal p = q, then the cross entropy
is equal to the entropy of the probability distribution H(p, q) = H(p, p) =

E(p). In any other case, H(p, q) can be described as the sum of E(p) and the

14



Kullback-Leibler-divergence DKL(p||q) (Bishop (2006)):

H(p, q) = E(p) + DKL(p||q) (2)

During training, the ground truth is one-hot encoded. In terms of proba-
bility distributions, this means that a single category for a given data point has
a probability of 100.0% and all other categories have a probability of 0%. The
prediction of a deep neural network classifier is encoded as a "softmax", which
can be interpreted as a probability distribution over the categories of the clas-
sification problem. Since p(x) = 0 for all categories except one E(p) = 0, the
only nonzero term of H(p, q) is the term of the true category with p(t) = 1
with t ∈ X. The loss for a single data point can therefore be simplified:

loss(t; p, q) = −p(t)log(q(t)) = −log(q(t)) (3)

The loss for a given data point will be zero if the softmax produced by the
model is equal to the one-hot encoded prediction, since log(1) = 0. In any
other case, −log(q(t)) will monotonically increase as the predicted probability
q(t) approaches zero. Since q(t) is a probability and therefore a value in
the interval, [0, 1] it is impossible for the cross entropy loss to be negative.
The only way to minimize the cross entropy is to maximize the predicted
probability value of the true category q(t). Hence, when used for training, the
cross entropy forces the model to maximize the predicted class probability of
the likeliest category.

2.4.2 Preprocessing and Data Augmentation

The raw images are preprocessed before being fed into the model. While
training and validation often share preprocessing stages like channel wise
color normalization and resizing, the pipelines differ at training and inference
time (Cubuk et al. (2019); He et al. (2016a); Krizhevsky et al. (2012); Simonyan,
Zisserman (2015)). The primary purpose of preprocessing is, to bring the
image data into a uniform format, which can be optimally processed by the
model. This primarily involves resizing the images to a fixed input resolution
and normalizing the pixel values. The training pipeline is more complex and
features also probabilistic preprocessing techniques, collectively referred to as
"data augmentation".

The primary purpose of data augmentation is to optimize the predictive
performance of the model. The features that a convolutional neural architec-
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ture learns to detect in order to estimate the category of the image are not
necessarily invariant towards transformations that would (judged from a hu-
man perspective) not change the category of the image. An example of this
can be seen in figure 8. The image category does not change with the rota-
tion angle, yet the model has not learned features that are invariant to this
affine transformation, resulting in a changing prediction depending on the
rotation angle. This can be considered an inductive bias of the dataset, allow-
ing the model to overfit on features that do not generalize to other real-world
instances.

(a) Prediction: 5 (b) Prediction: 1 (c) Prediction: 3

Figure 8: A VGG13 convolutional neural network (Simonyan, Zisserman (2015)) was trained
on MNIST without any data augmentation and is therefore not invariant towards rotations.
The predictions made by this model vary for the same test-set image depending on the angle
it was rotated.

Data augmentation can be considered a set of probabilistic regularization
techniques that take advantage of the properties of images in general. Distor-
tions are randomly applied on data points. These distortions are known to
not change the category. Depending on the dataset these transformations can
for example be rotations by a random angle, horizontally mirroring an image
(horizontal flipping), the application of Gaussian noise in the HSV-space and
other random changes on image properties like contrast, color-pallet etc. By
doing this, we can artificially enlarge the dataset (see figure 9 for examples)
and force the model to detect patterns that are invariant towards the applied
distortions.

Krizhevsky et al. (2012) used some of the aforementioned techniques to
increase the size of the training dataset by a factor of 2048. In more recent
application like Tan, Le (2019) and Real et al. (2019) the augmentation steps
are applied randomly on every loaded batch of data, allowing theoretically
for an unlimited amount of augmented images.
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Figure 9: To avoid scenarios like the one depicted in figure 8, where the model is not invariant
towards certain properties of the input image, training images are randomly augmented. This
example shows various combinations of data augmentation techniques applied to an image
of Felix the horse. The model can be forced to be robust against these kinds of distortions, by
training a model on randomly distorted versions of the original images.

2.4.3 Optimizers

Optimizers are responsible for minimizing the loss of the model by up-
dating its parameters during training by the means of back propagation and
gradient descent (Rumelhart et al. (1986)). Similar to quasi-Newtonian op-
timization, the training process can be imagined as a ball (representing the
current state of the model) rolling on a high dimensional surface into a min-
imum. The surface is called the "error surface" and is created by mapping
every set of parameter values of the model to a loss value.

Convolutional Neural Network classifiers are designed for non-linear op-
timization problems, which makes the error surface non-convex. For this
reason, gradient descent may lead to suboptimal performance. The reason for
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Figure 10: The optimizer influences the trajectory of the model on its error surface. In
this example, a model with 2 parameters is trained using three different optimizers. The
visualization shows, that properties of the optimizers influence the trajectory and as a result,
whether a model may "get stuck" in local minima and saddle nodes (SGD, middle) a local
optimum (RMSProb, right) or converge into good, in this case global, minimum (Adam, left).

this can be seen by looking at the simplest possible learning rule for gradient
descent:

wt+1 = wt − γ ∗ ∆wt (4)

wt represents the weights of the model at time step t, ∆w is the gradient of
the weights computed by back propagation and γ is the learning rate. The up-
date of the weights is based only on the gradient of the current optimization
step. Since the error surface is non-linear, ∆w = 0 can be caused by a saddle
node or a relatively bad local optimum on the error surface. This can theoret-
ically lead to a training being effectively "stuck", prematurely ending the opti-
mization on a possibly inferior solution. An example of a simple model with
two parameters can be seen in figure 10. Specifically, figure 10 shows stochas-
tic gradient descent (SGD) getting stuck in a local minimum, while the other
gradient descent optimizers RMSProb by Dauphin et al. (2015) and Adam
by Kingma, Ba (2014) navigate their respective trajectories to better solutions.
Optimizers like Adam, Adagrad, Adadelta and RMSProb use various tech-
niques for dynamically adapting the learning rate during training. (Dauphin
et al. (2015); Duchi et al. (2011); Kingma, Ba (2014); Zeiler (2012)). This in-
troduces dynamic perturbations into the weight update, effectively allowing
the optimizer to escape local minima. Another way to combat convergence
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towards suboptimal solutions is introducing various kinds of perturbations in
the gradient update to make these and similar situations less likely. For ex-
ample, dividing the dataset into mini batches and updating the weights batch
by batch is a de facto standard technique to induce random perturbations into
the gradient. Goyal et al. (2017) demonstrate in their study on the effect of
large batch sizes empirically that smaller batch sizes (around 256 images) are
consistently performing better than models trained on batches composed of
thousands of images on the ImageNet dataset. Other techniques based on the
current and past state of the model, like momentum and weight decay, are
also commonly used to influence the trajectory of the model on the error sur-
face to further reduce the probability of convergence on a bad solution (Ruder
(2016)). Finally, when training state-of-the-art models, the learning rate is re-
duced at discrete time steps by a multiplicative factor. This technique was
originally pioneered by He et al. (2016a), who showed that a rapid decrease in
the learning rate can "restart" the convergence process multiple times during
training, improving the performance even further. Since then, this technique
has been adopted by other significant publications like Howard et al. (2017);
Huang et al. (2017); Sandler et al. (2018); Tan et al. (2020) and Bochkovskiy
et al. (2020).

2.4.4 Models

In this paragraph, we will briefly discuss the external properties of con-
volutional neural network models used for training from a purely functional
perspective. A more detailed analysis of commonly used architectural prop-
erties and the evolution of neural architecture design will be discussed in
chapter 3. For standard classification problems, a convolutional neural net-
work is generally built as a feed-forward structure with a single input and a
single output. 1. The input is expected to be a third degree tensor with 3 color
channels in one axis (the other two representing the height and the width of
the image). Non fully convolutional architectures like AlexNet (Krizhevsky
et al. (2012)) and the VGG-family of networks (Simonyan, Zisserman (2015))
furthermore require a fixed input resolution. By convention the standard res-
olution of classifiers has been 224× 224 pixels since introduced by Krizhevsky
et al. (2012), even if the fully convolutional nature of the model would allow
other resolutions (He et al. (2016a); Szegedy et al. (2016)). Only recently,
AmoebaNet and EfficientNet increased the resolution to up to 600× 600 pix-

1Deviations are rare but do exist. For instance GoogLeNet by Szegedy et al. (2015) features
multiple output heads as a solution to the vanishing gradient problem.
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els (Huang et al. (2019); Real et al. (2019); Tan, Le (2019)). In other fields of
deep computer vision like object detection and segmentation, higher resolu-
tions are more common (He et al. (2017); Redmon, Farhadi (2017); Tan et al.
(2020)).

The output of the model is a single layer with a number of neurons equal to
the number of categories in the classification problem. The activation function
is a normalized exponential function called softmax:

σ(z)j =
ezj

∑K
k=1 ezk

(5)

Where zj refers to the output of the jth out of the K neurons in the softmax-
layer. The softmax function projects every component zj of the activation
vector into the interval of (0, 1] furthermore, the sum of all neuron activation
values is always 1:

K

∑
j=1

σ(z)j = 1 (6)

For this reason, the output of a neural network classifier can be interpreted
as a probability distribution over the categories.

2.4.5 General Methodology of Training and Evaluation

Training is split in training intervals referred to as "epochs". By convention,
a single epoch is completed when the entire training dataset is processed. The
processing itself is sub-divided into a sequence of mini-batches. The weights
of the model are updated after a mini-batch is processed. There are two
primary reasons for this methodology. First, as mentioned in the previous
section, small mini-batches induce random perturbations in the gradient, re-
sulting in a decreased probability of converging into saddle-nodes and sharp
optima (Li et al. (2018b), Goyal et al. (2017)). Second, the memory limitations
of modern GPU and TPU hardware makes processing the entire dataset at
once impractical or physically impossible. Furthermore, the training dataset
is shuffled at the beginning of each epoch to avoid overfitting on specific im-
age combinations inside the batches. At regular intervals (usually between
epochs) the model is tested on a validation set. During the test, the model’s
predictive performance is evaluated on a designated evaluation set, which
contains only samples the model was not trained on and that are drawn from
the same distribution as the training data. The metrics evaluated on the val-
idation data allow assessing how well the model generalizes to unseen data
and how strong the model is currently overfitting on the training data. Train-
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ing is conducted for a set number of epochs or until a stopping criterion is
reached (Li et al. (2020)).

2.4.6 Evaluation Metrics and Methodology

The evaluation of models is subdivided into the performance evaluation
of the model, which is done in regular intervals (usually at the end of each
epoch) during training and a post-hoc evaluation, which is generally more
detailed and elaborate. The former is mainly focused on the evaluation of fast-
to-compute metrics like accuracy, precision, recall or the confusion matrix to
allow for quick intermediate assessments of the current performance. In the
latter case, more detailed evaluation techniques like inspection for dissecting
the trained model’s behavior are applied. Examples of such techniques are
Lime by Ribeiro et al. (2016), error surface visualization by Li et al. (2018b)
and logistic regression probes by Alain, Bengio (2017).

The primary goal of this analysis is to deepen the understanding of model
quality and derive next steps for model improvement. Furthermore, evalu-
ation after training may utilize more elaborate inference schemes like multi-
crop evaluation (Simonyan, Zisserman (2015)) to stabilize and improve the
performance of the trained model. This is commonly done for highly opti-
mized models trained for competitions (He et al. (2016a); Simonyan, Zisser-
man (2015); Szegedy et al. (2015, 2016)).

2.5 Metrics

While there are many metrics for assessing the qualitative properties of
classifiers, benchmarks are generally designed to allow the comparison based
on a single primary metric. In case of Cifar10, Cifar100, MNIST and ImageNet
this primary metric is the accuracy score:

acc =
TP

TP + FP
(7)

The accuracy can be interpreted as the percentage of the prediction that
are correct. In the equation, TP (true positives) references the number of
all correctly classified images and FP the number of all incorrectly classified
images (false positives). An image is counted as correct when the predicted
labels are matching the true label. In some publications like He et al. (2016a)
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and Simonyan, Zisserman (2015), the error-rate is reported instead:

err =
FP

TP + FP
= 1− acc (8)

Due to the high difficulty of the ImageNet dataset, additionally the Top5-
Accuracy is reported, which is more error-tolerant and allows therefore for a
better evaluation of very hard problems. This metric deviates from the afore-
mentioned accuracy (in this context referred to as Top1-Accuracy) in their
definition of true and false positives. While the accuracy only considers the
highest predicted probability category, the Top5 version of this metric consid-
ers the 5 categories with the highest predicted probabilities. A prediction is
regarded as a true positive if the true category is one of these five categories.

Beside the predictive performance of the trained models, the efficiency is
sometimes reported as well (Howard et al. (2019, 2017); Sandler et al. (2018);
Tan, Le (2019)). This is commonly done in two ways. First, the computa-
tional efficiency measured in FLOPs (Floating-Point Operations) as a measure
of computational power required to conduct a single forward pass on a sin-
gle image. The second measure of efficiency is measured in the number of
parameters the model has. The number of parameters can be considered a
crude way of expressing the "capacity" or complexity of the model.
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Figure 11: Network families (connected via dotted lines) are composed of models that resem-
ble different trade-offs between predictive performance and computational efficiency (mea-
sured in FLOPs to perform a forward pass on a single image). Computationally more de-
manding variants of the architecture achieve the best predictive performance than their more
computationally efficient relatives.
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Both metrics are usually computed only once after training has concluded,
since the computations required per forward pass and the number of model
parameters are known based on the setup. The efficiency of models is typi-
cally not expressed in a single number, since most architecture families feature
different variations of the same basic architecture design. These variations in-
tentionally strike different balances between predictive performance and both
efficiencies, with some emphasizing "high efficiency" and others "high per-
formance". An example of such a visualization is figure 11, the predictive
performance is plotted against the computations required. We can see that
model families trade an increase in FLOPS for more predictive performance
with decreasing returns as the models grow larger. Generally, this behavior is
similar for parameter efficiency, as we can see from comparing figure 11 and
figure 13.
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3 The Current State of Convolutional Neural Ar-

chitecture Design

The neural architecture of a deep neural network defines the characteristics
of individual layers as well as the overall layout that connects the individual
layers. Historically, the architecture can be considered the most significant
component of a training setup for maximizing the predictive performance of
CNN-based models. We can say this because the neural architecture directly
defines the capacity of the model, the historically most critical factor for im-
proving upon state-of-the-art architectures, as figure 12 illustrates. Since this
work aims at improving the design process of convolutional neural networks,
it is important to understand the basic design goals, conventions and building
blocks of modern convolutional neural network architectures. As of the writ-
ing of this work, currently no clear rules or principles for the design of neural
architectures exists in the literature. However, during the years, conventions
and components have been popularized to deal with reoccurring challenges
in the design of neural architectures. Section 3.1 discusses the basic design
criteria that are taken into consideration when designing and optimizing a
neural architecture. We then move on to discussing the state of neural archi-
tecture design on two different scales. The macroscopic scale is introduced in
section 3.2, where general conventions in the design of convolutional neural
network classifiers are introduced. The more detailed view is elaborated on
in section 3.3 and is focused on common building blocks and their variations
used in convolutional neural networks.

3.1 Design Criteria

In benchmarks scenarios, the predictive performance of the model is gen-
erally considered the primary optimization goal. However, depending on
the application and the available resources, other criteria, like the memory
footprint, need to be recognized during development. In this section, we will
briefly discuss different criteria in the design of convolutional neural networks
and elaborate on how they are reflected in design decisions.

3.1.1 Predictive Performance

As was previously mentioned, the quality of the prediction can be consid-
ered the primary goal in the development of a deep learning solution.
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Figure 12: The Graph shows the best performing architectures of the respective years (multi-
ples if the benchmark was beaten multiple times during the year). Over 90% of the predictive
performance can be explained by an exponential increase in parameters. This indicates that
the increasing capacity of neural networks is the main driving factor behind improvements
in cutting edge-models.

Historically, improvements regarding the predictive performance are achieved
by increasing the model’s capacity, as figure 12 illustrates. The capacity of
a model is measured in the amount of trainable parameters (Huang et al.
(2019)). In fact, 90.2% of the ImageNet test accuracy’s variance in figure 12

can be explained by the number of parameters. Improving performance by
increasing the number of parameters is also done within families of CNN
architectures. One strategy for increasing the capacity of models is to in-
crease their "depth". This is achieved by the addition of layers or building
blocks. Examples for this practice are the VGG (Simonyan, Zisserman (2015)),
MobileNet (Howard et al. (2017)), DenseNet (Huang et al. (2017)) and Effi-
cientNet (Tan, Le (2019)) -families. Besides building deeper architectures, it is
also possible to increase the number of filters per layer and thus the number
of patterns that can be extracted. This is colloquially referred to as making the
architecture "wider". Tan, Le (2019) show that both strategies work reliably,
but also yield diminishing returns and need to be compound-scaled together
with the input resolution to be most effective.

In figure 12 we can also see that the predictive performance of the de-
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picted models increased incrementally from 75 to 90% accuracy on ImageNet.
In the same time, the parameters in the models have increased from millions
to trillions. Generally, an increase in parameters coincides with an increase
in the computational resources and memory required for training and infer-
ence. High-capacity models are therefore becoming less efficient, necessitat-
ing compromises in the design to accommodate resource limitations like the
GPU-memory and available computational resources.

3.1.2 Memory Footprint

The memory footprint is especially important for non-distributed train-
ing, since GPU and TPU memory is currently not expandable and therefore
putting hard restrictions on the size of the model. While data parallelism ef-
fectively scales linear (Goyal et al. (2017)), distributing a model over multiple
compute devices (model parallelism) suffers from inefficiencies and increas-
ing idle times as a result of the dependencies between the network partitions
(Huang et al. (2019)). This effectively limits the size of models that can be
trained with given resource and time constraints. The memory footprint is
primarily determined by the size of the feature maps, the number of filters
in the feature maps, as well as the number of parameters per layer. There-
fore, design choices around limiting the memory footprint revolve primarily
around limiting the sizes of the feature map and number of filters. Examples
for such design choices are stems, discussed in section 3.3.2, bottleneck lay-
ers discussed in section 3.3.5 and the overall pyramidal shape of architectures
described in section 3.2.

3.1.3 Computational Efficiency

The computational efficiency is considered the number of computations
(measured in FLOPs) required to process a single input image and was dis-
cussed earlier in section 2.5 (Dosovitskiy et al. (2021); Real et al. (2019); Tan,
Le (2019); Tan et al. (2020)). Since the computations required limit the data
throughput of a trained model with given hardware, computational efficiency
can be viewed as the most direct measure of how economical a model is in
a deployment scenario. Computational efficiency is strongly related to the
memory footprint, which are both heavily influenced by the size of feature
maps. Therefore, components like stems (see section 3.3.2) or the use of 1× 1
convolutions to reduce the number of filters (see figure 3.3.1) are also used to
gain computational efficiency. Techniques that have no positive effect on the
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memory footprint but reduce the number of parameters involves alternatives
to regular convolutions. Depth-wise separable convolutions introduced by
Howard et al. (2017) and decomposing convolutions into multiple operations
(Szegedy et al. (2016)) are examples of such techniques. We discuss these in
section 3.3.1 in greater detail.

3.1.4 Parameter Efficiency

Parameter efficiency measures how well the model utilizes the available
capacity. While all convolutional neural networks can be considered highly
over parameterized (Zhang et al. (2017)), some models utilize the available
parameters better than others. This is especially true inside a network family,
where deeper architectures strongly increase the number of parameters while
gaining diminishing returns in predictive performance (see figure 13 for ex-
amples). While there are known strategies for increasing the computational
efficiency, memory footprint and predictive performance, the design choices
can be considered trade-offs, that either reduce the predictive performance
or decrease memory and computational efficiency. Getting the most use out
of a given number of parameters has no real strategies that map to neural
architecture design directly and reliably.
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Figure 13: Networks in the same family (connected via dotted lines) that feature more pa-
rameters perform better, trading computational and parameter efficiency for predictive per-
formance at diminishing returns.

The only experimentally validated heuristic was presented by Tan, Le
(2019), who showed that compound-scaling input size, number of filters per
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layer and number of layers yields effective results on multiple architectures
for classification and object detection. However, this heuristic is designed for
scaling architectures and does not involve designing a novel architecture for
efficiency. The compound scaling strategy by Tan, Le (2019) is also parame-
terized, requiring an expensive grid-search to obtain the optimal compound-
scaling hyperparameters.

As a general guideline: Parameter efficiency is lower for larger architec-
tures. Increasing the number of parameter yields diminishing returns, as we
can see on various network families in figure 13. We see this also a core
motivation to this work, which is in large part dedicated to identifying and
resolving parameter inefficiencies in convolutional neural architectures.

3.2 Basic Structural Conventions in Convolutional Neural Net-

work Architectures

In this section, we will discuss the basic high-level structure used in con-
volutional neural networks. In recent years, many architectures for convo-
lutional neural network classifiers were proposed. While these architectures
strongly differ in the number, size and types of layers, all architectures achiev-
ing high predictive performance 2 on ImageNet follow some basic convention
in high-level architectural design (He et al. (2016a); Howard et al. (2019); Hu
et al. (2018); Khan et al. (2020); Krizhevsky et al. (2012); Real et al. (2019);
Simonyan, Zisserman (2015); Szegedy et al. (2015); Tan et al. (2020)).

Figure 14: Convolutional Neural Network classifiers can be divided into a feature extractor
and a classifier part. The feature extractor is fully convolutional and extracts discrimina-
tory features from the input image. The classifier consists of densely connected layers and
produces a prediction based on the output of the feature extractor.

To demonstrate what these high-level architecture design conventions are,
we illustrated the basic structure of a convolutional neural network classi-
fier on a simple example architecture in figure 15. The overall feed forward
structure can be divided into two main parts. The first component is the
feature extractor and is fully convolutional. The second part, referred to as

2we consider 70% Top1-Accuracy as high performance
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"classifier", is composed of densely connected layers and is separated from
the feature extractor by a transition layer also referred to as "readout-layer",
which transforms the feature map of the convolutional layers into a vector
representation that can be consumed by the classifier.

3.2.1 Classifier

We refer to the final sequence of layers as "classifier". This includes the
output layer of the network. The classifier is separated from the feature ex-
tractor by the read-out layer. The primary responsibility of the classifier is to
transform the feature maps of the feature extractor into a prediction. In older
architectures like LeNet by Lecun et al. (1998) and the VGG-family of net-
works by Simonyan, Zisserman (2015) the classifier is a multi layer perceptron
and is thus capable of non-linear transformations on the entire image. Mod-
ern architectures like the Inception-network family by Szegedy et al. (2015),
the ResNet-network family by He et al. (2016a) and derivative architectures
like SENet by Hu et al. (2018) and Wide-ResNet by Zagoruyko, Komodakis
(2016) etc. moved to a linear classifier design. These networks feature a single
classifier-layer, which is also the softmax-output of the network. This classifier
design was pioneered by Lin et al. (2014) and later popularized by Szegedy
et al. (2015) as a simple yet effective way to avoid over-fitting and reduce
required memory and computational resources. From a conceptual level, a
single layer classifier also reduced the core responsibilities of the classifier to
that of a linear model, relying on the feature extractor to transform the data
into a linear separable representation.

3.2.2 Feature Extractor

We define the feature extractor as the sequence of layers before the readout-
layer. The feature extractor is fully convolutional, in the sense that all layers
are kernel-based 3, which makes the feature extractor technically agnostic to-
wards the input resolution.

Traditionally, the feature extractor contains the most layers in the neural
architecture (He et al. (2016a); Krizhevsky et al. (2012); Simonyan, Zisserman
(2015); Szegedy et al. (2015)). Early designs like the VGG family of networks
by Simonyan, Zisserman (2015) can be described as a sequence of consec-
utive layers, where every layer receives input from a single previous layer.

3we regard, in this context, non-parametric layers like pooling-layers as convolutional
layers as well.
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Figure 15: The feature extractor of VGG16 consists only of convolutional (yellow) and
pooling-layers (orange). Note the pyramidal structure of the feature maps caused by the
4 downsampling layers (orange).

We refer to models with these feature extractors as sequential architectures
(see figure 15). The strictly sequential architectures have since fallen out of
favor, since they are inherently limited in their depth by the vanishing gradi-
ent problem (He et al. (2016a), Szegedy et al. (2015)). For enabling training
of deeper architectures, non-sequential architectures like ResNet (He et al.
(2016a)), DenseNet (Huang et al. (2017)) and MobileNetV3 (Howard et al.
(2017)) were developed. These architectures feature multiple pathways in the
feed-forward structure, allowing the signal to effectively "skip" certain layers,
counteracting the vanishing gradient problem.

The primary purpose of the feature extractor is detecting discriminatory
patterns from the image, that allow the classifier to make a prediction. When
considering that classifiers in modern architectures are linear, the feature ex-
tractor of a trained model can be also seen as a trainable data preprocessor
that produces a representation of the data that is as linear separable as possi-
ble.

3.2.3 Pyramidal Architectures

Another observation that can be made from the VGG16 feature extractor
in figure 15 is the pyramidal shape of the feature maps. By convention, the
pyramidal structure separates the feature extractor into a number of roughly
evenly sized stages (a common number of stages is 4).4 The number of layers

4The following architectures used 4 stages: The VGG-family by Simonyan, Zisserman
(2015), the inception family by Szegedy et al. (2015) and Szegedy et al. (2016), the ResNet-
family by He et al. (2016a), the MobileNet-family by Howard et al. (2019, 2017); Sandler
et al. (2018), the NASNet-Networks by Zoph et al. (2018), AmoebaNet by Real et al. (2019),
EfficientNet by Tan, Le (2019), SequeezeNet by Iandola et al. (2016), RexNext by Xie et al.
(2017), ResNetV2 by He et al. (2016b) and XCeption by Chollet (2017). This list may be
incomplete, but it contains all architectures the authors considers significant since 2012 in the
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and filters in a stage relative to the other stages is commonly held consistent
within a architecture family (He et al. (2016a); Howard et al. (2019); Real et al.
(2019); Sandler et al. (2018); Simonyan, Zisserman (2015); Tan, Le (2019)). By
transitioning from one stage to the next, the feature map is downsampled,
halving the height and width of the feature map in the process.5 Also part
of this convention is the increase in the number of filters in the feature map,
which is doubled with each stage compared to the previous. There are multi-
ple reasons for why this pyramidal structure is still commonly used. First, the
pyramidal structure makes the training of deeper networks more efficient. By
downsampling feature maps, the memory consumption and computations of
all following convolutional layers are reduced by a factor 4 compared to the
current feature map size. Another important point is that the reduction in
height and width of the feature maps allows for the addition of more filters in
later layers. The intuition for doing so brought forward by Simonyan, Zisser-
man (2015) is, that later layers combine the patters of previous layers to create
more abstract patterns. Increasing the number of filters in later layers effec-
tively increases the capacity of later layers for detecting additional patterns
by combining the existing patterns.

3.2.4 Fully Convolutional Neural Networks

Convolutional Neural Networks are referred to as "fully convolutional"
when every layer in the network functionally behaves like a convolution. This
is conventionally done by using a global pooling layer like global average
pooling (GAP) as the readout layer. These global pooling layers reduce the
output of the feature extractor down to a single vector with a dimensional-
ity equal to the number of filters in the input feature map. This is done by
applying a parameter-less operation like computing the maximum or average
activation value of each filter. Since the output of the global pooling layer
can be considered a feature map with height and width of 1, every follow-
ing densely connected layer is therefore functionally indistinguishable from a
convolution with a kernel size of 1× 1.

There are two advantages compared to a conventional reshaping (flatten-
ing) as a readout-technique. The first advantage is dimension reduction from
a vector of (H ∗W ∗ C) to a vector of size (C), where C is the number of
filters and H and W represent height and width of the feature maps. This

field of classification.
5the only exception to this rule is the final stage, where the stack of filters is transformed

into a vector
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is especially important in the readout layer, since the number of parameters
in the first layer after the readout grows quadratic with height and width of
the feature map, which in turn risks the danger of overfitting and increases
computation time. Another advantage of the fully convolutional network is,
that the network becomes agnostic towards the input resolution, as long as
the downsampling operation is not reducing the resolution of a feature map
below 1× 1 during the forward pass. This allows different resolutions to be
processed without altering the architecture. While this property is not actively
used in many publications on deep convolutional image classifiers, there are
exceptions like the works of Tan, Le (2019) and Real et al. (2019) that utilize
this property to build computationally efficient network families. We will
also utilize this property in chapter 9 to demonstrate the effect of the input
resolution on the inference process in convolutional neural networks.

3.3 Conventions in Neural Architecture Design

In this section, we will talk about components commonly used in convo-
lutional neural networks. We will briefly present the basic components that
have seen applications in notable publications in recent years. Furthermore,
we discuss alterations of these components and elaborate on the problems the
architectural components are designed to solve.

3.3.1 Convolutional Layers

What is often referred to as a convolutional layer in the literature is actually
composed of multiple components that are executed in sequence and could
be technically viewed as separate steps in the feed forward architecture.

The sequence is composed of 3 steps in older architectures like VGG16

and AlexNet and 4 steps in more modern architectures such as DenseNet,
EfficientNet and InceptionV4 (see figure 16). Padding is conducted before the
convolution is applied. By convention, zero padding is applied such that the
kernel of the convolution can be placed with the center pixel on any position
of the input feature map. When the stride size of the kernel is 1 in all di-
rections, the input feature map of this sequence will have the same shape as
the output feature map, for this reason, this padding strategy is referred to
as "same padding". Convolutions in convolutional neural networks primarily
utilize 3× 3 and 5× 5 kernels. In very deep convolutional neural architec-
tures like ResNet, DenseNet and EfficientNet, the bias of the convolution is
omitted. Deviations from this do exist. AlexNet, for instance, uses a 11× 11
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(a) AlexNet, LeNet, VGG-Family (b) ResNet-Family, Inception-Family

Figure 16: Two common ways convolutional layers are implemented. The variant depicted
in (a) is commonly used in older architectures such as VGG16. The variant depicted in (b)
used in more recent architectures such as MobileNet, EfficientNet and AmoebaNet. When
processing convolutional layers, the feature map is padded (zero padding is the norm) to
keep input and output shape independent of the kernel size. The output of the convolution-
operation is fed into a batch-normalization to combat the vanishing-gradient problem and a
non-linear activation function to make the layer non-linear.

kernel in the first layer. Convolutional neural networks with a stem (see sec-
tion 3.3.2) sometimes use a single convolutional layer with a large kernel e.g.
7× 7 in case of ResNet (He et al. (2016a)).

As a way to save computational resources and reduce parameters, the
regular convolution is sometimes replaced with a depthwise-seperable con-
volution, where every feature map is processed independently. Efficient-
Net, MobileNetV1, 2 and 3 are examples for this. Other economical con-
ventions involve the decomposition of the convolutional operation into multi-
ple operations. InceptionV4, for instance, emulates a k × k convolution by
applying a 1 × k and a k × 1 convolutional operation in direct sequence.
This reduces the number of parameters from in f ilter× k× k× #out f ilters to
2× #in f ilters× k× #out f ilters (Szegedy et al. (2017)). A similar approach is
used by MobileNetV1,2 and 3 as well as EfficientNet, which decompose k× k
convolutions into a k × k depthwise separable convolution followed directly
by a 1× 1 convolution operation, effectively separating the processing of the
individual filters and the combination of these into separate steps (Howard
et al. (2019, 2017); Sandler et al. (2018); Tan, Le (2019)).
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(a) InceptionV4 (b) MobileNetV3, EfficientNet

Figure 17: To reduce parameters and the number of computations required to process the
convolution, the convolution operation is sometimes decomposed into multiple operations.
This can be achieved by separating the kernel into two 1-dimensional kernels of shape k× 1
and 1× k (a). Another possibility (b) is to filter-wise and spatial processing by decomposing
the convolution into a depth-wise separable convolution and a convolution with 1× 1 kernel.

Batch Normalization (originally proposed by Ioffe, Szegedy (2015)) is used
by many architecture-families such as DenseNet, EfficientNet and ResNet to
combat the vanishing gradient problem and improve predictive performance.
Based on the widespread use of batch normalization, it can be argued that
the use of Batch Normalization has become the de facto standard in modern
architectures (He et al. (2016a); Howard et al. (2019); Real et al. (2019); Szegedy
et al. (2016)).

The activation function induces the non-linearity into the convolutional
layer. While the ReLU function can be considered one of the more popular
choices (used by AlexNet, VGG, ResNet, InceptionV1-3). Attempts to replace
the ReLU to avoid the dying ReLU problem6 were made multiple times by au-
thors like Klambauer et al. (2017) and Ramachandran et al. (2018). Recent ar-
chitectures like the EfficientNet, AmoebaNet and MobileNetV3 have switched

6in certain weight-configurations a ReLU could "die" by being effectively unable to pro-
duce any other output than 0, functionally removing the underlying neuron from the net-
work. This state cannot be recovered from.
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to other non-linearities like the swish activation function by Ramachandran
et al. (2018) and ReLU6 in case of MobileNetV1.

3.3.2 Stem

One of the key advantages of downsampling is the reduction of computa-
tions and memory required to process any consecutive layer after the down-
sampling layer. This property becomes increasingly important for very deep
architectures like ResNet, which was trained with up to 1001 layers by He
et al. (2016a). For this reason, many architectures use additional downsam-
pling layers directly in front of the input to boost the efficiency of the entire
model. By doing so, information from the larger resolution can still be inte-
grated by the first layers, while the network operates on feature map size that
would otherwise require a smaller input resolution.

Figure 18: Stems are a sequence of layers at the input of a neural network that does not
consist of the regular building blocks like the rest of the architecture. The main purpose
of these layers is reducing the height and width of the feature map for consecutive layers.
The first two layers of the depicted stem reduce the size of the feature map by a factor of 4,
making the entire architecture more computationally efficient. Later architectures like ResNet
and DenseNet adopt a simplified version of this stem, which only consists of the first two
layers. This particular stem belongs to the GoogLeNet architecture by Szegedy et al. (2015).

This short sequence of layers is part of the feature extractor, but is not in-
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cluded into the otherwise repetitive building-block structure. (Chollet (2017);
Huang et al. (2017); Xie et al. (2017)). For this reason, we refer to this sub-
sequence as "stem", based on terminology coined by Szegedy et al. (2017).
The first architecture to utilize a stem is GoogLeNet by Szegedy et al. (2015),
depicted in figure 18. A more aggressively downsampling stem is used by
IncpetionV4 by Szegedy et al. (2017), reducing the size of the input resolution
from 299× 299 pixels to 35× 35 in the output of the last stem layer. A more
common version of stem, used by multiple architectures such as AmoebaNet,
ResNet, EfficientNet, NASNet, MobileNetV3 and other ResNet-derivatives,
only consists of the initial 7× 7 convolution followed by the 3× 3 max-pooling
layer (both with stride size 2).

3.3.3 Building Block-Style Feature Extractors

With increasingly deeper architecture, the design of convolutional neural
architectures were further structured a modularized. The idea of modulariza-
tion is to have a common, shared interface of building blocks, that allows for
easy construction and modification of the architecture. Typically, the building
blocks are sequentially stacked into a feed forward architecture. The number
and heterogeneity of building blocks varies strongly from architecture to ar-
chitecture and from architecture family to architecture family. GoogLeNet is
the first architecture that is mostly composed of building-block like structures
(see figure 19) based on a single "Inception-module". Later iterations of the In-
ception architecture like Inception-ResNet, InceptionV3 and InceptionV4 used
multiple different building blocks (Szegedy et al. (2017, 2016)).

It can be argued that recent architectures are mainly iterating on the de-
sign of building blocks. The higher level design (number of building blocks
per stage, number of downsampling layer etc.) has become increasingly static
even across families of architectures like EfficientNet, AmoebaNet and Mo-
bileNetV3, ResNet etc. This is further emphasized by state of the art Neural
Architecture Search algorithms like the ones used for creating AmoebaNet
and NASNet, which kept the higher level structure static while only altering
the internal structure of the building blocks to optimize the models (Real et al.
(2019); Zoph et al. (2018)).

3.3.4 Skip Connections

While deeper networks tend to deliver better predictive performance, the
vanishing gradient problem effectively limits how deep simple sequential con-
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(a) Overall Architecture

(b) Stem (c) Inception Module (d) Aux.
Classifier

(e) Classifier

Figure 19: The GoogLeNet architecture is one of the first architectures to rely on repeated
building-blocks (Inception Modules) used throughout the network.

volutional neural networks can be trained without negative impact on the
predictive performance. Over the years, multiple solutions to the vanishing
gradient problem were proposed, like auxiliary classifier output by Szegedy
et al. (2015) and Batch Normalization by Ioffe, Szegedy (2015) to name only
two examples. The skip connections can be considered the most effective
solution to the vanishing gradient problem. The use of skip connections ul-
timately enabled He et al. (2016a) and He et al. (2016b) to train models with
more than 1,000 layers. Skip connections are a special kind of non-sequential
architecture component used in architectures like ResNet, DenseNet, NAS-
Net, EfficientNet, AmoebaNet, MobileNetV2, MobileNetV3 and InceptionV3

as well as other derivative architectures such as WideResNet or Inception-
ResNet. The basic principle of skip connections is to allow the network to
"skip" parameterized layers by using a secondary path. By doing so, the in-
formation in the forward pass and the gradient in the backward pass can
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effectively jump over subsequences of layers, resolving the vanishing gradi-
ent problem in the process. Another view on skip connections is that they
allow the building blocks to add "deltas" to the existing representation of the
data (He et al. (2016a); Huang et al. (2017)) instead of transforming it entirely.

(a) Residual Block (b) Bottleneck Block

Figure 20: The original implementations of residual connections add the input of the building
block to the pre-activation output of the same block, allowing signal and gradient to skip the
encapsulated layers. The left version is used by ResNet18 and ResNet34. The right version is
used by ResNet50, 101, 152 and 1001.

Over the years, multiple variants of the skip connection have been pro-
posed. One of the earliest designs is the residual connection by He et al.
(2016a). Building blocks using the residual connection are depicted in figure
28. The residual connection adds the input to the pre-activation output of
the final layer of the building block by an element wise addition. A parallel
development to the residual connection is the Highway-Connection by Zilly
et al. (2017), which features 1× 1 convolutions in the skip-connection that act
as "gates" for the information.

A more substantial change to the skip-connection concept is made by
Huang et al. (2017), with the introduction of the "DenseBlock" (figure 21).
A DenseBlock building block consists of a sequence of convolutional layers.
The output of all previous convolutional layers in the DenseBlock is concate-
nated and fed into the current convolutional layer. The idea of the DenseBlock
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Figure 21: A DenseBlock concatenates the output of every previous convolutional layer to the
output of the current convolutional layer in an attempt to minimize the loss of information
inside the DenseBlock.

is to minimize the loss of information that could occur by passing informa-
tion through more layers than necessary. While less popular in classifica-
tion, this concept is highly successful in the related field of object detection,
where the variance of object sizes and regions of interest are generally much
higher (Redmon, Farhadi (2017), Redmon, Farhadi (2018), Lin et al. (2017),
Bochkovskiy et al. (2020), Tan et al. (2020)).

3.3.5 Bottlenecks and Inverted Bottlenecks

The number of filters in a convolutional layer controls how many patterns
a single feature map can extract. For this reason, it makes sense to have
as many filters as possible in each convolutional layer. However, by doing
so the layer’s memory footprints, parameters and required computation are
increased. This makes deeper networks increasingly uneconomical and thus
necessitates dimension reduction.

The pyramidal shape of ResNet, VGG, and other network families dis-
cussed in section 3.2 as well as the usage of a stem described in section 3.3.2
are ways to reduce the overall resource requirements of a convolutional neu-
ral network architecture. A third technique is the use of 1× 1 convolutions,
which can be used to reduce the number of filters. This commonly referred
to as a bottleneck, and we can see an example of this in figure 28 (b), the first
convolutional layer in the building block is reducing the dimensionality by
a factor 4, reducing the computation and memory footprint of the building
block. A second 1 × 1 convolution at the end of the bottleneck is expand-
ing the feature map again. By doing so, the computationally expensive 3× 3
convolution operates with fewer filters, making the building block more eco-
nomical, while the input and output number of filters stays the same.

39



Figure 22: MobileNetV2s inverted residual block follows a narrow-wide-narrow approach
in contrast to ResNets wide-narrow-wide approach, allowing the feature extracting 3 × 3
convolution to detect more patterns by increasing the number of filters. The increase in
computations is counteracted by using a depth-wise-separable convolution.

For this reason, the bottleneck building block was used for deeper architec-
tures like ResNet50, 101, 152, 200 and 1001, while the less economical residual
block in figure 28 (a) is used for the shallower ResNet18 and 34 architectures
(He et al. (2016a), He et al. (2016b), Zagoruyko, Komodakis (2016)). Designs
similar to the bottleneck were used in DenseNet and SequeezeNet (Huang
et al. (2017); Iandola et al. (2016)).

The inverted bottleneck used in MobileNetV2 (see figure 22), MobileNetV3

and EfficientNet (Howard et al. (2019); Sandler et al. (2018); Tan, Le (2019))
inversely trades computational performance for predictive performance by
expanding the number of filters inside a building block and compressing it
in the end. By doing so, the number of patterns the 3× 3 convolution inside
the block can detect is increased without increasing the number of output
filters. By using a depth-wise separable 3 × 3 convolution, the increase in
computational resource requirements is mitigated.

Another common point where bottlenecks are applied is before and after
junctions of a building block with multiple pathways. Because pathways are
unified by a concatenation operation, the number of filters resulting from
the concatenation of various pathways can become too large, increasing the
memory and computational footprint of all consecutive layers. This can be
counteracted by a 1× 1 convolution, which reduces the number of filters to
a lower, more manageable number. Examples of this can be seen in figure
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Figure 23: The stem of InceptionV4 uses 1× 1 convolutions to compress the feature map in
both pathways in order to reduce the number of filters after concatenation.

21 and figure 23. InceptionV3, Inception-ResNet and SqueezeNet are other
noteworthy architectures that make use of this design.

3.3.6 Attention Mechanisms

Attention mechanisms are an additional weighting mechanism that are ap-
plied on the output of a layer in some form of multiplication operation. There-
fore, attention mechanisms can be interpreted as layers with weights that are
dynamically computed from the input of the model. The implementations of
attention mechanisms can be subdivided into two subgroups. The first being
the addon-type attention mechanisms, the second type the transformer-based
attention mechanism. Addon-type attention mechanisms such as squeeze-
and-excitation-modules by Iandola et al. (2016), spatial-attention by Woo et al.
(2018) and CBAM by Woo et al. (2018) are added on to preexisting build-
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ing blocks. Thus, addon-type attention modules are not considered stand-
alone components. Addon-type attention mechanisms have seen application
in state-of-the-art models like pr existing and SENet and EfficientNet (Howard
et al. (2019); Hu et al. (2018); Tan, Le (2019)). According to Hu et al. (2018),
Tan, Le (2019), Howard et al. (2019) and Sandler et al. (2018) the performance
of the model is reliably increased while the efficiency is slightly degraded (>
3% more computation required according to Hu et al. (2018)). These attention
mechanisms are commonly applied after the final layer of a building block,
where they enhance the feature map by multiplying the attention weights to
the features.

Transformer-type attention was originally proposed by Vaswani et al. (2017)
and can be seen as full building blocks that are able to replace convolutional
layers within a neural network structure as a core component of the archi-
tecture. The latter has been attempted successfully first by Dosovitskiy et al.
(2021). However, as of the writing of this work transformer-based systems re-
quire a larger model and substantially more training data to outperform con-
volutional neural networks (Dosovitskiy et al. (2021); Heo et al. (2021); Tou-
vron et al. (2021b); Zhou et al. (2021)). The training methodology also diverges
from conventional classifier-systems by requiring a transformer-specific pre-
training strategy followed by a fine-tuning step (Caron et al. (2021); Dosovit-
skiy et al. (2021)). Transformer-based types of attention for computer vision
are currently very active field of research with currently no established stan-
dard or convention of implementation in the field of computer vision (Chu
et al. (2021); Graham et al. (2021); Touvron et al. (2021a,b); Zhou et al. (2021)).
For these reasons and since this work discusses convolutional neural net-
works, we focus in this work on the addon-type attention mechanisms like
filter (also known as squeeze-and-excitation modules and spatial-attention),
which have been used in multiple established classification architectures in
recent years like MobileNetV2, MobileNetV3, SENet, AmoebaNet and Effi-
cientNet.

The filter-attention mechanism is depicted in figure 24 and effectively mul-
tiplies a single weight scalar to each feature map, that was generated by a
quasi-autoencoder from the same feature map. A quasi-autoencoder is ef-
fectively composed of two 1× 1 convolutions, that process a globally pooled
version of the feature map. The first convolution is reducing the number of fil-
ters (squeeze), while the second one is expanding the number of filters again
the original amount. By doing so, the information is put through a bottle-
neck, forcing the squeeze-and-excitation module to compress the information

42



Figure 24: An illustration of a squeeze-and-excitation module. The filters of a feature map are
weighted against each other. The weights are generated dynamically from the feature map by
a quasi-autoencoder sub-network, that produces a single weight for every filter. The weight
is applied by filter-wise multiplication of the weight-vector with the feature map tensor

contained in the pooled vector. The resulting weights for the filters are scaled
by a softmax operation and multiplied to their respective filters (excitation).

Figure 25: This diagram illustrates the functionality of spatial attention. Spatial attention
weights the positions of the feature map against each other, highlighting important regions
on the image in the process. First, the filters are reduced to two filters by concatenating the
result of 2 pooling layers with 1 × 1-kernels. This is followed a 7 × 7 convolution with a
softmax activation function.This layer reduces the feature map to a single filter. The resulting
map of attention weights is then multiplied element-wise to each filter of the original feature
map.

A very similar form of attention used in convolutional neural networks is
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spatial attention, introduced by Woo et al. (2018). A spatial attention mod-
ule uses 1 × 1 pooling layers and a convolution of the same kernel size to
reduce the stack of filters to a single feature map (see figure 25). This weight-
feature-map is then multiplied element-wise to each of the original filters.
The softmax function in both attention-implementations is crucial for forcing
the model to distribute the attention effectively, since the attention-weights
have to sum up to 1. Depending on the attention mechanism this induces an
implicit sense of locality for the object of interest (spatial attention) or which
combination of extracted features is most significant (squeeze-and-excitation)
for categorization.

Figure 26: CBAM is a combination of spatial and filter wise attention. The above illustration
depicts a residual block by He et al. (2016a) with CBAM added into the building block.
CBAM combines spatial attention and filter attention (squeeze-and-excitation modules) for
more fine-grained combined attention that considers all three tensor axis of the feature map.

It is also possible to directly link spatial and squeeze-and-excitation mod-
ules to combine a dynamical weighting for features and location (see figure
26), this combined attention is also referred to as CBAM and was introduced
by Woo et al. (2018). While not actively used by any high scoring ImageNet-
classifier as of the writing of this paper, CBAM is used in object detection
system like YoloV4 (Bochkovskiy et al. (2020)), where the spatial attention
due to greater variance in object size is more important. The effect of these
different attention mechanisms is visualized in figure 27 using the Grad-CAM
class activation map by Selvaraju et al. (2017). Based on this visualization, we
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can see that the class activations are sharper, when the attention mechanisms
are used inside the networks structure.

Figure 27: Grad-CAM class activation on ImageNet images from three ResNet50 models. The
first model is the baseline ResNet50, the second (ResNet50+SE) uses squeeze-and-excitation
modules for filter attention and the third model using filter and spatial attention (CBAM). We
see that attention mechanisms are sharpening the contours of the class activation’s, bringing
them closer to the object of interest.

Self-attention mechanisms more closely related to the attention mecha-
nism presented by Vaswani et al. (2017) are also transferred to computer vi-
sion tasks. In implementations like the self-attention convolutional layer pre-
sented by Ramachandran et al. (2019) are hybridized convolutional add-ins
that also use a self attention component. Purely attention-based image classi-
fication has been successfully attempted by Dosovitskiy et al. (2021) too, who
build a fully attention-based image classifier. Ramachandran et al. (2019),
Dosovitskiy et al. (2021), Touvron et al. (2021b) and Zhou et al. (2021) demon-
strate that purely transformer-based models can achieve state-of-the-art per-
formance on ImageNet. However, there are currently serious drawbacks to
these approaches. For instance, ViT by Dosovitskiy et al. (2021) requires 300

million additional weakly labeled training images to outperform state-of-the-
art convolutional classifiers (ImageNet has 1 million training images) and the
attention-based ResNet derivatives of Ramachandran et al. (2019) are only
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outperforming ResNet models when all kernel-sizes of ResNet are increased
to 7× 7, which is an architectural choice that is not beneficial in any way to
the predictive performance or efficiency of ResNet.

(a) Transformer Encoder

(b) The overall ViT architecture

Figure 28: It is also possible to create attention-based image classifiers based on transformers
(a). The depicted ViT model achieves state-of-the-art performance on ImageNet without
requiring convolutional layers. The transformer stack (b) is processing regional embeddings
together with visual embeddings to obtain a prediction. This technology can be considered
still in the early phases of development, since they require expensive pre-training with 300

times more data and are more expensive to train than convolutional neural networks with
similar performance (Dosovitskiy et al. (2021)).
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For this reason, these models can be currently considered mostly in the
proof of concept stage for classification tasks in computer vision and are
therefore not further considered in this work. However, we think it is impor-
tant to mention these novel approaches, since they demonstrate that purely
convolutional neural networks are not necessarily the only possible solution
for achieving the state-of-the-art performance on benchmark datasets in com-
puter vision tasks.
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4 Analyzing Convolutional Neural Networks

The primary goal of neural architecture design is to maximize the predic-
tive performance and efficiency for a given dataset. Chapter 3 established
that the current design of neural architectures is driven by conventions and
the maximization of abstract metrics like predictive performance and various
metrics of efficiency. In effect, this leads to a comparative and thus trial and
error-driven mode of development. In order to move to a more informed
mode of development additional insights and thus a more elaborate analysis
of the model is required. For this reason, we will discuss related work on
analyzing convolutional neural architectures in this chapter.

We define an analysis technique as a method that provides insights into
the trained model. Analysis techniques are different from metrics, which were
discussed in section 2.5 in multiple ways: For one, metrics are expected to be
agnostic towards the implementation of the model. In other words, metrics
like accuracy always treat a model as a black box system. Analysis techniques
can be model specific and can thus provide more detailed insights. Addition-
ally, these techniques are not bound to produce scalar values. Instead, a tool
for analyzing a trained model can create more complex output that may re-
quire extensive evaluation on its own e.g. GradCam by Selvaraju et al. (2017),
which produces a class activation map for every combination of images in the
dataset and thus requires through inspection. An example of this can be seen
in figure 27.

The surrounding literature on this topic that is not directly involved in
our work is discussed in section 4.1 to provide additional context. We will
then move on to introduce the concept of the feature space and how it is
analyzed in the literature. Next, we will elaborate logistic regression probes
in section 4.3, which is a concrete tool for analyzing the inference process,
that we use in this work. Finally, we will discuss the concept of receptive
fields and introduce the arithmetic used to compute the receptive fields of
convolutional neural network layers.

4.1 Related Work

Neural Networks in general are non-linear models with millions of param-
eters (Dosovitskiy et al. (2021), Huang et al. (2019)). This makes an exhaustive
yet easily understandable explanation of the process leading from input to
prediction (inference process) impossible. To allow for an explanation of the
inference process to be useful, methods need to produce a simplified view
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that can still provide interesting insights. Generally, techniques for analyzing
neural networks can have different levels of abstraction on model and dataset.
For instance, the error surface visualization by Li et al. (2018b) can be consid-
ered very abstract, since the model is seen primarily as a "bag of parameters"
with a state interpreted as a discrete position on an error surface created from
the test data. Such an abstract view can still provide interesting insights into
characteristics of the trained model.

(a) ResNet54 (b) ResNet54

No skip connections

(c) VGG16 (d) VGG16 with Dropout

Figure 29: Rendering of the error surfaces from various models around the converged min-
imum can be used to gain insights into the effects of architectural properties. For instance,
the surface-region of ResNet54 (a) is much rougher when the networks skip connections are
disabled (b). The minimum of VGG16 (d) is also much sharper when no dropout for reg-
ularization is used (c) (sharp minima are hypothesized to generalize worse by authors like
Keskar et al. (2017b)).

For example, in figure 29 we can see how certain architectural components
like Dropout and Skip-Connections (see section 3.3.4) influence the error sur-
face and thus the quality of the model. Other high-level approaches for an-
alyzing the error surface proposed by Li et al. (2018c), Wang et al. (2018),
Keskar et al. (2017b) and Keskar et al. (2017a). Keskar et al. (2017b) also
demonstrate that the smoothness of converged optima play a significant role
in the generalization, since they are hypothesized to be more resistant towards
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perturbations compared to sharp optima. To estimate the smoothness of con-
verged optima Novak et al. (2018) proposed a metric for estimating the local
roughness of the error surface.

On the other end of the abstraction-spectrum information can be extracted
in a very fine-grained and detailed manner. Class-activation maps are such
a fine-grained technique, since they allow attributing activation of certain
classes of the model to regions of individual input images (see figure 30 for
an example). This effectively allows the practitioner to understand which
features the model has learned to be discriminatory for certain classes and
thus get a more profound understanding of the model quality. Various tech-
niques to achieve this have been proposed over the years. The occlusion-based
technique by Zeiler, Fergus (2014a) can be seen as one of the earliest success-
ful attempts of this type of analysis tool. The Cam-Family class-activation-
visualization techniques by Zhou et al. (2015), Selvaraju et al. (2017) and Chat-
topadhay et al. (2018) can be considered more advanced back-propagation
based variants of the same principle.

Figure 30: Class activation maps like the here depicted GradCAM++ algorithm by Chat-
topadhay et al. (2018) provide insight into the inference process by highlighting the regions
that activate specific classes.

Analysis techniques also exist on a spectrum between model centric and
data-centric. The aforementioned heatmap-visualizations can be considered
data-centric, since the model is reduced to a heatmap highlighting the signifi-
cant regions on a specific image. Therefore, the level of detail in the analysis is
high regarding the properties of the data and low regarding the properties of
the model. A model centric counterpoint to this is activation-maximization, a
technique proposed by Erhan et al. (2009). Activation maximization visualizes
the features extracted by a specific filter of a feature map. This is achieved by
maximizing the output of the unit producing the filter using an artificial input
image generated by gradient ascent (see figure 31). While more abstract in its
visualization than class activation maps, activation maximization is purely
dependent on the trained model and allows the analysis of every individual
unit of the model.
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Randomly selected filters from conv1

filter 6 filter 19 filter 50 filter 4

Randomly selected filters from conv8

filter 122 filter 235 filter 170 filter 85

Randomly selected filters from conv14

filter 436 filter 247 filter 437 filter 508

Figure 31: By maximizing the activation value of a specific filter-unit in a convolutional neural
network, we can visualize patterns specific filters are very sensitive towards. Based on these
visualizations from an ImageNet-trained VGG19, we can see how the extracted patterns go
from structurally small and simple (a) to increasingly complex patterns (b, c) depending on
the location of the layer in the network.

By doing so, it is possible to observe redundancies in the learned features.
This was used by authors like Garg et al. (2020) and Chakraborty et al. (2019)
to motivate and develop pruning techniques to reduce the number of redun-
dant filters in neural architectures.

4.2 Feature Space Analysis

In this work, we are interested in analysis techniques that can be used
to diagnose inefficiencies and other shortcoming in convolutional neural net-
work architectures in a realistic application scenarios. Realistic application
scenarios may involve visual domains and tasks that the model was not orig-
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inally developed for. The mamography-based tumor-classifiers by Rakhlin
et al. (2018), Wu et al. (2020) and Shen et al. (2021) exemplify that substan-
tial changes to architectures are sometimes required to optimize predictive
performance and efficiency if the visual domain and task diverges strongly
from the task the model was originally developed for. Therefore, we want
to avoid relying on strongly data or model-centric analysis techniques, since
we suspect that these are unlikely to reflect the relationship of architecture
and dataset in a way that allows the practitioner to make informed decisions
on neural architecture design. Concerning the level of abstraction, we are in-
terested in techniques that can reflect the inner processes of the model with
sufficiently high-resolution to attribute inefficiencies on specific components
in the structure of the neural network. Therefore, we decide to investigate
the feature spaces of convolutional neural network layers. The feature space
can be considered the vector space of a layer’s output. By analyzing the fea-
ture spaces, we can analyze the network on a layer by layer basis. Layers of
neural networks are often regarded as the atomic component of convolutional
neural architecture design, we therefore assume this to be an ideal resolution
regarding the analysis of the model structure for our purposes. Since we are
analyzing the output space of neural network layers and therefore data in an
intermediate state of processing (latent representation), techniques that ana-
lyze the feature space can provide insights about the neural architecture, the
data and their interaction.

Thus, a significant part of this work involves the analysis of feature spaces
in hidden layers and developing a layer-based metric for this purpose. How-
ever, this idea and the methods used in this work are not entirely new. For
instance, Montavon et al. (2010) uses principal component analysis based on
RBF-Kernels to analyze how the solutions evolve during training. By doing
this, the authors find two important properties that will be expanded on in
this paper. First, the data inside the feature space exists in small subspaces,
and these subspaces change in dimensionality from layer to layer. Second,
CNN build their solution bottom-up when trained on a task, which is differ-
ent from MLPs that lack this inductive bias caused by the convolution oper-
ation. Similar observations were made by Garg et al. (2020) that were later
expanded on by Chakraborty et al. (2019), which make use of this property to
prune and fine tune convolutional neural network architectures.

Unnecessary layers are identified by a PCA-based heuristic. The number
of eigendirections that span the sub-space in which the data resides are esti-
mated. Layers that break the monotony of increasing number of eigendirec-
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(a) The Intrinsic Dimensionality is computed by number of eigendirections
required for explaining 99.99% of the total variance. The filters in each layer
will be reduced to the intrinsic dimensionality.

Layers
0

100

200

300

400

500

D
im

en
si

on
al

ity

Intrinsic Dimensionality
Intrinsic Dim. (Pruned Layers)
Filters (Feature Space Dim.)

(b) Layers that break the monotonic increase of intrinsic dimensionality are
removed. The network is then retrained

Figure 32: Principal Component Analysis (PCA) on the outputs of neural network layers
can be used for optimizing neural architectures for higher computational efficiency. The
figures above illustrate the two steps of PCA-based pruning by Garg et al. (2020). Significant
eigendirections of every layer’s output are computed up to a threshold of 99.99% explained
variance (a), the obtained value will also be the number of filters of the layer in the optimized
architecture. Layers that do not increase the dimensionality of the data from the previous
layer are removed in the following pruning step (b). The reduced network is then retrained
to obtain the more efficient model.

tions from layer by layer are removed. The pruned network is then retrained,
resulting in increased efficiency by only minor losses in performance accord-
ing to Garg et al. (2020).

An example of this can be seen in figure 32. This method is only appli-
cable on sequential architectures without any kind of skip-connections. This
method was later expanded by Chakraborty et al. (2019) to also be usable in
embedded scenarios and networks with skip-connection. These techniques
are very significant to our work, since also one of our primary analysis tech-
niques (saturation), is heavily based on PCA and uses similar computational
techniques for computing eigendirections. We also gain more insight on how
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the observed patterns of eigendirections like in figure 32 (b) emerge.
Another noteworthy technique is SVCCA by Raghu et al. (2017). In con-

trast to previously mentioned techniques. SVCCA, using singular vector de-
composition and canonical correlation to analyze the similarities in feature
activation between different networks and different sets of data. By doing
so, the authors find that early layers share more similarities than later layers,
even if the neural architectures are very different.

4.3 Logistic Regression Probes

Analyzing a network layer by layer was also done by Alain, Bengio (2017)
using "logistic regression probes". We elaborate on their work in greater de-
tail, since we modify and heavily utilize logistic regression probes in this
work. The idea behind logistic regression probes is that the output of any
intermediate layer between input and output of the network can be viewed
as an intermediate solution. We established in section 3.2 that the primary
purpose of the convolutional layers in the feature extractor is to transform
the data from layer to layer into a linear separable representation, so that
the (linear) softmax layer can solve the classification problem by minimizing
cross-entropy. This also means that the output of every intermediate layer
should become increasingly linear separable if the layer actively contributes
to the quality of the solution. To measure this, the authors train logistic re-
gression using the output of a specific layer for each probe as input and using
the labels of the task as ground truth. Since logistic regressions are linear
(which makes their training a convex optimization problem) and the variants
used by Alain, Bengio (2017) minimize the cross entropy loss, we can com-
pare the predictive performance of the probes to the predictive performance
of the model and other probes to visualize the evolution of the intermediate
solutions during the forward pass.

In figure 33 we can see a visualization of this evolution. A VGG16 model is
trained on the Cifar10 dataset, and probes are trained on the output of every
layer. We observe that the validation accuracy of the probes is monotonically
increasing from layer to layer, indicating that the qualitative inference process
is distributed among the entire network.

As a proof of concept that probe performance can be used to detect certain
pathological behaviors, the authors create a simple MNIST-experiment. An
overparameterized 128-layer multilayer perceptron with 128 units per layer
and ReLU activation-functions is trained on MNIST. The model has a sin-
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Figure 33: The probe performance at each layer of VGG16 trained on Cifar10. Logistic Re-
gression Probes allow the practitioner to observe the evolution of the intermediate solution
quality from layer to layer. The performance is increasing layer by layer, indicating that the
problem is solved incrementally and that the inference process is evenly distributed among
layers.

.

gle skip connection that connect the first and the 64th layer of the network,
effectively allowing the signal to skip 50% of the network. The key idea be-
hind this setup is to provoke an identity mapping on the layers encapsulated
by the skip connection. This behavior was first hypothesized by He et al.
(2016a). In theory, networks with skip-connections should be able to skip lay-
ers encapsulated by skip connections by producing an output 0, effectively
learning an identity mapping. While this exact behavior was not observed by
the authors, they could still observe that skip connections are utilized by the
model to skip unneeded layers. To illustrate, we reproduce this experiment
using a slightly modified architecture that connects the first and the 129th
layers instead with a sequence of 8 layers after the skip connection has been
closed (see figure 34 (a)). This minor alteration makes the architecture easier
to train due to a reduced vanishing gradient problem, while achieving similar
results to the original experiment by Alain, Bengio (2017). In figure 34 (b)
the probe performances in order of the forward pass are depicted. We can
see that the section encapsulated by the skip connection is decaying in pre-
dictive performance until reaching chance-level. When the skip connection is
added back, the predictive performance recovers instantaneously, indicating
that the previous layers were "skipped". While the network did not learn an
identity mapping, the network learned to ignore layers by making them pro-
duce a latent representation that can be added to the feature vector of the skip
connections without obscuring or destroying information. This is important
for our work, since we will observe the behavior on multiple occasions when
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(a) The multi-layer perceptron architecture used for the
reproduction of the experiment on skip connections by
Alain, Bengio (2017). The architecture deviates slightly
from the original by Alain, Bengio (2017) to make the
model easier to train.
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(b) The performance of the logistic regression probes in the order of the forward pass. Note
the stark difference in behavior between the first part (encapsulated by the skip connection)
and the second part of the network.

Figure 34: The images show the basic neural architecture with a skip connection (a) and
the probe performances of each layer (b). The setup is designed to provoke the network
to "skip" the 128 layers by learning some identity-mapping analog. By observing the probe
performances, this behavior can be observed. After the initial layer, the performance degrades
until reaching chance level. The probe performances recover as soon as the skip connection is
added to the layers again. We will observe similar behavior on convolutional neural networks
over the course of this work.

evaluating probes on ResNet-like models. This proof of concept is also inter-
esting from a conceptual level, since a large part of this thesis is dedicated
to finding pathological patterns that allow to detect inefficiencies in neural
networks without the direct comparison to other models. The behavior of the
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probe performances in figure 34 (b) indicate that pathological inefficiencies
do exist under certain circumstances and can be detected with the right anal-
ysis technique. In fact, we observe two types of inefficiencies in the probes of
this experiment. First, the skipping of the encapsulated layers discussed pre-
viously. Second, the final layers after the skip connection are not improving
the probe performance and thus not enhance the quality of the intermediate
solution. Thus, these layers can be considered unproductive as well, since
their positive impact on the quality of the prediction is negligible.

4.4 The Receptive Field

The receptive field is the area on an image that influences the output of a
convolution operation.

Figure 35: A 1-dimensional example of receptive field expansion in a convolutional neural
network. Each layer has a kernel size of 3, resulting in an expansion of the receptive field
from layer to layer.

.

Figure 36: A 1-dimensional example of receptive field expansion with a convolutional down-
sampling layer (Layer 1). The increased step size from kernel position to kernel position
results in less mutual inputs between two adjacent feature map positions in the output of
Layer 1, resulting in an accelerated growth of the receptive field for consecutive layers and a
reduction in feature map size.

.
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For this work, the size of the receptive field (described as a scalar7) is
important, since it reflects a spatial upper bound of visual patterns detectable
by the respective layer.

For sequential convolutional neural networks (no multiple pathways dur-
ing the forward pass) the receptive field size can be computed analytically. We
refer to the receptive field r of the lth layer of the sequential network structure
as rl (with r0 = 1, which is the "receptive field" of the input). For all layers
l > 0 in the convolutional part of a sequential network, the receptive field can
be computed with the following formula:

rl = rl−1 + ((kl − 1)
l−1

∏
i=0

si) (9)

where rl−1 is the receptive field of the previous layer, kl refers to the ker-
nel size of the layer l (with potential dilation already accounted for) and si the
stride size of the layer i. The receptive field increases with every convolutional
layer with a stride or kernel size > 1 (see figure 35). Strides also have a mul-
tiplicative effect the growth rate of consecutive layers rl+n, since the feature
map is downsampled (see figures 36).

For networks with multiple pathways and skip-connections, it is not pos-
sible to precisely compute the receptive field rl, since one layer may receive
input from multiple layers with different receptive field sizes rl−1,i existing in
the input of the layer l. However, in most cases we are not interested in the
precise receptive field sizes present, rather we are interested in the receptive
field size as an upper bound. In essence, we view the receptive field size rl as
the largest possible spatial extension of a feature that is still detectable by the
respective layer. In this situation, we can simplify the receptive field compu-
tation by only considering the sequence of layers from the input to the layer l
with the largest receptive field8:

rl−1 = max(rl−1,0, rl−1,1, ..., rl−1,n)

This allows us to compute the receptive field sizes for architectures like ResNet-
models by simply ignoring the skip connections.

7Technically a 2-tuple, however since square kernels are the norm we can make this sim-
plification.

8This computation also makes the assumption that the growth rate of the receptive field
in all pathways is equal (essentially the same downsampling occur on each pathway). While
it is possible to build an architecture where this is not the case, no classifier known to the
authors actually has a property like this.
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4.4.1 Minimum and Maximum Receptive Field

In our later experiments, we will see that the receptive field as an upper
bound is insufficient for predicting unproductive layers. In this case, we have
to view the information present in an image as being composed of multiple
receptive field sizes in an interval (rl,min, rl,max), where rl,min is the smallest
possible receptive field size present in the layer l and rl,max the largest.

(a) Sequence of layers used to compute rl,min

(b) Sequence of layers used to compute rl,max

Figure 37: The information in a given layer (blue) in a non-sequential neural architecture
is based on multiple receptive fields with sizes. These receptive field sizes are bound in an
interval (rl,min, rl,max). It is possible to compute rl,min and rl,max, by calculating the receptive
field size of the sequences (green) with the smallest and largest receptive field size leading
from the input to the layer l (blue). These figures were previously published in Richter et al.
(2021b).

Simply speaking, every possible path from the input to the layer l has a
receptive field size rl,i. Since feed-forward neural networks are non-recursive,
the number of paths in this kind of network is always finite. Therefore, in
a general case, rl,min and rl,max can be obtained by simply computing the
receptive field sizes rl,i of every possible path from the input to layer l.

The upper and lower bound can then simply be obtained by picking the
minimum and maximum values of these paths respectively:

rl,min = min(rl,0, rl,1, ..., rl,i)

rl,max = max(rl,0, rl,1, ..., rl,i)
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For a more visual example, we refer to a hypothetical multi-path architec-
ture, which is depicted in figure 37. To compute the minimum and maximum
receptive field of the final 3× 3-convolutional layer, we compute the recep-
tive field of the sequence of layers highlighted in green. We basically "cut"
all layers from the network, except for a single sequence of layers. Since we
can compute the receptive field for a sequence of layers analytically, we can
compute the receptive field for this particular path. By picking the path with
the largest possible receptive field size (figure 37 (a)) and the smallest possible
path (figure 37 (b)) we can obtain rl,min and rl,max respectively, with l being the
layer highlighted in blue. Since the most popular CNN architectures follow a
building block style pattern similar to the depicted hypothetical architecture,
it is generally not necessary to compute the receptive field sizes of all paths.

These computations are still consistent with the computation of rl dis-
cussed earlier. In a sequential architecture, always exactly one path exists
leading from the input to a layer l. In this case rl = rl,min = rl,max.

Networks with skip connections are a special case of the multi-path ar-
chitectures, since they can be considered multi-path-architectures even when
technically only containing a single sequence of convolutional layers like
ResNet-style networks (He et al. (2016a)). The skip-connections of these ar-
chitectures open (layer-less) paths between otherwise non-consecutive layers.
These paths do not expand the receptive field. Therefore, the information
reaching a layer after a skip-connection can originate from multiple pathways.
Effectively, information based on lower receptive field sizes can "skip" layers,
making the architecture non-sequential as a result. Thus, rl,max ≥ rl,min for the
layers in architectures with skip-connections.
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5 Problem Description

Before we move on to the empirical part of this work, we briefly elabo-
rate on the goals we want to achieve through the following experiments. The
main contributions can be summarized under two primary goals. First, de-
veloping methods that allow analyzing neural networks that can be used to
guide neural architecture design. These methods need to be computationally
lightweight to allow for quantitative studies on large sets of models and a
variety of datasets. We elaborate further on the design goal for this analysis
tool in section 5.1. The second goal is presented in section 5.2 of this work.
This second objective is to use these aforementioned methods to build an un-
derstanding of architectural components and their influence on the inference
process. This understanding should be able to reliably aid developers and sci-
entists to diagnose and resolve inefficiencies in neural network architectures
during development.

5.1 Developing a Practical Technique for Analyzing Convolu-

tional Neural Networks

The first major part of this work focuses on developing a methodology for
analyzing convolutional neural networks that is useable by practitioners and
researchers alike. Techniques like SVCCA by Raghu et al. (2017) and logistic
regression probes by Alain, Bengio (2017) have demonstrated that interest-
ing insights can be gained from analyzing the output of intermediate layers.
However, these and many other techniques like the metrics for error surface
estimation by Keskar et al. (2017b) and Novak et al. (2018) are computation-
ally very demanding. This is particularly problematic since the techniques
are generally more CPU-intensive tasks, for they do not involve retraining the
model, resulting in different hardware setups being optimal for model train-
ing and analysis. An expensive analysis after training also at least partially
negates the benefits of analyzing the model and making informed decisions,
since trial-and-error can be more practical in such circumstances. A practical
tool for analysis should therefore allow gaining insights quickly, ideally life
during the model training, so that decisions can be made as early as possible
and with little computational overhead.

Another important property of a practically feasible method for analyzing
the properties of trained models are the type of insights gained from the anal-
ysis. Methods like GradCAM by Selvaraju et al. (2017) allow to fairly quickly
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visualize the inference decision by highlighting the responsible regions on a
heatmap, but knowledge about the individual decision made by the classifier
does not easily trace back directly to potential improvements or solutions to
resolve a diagnosed problem.

In short, a practical methodology should fulfill the following requirements:

• The analysis method should be quick to compute with little overhead
(ideally life during training) as an automatized process.

• The results should be easy to interpret and visualize by themselves, not
requiring comparative evaluation and complex post-processing.

• The analysis should provide insights that allow the diagnosis of ineffi-
ciencies and performance bottlenecks within the neural architecture.

• The results of the analysis should enable the user to resolve those ineffi-
ciencies in an informed manner without requiring trial and error.

5.2 Diagnosing and Resolving Architectural Inefficiencies in

Convolutional Neural Networks

In order for the methodology described in the previous section to be use-
ful, experimental evidence regarding inefficiencies and performance bottle-
necks needs to be gathered systematically and evaluated. Furthermore, it is
necessary to acquire an understanding on how properties of the architecture
like the input resolution, number of layers, the use of multiple pathways and
skip connections (to name only a few) affect how the model processes infor-
mation. Empirical studies of this kind were done on smaller scales by multiple
authors. Li et al. (2018c) for instance showed the effects of DenseBlocks and
skip-connections on the error surface. In other cases like the works of Howard
et al. (2019), Tan, Le (2019) and Woo et al. (2018) smaller studies on the pre-
sented architecture innovations are conducted. However, these experiments
on the impact of an architectural component act primarily as demonstrators
to show the functionality of the proposed architecture or analysis technique.
There is currently no publication known to the author that attempts to em-
pirically analyze and characterize the properties of convolutional neural ar-
chitectures, such that design decisions with a high chance of success can be
deducted. In short our goals are:

• Acquire an understanding for the relation of neuro-architectures and
information processing during the forward pass.
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• Derive reliable diagnostics for inefficiencies in convolutional neural net-
works.

• Propose reliable solution strategies for resolving the inefficiencies found
in the neuro-architectures.

63



6 Open-Source Software and Technical Foundation

In this section, we will briefly discuss the technical foundation and basic
methodology that was used to conduct all experiments of this work. This the-
sis is based on two open-source frameworks, that were developed alongside
this project. We will first present Delve, an experiment control system that
allows fast and easy analysis and logging during model training. We will
briefly introduce the basic functionality, summarize the feature set of Delve,
and provide a link to the repository.

The second open-source framework is PHD-Lab, a framework for training
and evaluating deep neural networks. PHD-Lab is primarily used to auto-
mate the experiments and basic analysis as well as execute them reproducible,
hardware independent and crash resistant. We will introduce the software ar-
chitecture of PHD-Lab, elaborate on the basic functionality and the logging
behavior. We will further discuss how experiments are logged, reproducible
and resistant towards hardware and software-based crashes.

6.1 Delve: Framework for Experiment Control

Delve contains most of the basic analysis tools developed, presented and
used in this work. The module also contains an experiment control system
that allows logging and persisting metrics and more general information gath-
ered during an experiment. The basic software-architecture of Delve and
the initially releases were developed as part of the Master Thesis by Shenk
(2018). Since then, the architecture and functionality of Delve have been
heavily modified. The feature set presented in this work was developed as
part of the works of Shenk et al. (2019) Richter et al. (2021c), Richter et al.
(2021a) and Richter et al. (2021b). The module is compatible with Python
3.6 and higher. It is currently published on PyPi 9 and is open sourced un-
der https://github.com/delve-team/delve. The system is compatible with
PyTorch releases 0.8.0 and later. The open-source library is also separately
published in Shenk et al. (2021).

6.1.1 Overview

Delve has three primary features:

1. Computing layer-specific information based on the covariance matrix of
the layer’s output.

9https://pypi.org/project/delve/
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2. Basic logging functionality for persisting the aforementioned informa-
tion as well as additional externally computed information regarding
the experiment like metrics, training time etc.

3. Automated basic analysis to enable life insights during training.

The software architecture is depicted in figure 38. All the aforementioned
features are bundled in a monolithic object called the "Tracker", which func-
tions as a logger after initialization. It is the only instantiated object of the
Delve-framework that the rest of the program interacts with during the ex-
periment. Delve considers an experiment, a program that conducts at least a
single training or inference step using a single neural architecture.

Figure 38: The illustration depicts the general software architecture of Delve. From a user
perspective, Delve is represented by an instance of a monolithic Tracker-object. This object can
be used for calculating layer-based information about the PyTorch-model as well as logging
experimental data. The strategy for recording and persisting the information is internally
handled by an implementation of the Writer-Interface. Covariance-Approximation and ex-
tracting other information directly from the PyTorch-model is done using the forward-hook
interface of PyTorch and is organized in a Key-Value mapping.

Internally, the Tracker-Object fulfills three different purposes. First, find-
ing and registering layers that can be recorded. For these layers, the covari-
ance matrix will be approximated using the forward-hook interface of Py-
Torch. A key-value Hash-Map is used for the registration process, mapping
an automatically generated and human-readable name of the layer to the ap-
proximated covariance matrix. Second, managing covariance matrices and
updating them as soon as novel data passes through the layers, this involves
also preprocessing the data if the type of the layer requires it. Third, general
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logging, analysis and persistence, summarized as experiment control. This is
handled by the Writer-object, which acts as an abstract interface to the Tracker
to allow variability regarding the format and type of logged information as
well as the exact nature of the persistence strategy (databases, hard-drive fold-
ers with files, TensorBoard etc.).

6.1.2 Experiment Control and Integration in the Training Loop

We will briefly discuss the intended usage of Delve and how it is meant to
be integrated into the training process. The flow-diagram illustrating this can
be seen in figure 39.

Figure 39: Typical program loop demonstrating the intended interaction between a model
training and Delve experimental logging. The interaction between Delve and the training of
the model is kept minimal to allow for easy integration and usability.

.

First, the Tracker is instantiated. This will configure the logging process.
By doing this, the model-to-be-trained is registered and hooks are attached
to recordable layers. Whether a layer is recordable or not is defined by an
internal whitelist. As of the writing of this thesis, every convolutional layer,
LSTM-cell and densely connected layers are defined as being recordable. This
list is restrictive because non-parameterized layers like pooling and dropout-
layers are generally not adding interesting information to the metrics com-
puted from the covariance matrices. Therefore, to reduce the number of com-
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puted covariance matrices and the overall overhead, the list is restricted to the
most common parameterized layers in neural networks.

During the training, the hooks attached to the layers are recording the data
and update the covariance matrices automatically. This process is explained
in detail in section 6.1.3 and is fully automatic, requiring no interaction with
the Tracker-instance.

After the training epoch has concluded, the metrics computed during
training (for example accuracy, training time in seconds etc.) are logged. The
covariance-matrices are used to compute the layer-wise metrics like saturation
(see section 8.1). These metrics are automatically logged, and the covariance
matrices are automatically reset to allow recomputing the covariance matrices
on the validation set. The entire process is repeated on the validation set, con-
cluded by another reset of the covariance matrices anticipating the next epoch
of training. Finally, all logged information is saved and the cycle repeats for
the next epoch until training has concluded. At this stage, automatic analysis
is conducted by the Writer-Instance as part of the saving process. After train-
ing has concluded, the Tracker-Instance is closed. This is necessary to signal
the Writer-object to close all potentially open connections and file pointers, as
well as doing other cleanup operations.

6.1.3 Covariance Approximation

One of the key features of Delve is the capability to compute information
on layers based on the covariance matrices of the output of the respective layer.
To achieve this, the covariance matrix of the output of every layer is computed
during training and validation. However, keeping the entire output during
training and validation in memory for every recordable layer is only feasible
for small, low-resolution datasets like MNIST and small neural architectures.
To process datasets of arbitrary size during training and testing, an algorithm
for approximating the covariance matrix is required that has constant memory
usage and can be updated batch wise, whenever data is passed through the
network.

Let Al be the output of layer l generated of the entire training or valida-
tion set. We assume that Al is a matrix with shape (n× # f eatures). Each row
resembles one of the n data points in the dataset. Every column refers to the
output of a neuron (in case of an LSTM or dense-layer) or a filter (in case of
a convolutional layer). To compute the covariance matrix Q(Al, Al), we need
to compute the covariance of every combination of feature dimensions. We
treat each column of Al as a random variable and each row as an observa-
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tion. To compute the covariance σX,Y between two random variables X and Y
iteratively with constant memory usage, the following formula is utilized:

σX,Y =
∑n

i=1 xiyi

n
− (∑n

i=1 xi)(∑n
i=1 yi)

n2 (10)

We make this computation more efficient by exploiting the shape of the
layer’s output matrix Al: We assume that the matrix Al is subdivided into
batches of data points, which we refer to as Al,b where b ∈ {0, ..., B− 1} for
B batches. We can compute ∑n

i=1 xiyi for all feature combinations simultane-
ously in the layer l by calculating the running sum of squares ∑B

b=0 AT
l,b Al,b

of the batch output matrices, Al,b. We can do the same for (∑n
i=1 xi)(∑n

i=1 yi)

n2 by
computing the outer product Āl

⊗
Āl of the sample mean Āl. The sample

mean Āl is a vector with a dimensionality equal to the column-rank of Al and
can be considered the column-wise mean of Al. This value is computed itera-
tively by aggregating the running sum of all outputs al,k, where k ∈ {0, ..., n},
at training time and divide it by the total number of training samples n. The
final formula for covariance approximation is then:

Q(Al, Al) =
∑B

b=0 AT
l,b Al,b

n
− (Āl

⊗
Āl) (11)

Since we only store the running sum of squares, the running sum and the
number of observed samples, we do not need to keep Al in memory. Instead,
the current approximation of Q(Al, Al) is updated with every batch that is
processed by the layer, while the aforementioned variables require a constant
amount of memory. The algorithm requires roughly the same number of
computations as the processing of a forward pass of the respective layer does.
Our algorithm uses a thread-save common value store on a single compute
device or node, which furthermore allows to update the covariance matrix
asynchronous when the network is trained in a distributed manner. The algo-
rithm is therefore compatible with model and data parallelism (Huang et al.
(2019)).

In convolutional layers, we treat every kernel position as an individual
data point. This turns an output-tensor of shape (samples × height × width
× filters) into a data matrix of shape (samples · height · width × filters). The
advantage of this strategy is that no information is lost, while keeping Q at a
manageable size. This strategy was proposed independently by Raghu et al.
(2017), after their initial publication of SVCCA, and Garg et al. (2020), who
use it in their PCA-based pruning strategy for CNNs. The entire process oper-
ates purely in double precision, regardless of the floating-point precision the

68



model is trained on. The primary reason for this is to avoid numeric instabili-
ties caused by rounding errors, which are more likely on 32-bit floating-point
operations (standard for convolutional neural network training). This algo-
rithm was previously published in Richter et al. (2021c).

Further Optimizations: To further boost the performance of the covariance
approximation additional, technical optimization steps were undertaken. First,
Delve conducts the covariance approximation in torch, by default, on the same
compute device as the model. This allows for a highly efficient execution of
tensor operations using CUDA and avoids unnecessary memcopy-operations
between nodes, devices, torch and the python interpreter, since the model is
part of the same dynamic compute graph on the same compute device as the
covariance matrices. Since this may result in unwanted memory limitations
on the respective compute device, the compute device may be changed by the
user.

Other optional optimization steps involve downsampling the feature maps
to a lower resolution using different downsampling strategies like linear, bi-
linear and nearest interpolation, as well as limiting the maximum number of
batches that are recorded or recording only every nth batch for covariance ap-
proximation. All of these optional optimization steps are implemented with
the practical applications on large networks and datasets in mind. While these
techniques were tested, we omit the use of the potentially biasing techniques
for the experiments in this work, to eliminate the possibility of errors induced
by these techniques.

6.1.4 Supported Layer-Based Information

Delve can extract various information from the covariance metrics. The
following information can be automatically extracted from the recordable lay-
ers using Delve:

• saturation for a threshold δ (see section 8.1)

• intrinsic dimensionality (eigendirections required to explain a percent-
age δ of the variance)

• trace of the covariance matrix

• trace of the diagonal matrix of the covariance matrix

• determinant of the covariance matrix
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• the embedded data (the data is projected onto the 2 largest eigendirec-
tions)

• the covariance matrix

From the list, it is apparent that it is also possible to extract informa-
tion that does not qualify as a layer-based metric. With the term "metric" we
describe a single scalar value that caries well-defined information about the
evaluated subject (in this case a layer of a neural network). This additional
information (covariance matrix and embedded data) are treated as second-
class-citizen in terms of the software architecture. This means that, for in-
stance, an implementation of the Writer-Interface does not have to guarantee
compatibility with non-scalar information extracted from a layer. This means
that they should be looked at as "freebies" or debugging tools rather than part
of the core functionality of Delve.

6.1.5 Automated Analysis, Logging and Saving

As we previously showed in figure 38, the logging, saving and the au-
tomated analysis is handled by an implementation of the Writer-Interface.
Therefore, the Writer-instance in the setup contains the only part of Delve
that is allowed to have side effects. Logging functionality is directly passed
from the Tracker to the Writer object without further processing. The logged
information is cached in memory by the Writer until the saving-function is
called explicitly on the Tracker-Instance. Automated analysis is considered
part of the saving-procedure and is always executed when the current state
of the experiment is persisted. Automatic analysis involves primarily the vi-
sualization of the aforementioned results. An example can be seen in figure
40.

The system can also handle multiple Writers at the same time. In this
case, the individual Writer-instances are automatically wrapped into a sin-
gle CompositeWriter-Instance, that redundantly uses all Writer-Instances in
sequence whenever called. This allows for a better modularization and sepa-
ration of different saving and analysis functionalities.

6.1.6 PCA-Layers

PCA-Layers are a special kind of PyTorch-layers that can be used for some
experiments regarding the latent space and are based around the covariance
approximation algorithm described in section 6.1.3. These layers are not part
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Figure 40: Delve can automatically generate plots for quick life analysis during training. The
depicted example shows the intrinsic dimensionality of VGG19 after 29 epochs of training on
Cifar10 using a batch size of 512 and an input resolution of 32× 32 pixels.

.

of the core functionality of Delve depicted in figure 38, they are merely a
utility tool for conducting experiments that require restricting the data to the
subspace of the feature space. Delve provides a total of two PCA-Layers, a
densely connected and a convolutional PCA-Layer. Both layers produce out-
put with the same shape as the input. During training time, PCA-Layers
behave like pass-through layers and do not manipulate the data passed to
them. However, while training, they use the covariance approximation algo-
rithm described in section 6.1.3 to compute a covariance matrix. When the
model is switched into evaluation mode, the PCA layers compute a projection
matrix Pδ into a subspace that explains the variance of the input data up to
a threshold δ using the largest eigendirections. The densely connected PCA
Layer projects all input vectors xin into this eigenspace to obtain the output
xout:

xout = xin(PT
δ Pδ) (12)

The matrix multiplication of Pδ with its transposed version is necessary
to keep the shape of the output intact while restricting the data to the low
dimensional subspace of Pδ. The convolutional version of the PCA-Layers
convolves this operation as a 1× 1 kernel over the feature map, since every
position of the feature map is treated as an individual observation for com-
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puting the covariance matrix. The covariance matrix is reset every time when
the model is switched into training mode, avoiding biases in the covariance
matrix due to strongly changing latent representations of the data over the
course of an epoch of training.

6.2 PHD-Lab: Experiment Automation Framework

The experiments conducted on this thesis require large quantities of trained
models using various configurations of hyperparameters. To conduct and re-
produce the experiments as well as manage the data and results produced
by these, a framework was implemented. All experiments conducted in this
work were conducted with the PHD-Lab environment. The framework is
open sourced under https://github.com/MLRichter/phd-lab. This reposi-
tory furthermore contains configuration-files for all experiments in this work,
which allows the reproduction of results for any experiment conducted in the
following chapters.

6.2.1 Overview

The main design goal of PHD-Lab is to build a setup that allows conduct-
ing experiments in a reproducible manner with a high level of automation and
recoverability in case of a crash with minimal loss of time and information. 10

To achieve this, the following core functionalities are required:

• Automatized assembly of experiment setups (see section 6.2.2).

• Automatized execution of experiments, consisting of model training and
analysis (see 6.2.2).

• Standardized way of configuring arbitrary experiments without changes
to the source code (see section 6.2.3).

• Automated, structured logging and information extraction during and
after training (see section 6.2.4).

• Automatized training of logistic regression probes (see section 6.2.5).

10Within PHD-Lab context we consider an experiment an arbitrary amount of training pro-
cedures on arbitrary architectures, datasets and hyperparameter configurations with common
postprocessing and analysis steps as well as optional training of logistic regression probes.
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Figure 41: PHD-Lab is configured over a simple json-file, which specifies parameter con-
figurations and major components, i.e. the dataset, model, optimizer and metrics. These
components are provided by the respective registries. For practical reasons the training of
the model and the training of logistic regression probes is disentangled in the architecture to
allow for easier distributed computing.

To achieve these goals, a highly modular setup is required that allows for
easy assembly in a way that is similar to dependency injection during run-
time. The software architecture can be seen in figure 41. The core executable
is always an instance of the callable Main-class. The primary purpose of
the Main-class is to ingest a configuration file, decode it and then assemble
a single TrainTestExecutor per model training. The TrainTestExecutor con-
ducts training and post-processing on a single training setup. Training is
conducted with a Trainer object, which executes the model training as well
as information extraction and analysis during training using Delve (see sec-
tion 6.1 for details). The Postprocessor on the other hand implements ad-
ditional model specific information, like computing the FLOPs required for
training, computing the receptive field size of every layer or extracting the
outputs of every layer (latent representations) and saving them for later lo-
gistic regression probe training. Computing and logging logistic regression
probe performances can be intentionally detached from this main path of ex-
ecution and is executed after the model training. The main reason for this
is the different requirements of logistic regression probe training and con-
volutional neural network training. Logistic regression probes require large
quantities of CPU-Memory and CPU-Cores, while training a model requires
GPU-resources. Having matching hardware for both training types is vital,
since some experiments would otherwise require weeks to conclude in scenar-
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ios where models have many layers (for example ResNet50) and the dataset
is large (for example ILSVRC12). Being able to detach probe training and the
rest of the experiment allows us to run logistic regression probes and model
training distributed on separate computation nodes that are better optimized
for the specific tasks.

6.2.2 Automated Assembly and Execution of Experiment-Setups

A big advantage of this experimental setup is that certain dependencies
are known to likely change in between experiments, while others are likely to
be static. This allows us to build a simple register-based architecture, where
the TrainTestExecutor simply fetches the required model, dataset, optimizer
and metrics from factory-functions that are in the scope of a python-module
that acts as a registry. This allows for quick and easy expansion of the frame-
work with new models, datasets, optimizer and metrics without changing
core components of the application. This is important for making experi-
ments reproducible, since the business-logic that conducts the experiments,
handles logging, analysis and persistence is factually frozen after it was ini-
tially implemented and tested. Since this business logic is also setting seeds
for random number generators and handles the standardized setup of other
random or potentially biasing parts of the training. Ruling these random com-
ponents out as a potential source of deviance between experiments is vital for
guaranteeing that results are reliable and reproducible.

6.2.3 Configuration

Another advantage of this register-based architecture is that the experi-
mental setup can be changed without requiring changes to the source code.
This is important, since the exact state of the code repository when the exper-
iment was conducted is not necessarily known. This can make experimental
results harder to reproduce. To avoid this and allow quick and easy repetition
of experiments, we decided to use a json-file-based configuration. A single
experiment is thus represented as a single json-file containing a dictionary of
key-value pairs.

This configuration can be semantically separated into an experimental,
technical and evaluation part (see code box 1). The experiment configuration
defines the basic components of the training setup, and it’s corresponding hy-
perparameters like the neural architecture, the datasets, the number of trained
epochs and input resolution. The evaluation configuration sets the primary
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metrics computed on the training and validation dataset. The technical config-
uration on the other hand contains parameters concerning the business logic,
like the location of the logging-directory for saving results or the compute-
device used for training. It is also possible to pass lists of different values. In
this case, a single training and post-processing will be conducted for every
value in this list. If more than one configuration key-value pair is a list, every
possible combination of these values will be used for a model training and
post-processing. The configuration-file shown in code box 1 in particular con-
tains two model trainings on Cifar10 per model. One is conducted on VGG16,
the other one on ResNet18. Both are trained for 120 epochs using a batch size
of 64, an input resolution of 32× 32 pixels and the ADAM optimizer (Kingma,
Ba (2014)). The evaluation configuration contains the metric used for evalua-
tion during training and inference. The technical configuration is responsible
for the components of the setup that are not part of the experiment and not
influencing the results directly. Such things are (in the same order as in the
config file) the directory where results are logged, the device where Delve
stores the covariance matrices and finally the bool-flag to distribute the train-
ing of the convolutional neural network on all available compute devices by
using data parallelism.

There are also additional (optional) technical parameters that can be added
to a configuration file like this. However, since this thesis is not primarily
about the software architecture, and we want to avoid confusing the reader
with implementation details we deliberately decide to omit these details and
advice to study the readme-file of the PHD-Lab repository instead.

6.2.4 Logging

Standardizing and structuring logging is crucial in managing numerous
experiments. To achieve this, we utilize Delve to implement a file-system
based saving strategy. Logging in PHD-Lab is directly handled by the compo-
nents that produce the respective data. This means that the Trainer instance is
responsible for logging all training related data, while the Postprocessor also
saves the information it extracted.

The target folder in which all results are stored is sorted and organized
based in model, dataset, resolution and a user-specified run-id (this ID allows
redoing the same experiment multiple times). An exemplary folder structure
is depicted in figure 42.
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1 {
2 // experiment configuration
3 "model": ["vgg16", "resnet18"],
4 "epoch": 120,
5 "batch_size": 64,
6 "dataset": "Cifar10",
7 "resolution": 32,
8 "optimizer": "adam",
9

10 // evaluation configuration
11 "metrics": ["Accuracy", "Top5Accuracy"],
12

13 // technical configuration
14 "logs_dir": "./logs/",
15 "device": 'cuda:0',
16 "data_parallel": True,
17 }

Listing 1: An example configuration-file, demonstrating the way PHD-Lab is set up. This file
trains VGG16 and ResNet18 on Cifar10. The training is conducted for 120 epochs, using a
batch-size of 64 images. The images have a resolution of 32× 32 pixels. Optimization is done
using the Adam-Optimizer by Kingma, Ba (2014). Accuracy and top5-accuracy are used for
evaluation. The results are stored in a local folder called "logs". The training and analysis
is conducted using cuda:0 (the first GPU) as primary compute device. Data parallelism is
furthermore enabled, which means that the training will be distributed on all available GPUs.
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logs

VGG16

Cifar10_32

EXP1

probe_performance.csv

receptive_field.csv

computational_info.json

VGG16-Cifar10-r32-bs128-e30_config.json

VGG16-Cifar10-r32-bs128-e30.csv

VGG16-Cifar10-r32-bs128-e30.pt

VGG16-Cifar10-r32-bs128-e30lsat_epoch0.png

VGG16-Cifar10-r32-bs128-e30lsat_epoch1.png
...

VGG16-Cifar10-r32-bs128-e30lsat_epoch30.png

EXP2
...

Cifar10_128
...

ImageNet_224
...

ResNet18
...

EfficientNet-B0
...

...

Figure 42: An example for the automatically generated folder structure used for saving ex-
periment results in PHD-Lab. The logging structure is nested and the naming of files copied
regularly are named based on the configuration to avoid confusion of experimental results.

All data relevant to an individual training is saved in a single folder. This
includes multiple tables of tabular data that contain such things as the per-
formance of logistic regression probes, receptive field sizes of every layer,
predictive performance and saturation-values of the individual layers. Files
unique to this particular run are named after critical parameters of this run,
to avoid confusion of different files, if these are ever extracted from the folder
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structure for analysis.
The folder also contains information that is not strictly part of the results,

but is required for reproducing a specific experiment. For instance, model
checkpoints and other files that allow for a swift recovery after a system crash.
We will talk about the crash-recovery in greater detail in section 6.2.6.

6.2.5 Logistic Regression Probes

As previously mentioned, the training and evaluation of logistic regression
probes is separated from the main program flow for performance reasons.
During the post-processing of a trained model, the latent representations of
all recordable layers are extracted and stored on the hard drive alongside the
matching labels of the ground truth. In the logs of the respective model, a
file is created which acts as a pointer leading to the folder containing the
previously extracted latent representations. The system assumes that each
file in the folder contains the latent representation of a layer of the model and
that the filename is corresponding to the name of the layer. When training
of logistic regression probes is started, each file in the latent representation
folder is loaded and a logistic regression is trained on its content for 100

epochs. The SAGA optimizer by Defazio et al. (2014) is used for training,
enabling fast training while limiting the memory consumption. The probes
are then evaluated on the extracted latent representations of the evaluation
data. The accuracy scores of training and evaluation datasets is recorded in
a csv-file in the log-folder, the model itself is discarded. By default, this part
of PHD-Lab uses multiprocessing to train and evaluate multiple models in
parallel, speeding up computations substantially. Optionally, the training can
be conducted single threaded as well for debugging purposes.

6.2.6 Recovery and Reproducibility

Being able to reproduce and recover the results is critical, since the exper-
iments are very resource intensive and may take multiple days or even weeks
to conclude. For reproducing an individual experiment, PHD-Lab automati-
cally creates a json-file in the log-folder of every individual experiment (see
figure 42) before training starts. This file serves as a config-file and allows
to exactly recreate the singular experiment, that was saved in this folder. By
doing so, it is possible to recreate every analysis and model training solely
from the logs, even when the original configuration-file was lost, altered or
contained additional experiments that do not need to be reproduced.
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For conducting numerous experiments, a sound recovery strategy is needed
to avoid the potential loss of longer periods of processing time. For this rea-
son, neural network and logistic regression probe training are implemented
in a way that allows for quick recovery in case of a crash. As mentioned in
section 6.2.4 besides experimental results also model checkpoints are saved.
The recovery procedure is executed whenever a new Trainer is instantiated. If
the Trainer finds preexisting results, it checks the saved experimental results
to see how far the training has proceeded. If a training has been concluded
previously, the training will not be executed and the experiment immediately
jumps to the post-processing. If the training was interrupted, the model will
recover with the state of the last concluded epoch, which is in most scenar-
ios a loss of time of less than 20 Minutes. Since the Delve-Tracker saves all
information at once, the possibility of a potential corrupted state or loss of
information is limited to a crash occurring in the final phases of saving the
model, when the file for storing the model-state is created but left incom-
plete. This dangerous phase usually takes less than 300ms to execute and is
thus only a relatively small part of each epoch of training, which can take
from 1 minute to 3 hours to complete, depending on the setup. Theoretically,
this can result in the loss of the entire training progress for this particular
model. However, this scenario is very unlikely due to the relative quickness
of the saving-procedure and never occurred unintentionally during the ex-
periments described in this work. Of equal importance is the recovery of the
logistic regression probe training. This is especially true for large models like
ResNet50, since training of logistic regression probes may exceed the training
time of the model itself, depending on the hardware and dataset. For this
reason, we apply a distributed caching logic that can recognize whether a lo-
gistic regression has been already trained on a specific combination of layer
and dataset, in which case the cached result is loaded from memory. This
is also the reason why the program-components used for logistic regression
probe training are composed only of pure functions, which are by definition
stateless and thus allow for a more reliable caching. This contrasts with the
rest of PHD-Lab, which is coded in an object-oriented style.
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7 Analyzing Neural Network Layers using Princi-

pal Component Analysis

In recent years various techniques have been proposed for exploring the
properties of neural network layers. Understanding how neural networks pro-
cess information and how this processing may be influenced is vital for de-
signing more efficient and better performing neural architectures. The works
of Zeiler, Fergus (2014b), Zhang et al. (2017) and Yosinski et al. (2014) are
examples of experimental work that show the boundaries and limits of gener-
alization and transferability of features. Recent works by Raghu et al. (2017)
and Alain, Bengio (2017) propose techniques that allow for a more profound
analysis of networks on a layer wise level.

The common problem with these and other techniques for analyzing the
properties of neural networks is their complexity and computational ineffi-
ciency, which makes them impractical to use in neural architecture develop-
ment and in quantitative studies (Alain, Bengio (2017); Raghu et al. (2017);
Zhou et al. (2016)).

This section shows, that a simple on-line computable property, like the
covariance matrix of the layer outputs, can give interesting insights into the
dynamics of the inference process. To enable practical application, we pro-
vide a technique to efficiently compute the covariance matrix. We show that
we can use PCA to project the output of all layers into low dimensional spaces
while not negatively affecting predictive performance. We refer to these sub-
spaces as relevant eigenspaces. The experiments presented in this section were
published separately in Richter et al. (2021c) and Richter et al. (2022).

7.1 General Concept and Methodology of the Experiments

The experiments conducted in this section all involve PCA being applied
on the output of neural network layers, thus a lot of technical details in the
experimental setups are shared. To avoid bloating the following experiment
descriptions with repetitive technical details that are necessary for reproduc-
ing the experiments but not critical for understanding the experiments, we
decide to bundle this information here.

The core idea behind these experiments is to approximate the subspace of
each layer’s output space that is relevant for further information processing
using PCA. We can define a good approximation of these subspaces of every
layer as a set of subspaces that have a minimal impact on the predictive per-
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formance of the model if the data is restricted to these approximations. In
this case, the projection has not negatively impacted the predictive quality of
the model, which means no critical information was lost due to the projec-
tions during the forward pass. However, PCA itself is not a parameter-free
operation, since the dimensionality of the eigenspaces need to be determined.
Since the number of filters and units in each layer and therefore the dimen-
sionality of its output space varies greatly in neural architectures, setting this
value to a fixed number is not feasible. Instead, we decide to use an explained
variance threshold δ as a regulator to determine the number of dimensions
in the eigenspace. In effect, we accumulate the k eigendirections with the
highest variance, which explain combined a percentage δ of the total variance
of the layer’s output. Since lower values of δ result in lower dimensional
eigenspaces, we expect a decreasing predictive performance as δ decreases. A
main purpose of the following experiments will be to understand the effects
of different values for δ on the quality of the approximation.

All experiments conducted in this section are done in the PHD-Lab ex-
periment environment described in section 6.2. To approximate the relevant
eigenspaces, PCA needs to be applied on the output of any given layer with-
out changing the shape of the output. This is done using the PCA-Layers pre-
sented in section 6.1.6 and the covariance approximation algorithm discussed
in section 6.1.3. Whenever PCA-Layers are used in the experiments, they are
placed after every weighted layer in the network. The exact type of PCA-Layer
depends on the type of layer. Layers that produce feature maps as output will
be followed by a convolutional PCA-Layer, and layers that produce an output
vector for a given data-point will be followed by a linear PCA-Layer instead.
The number of eigendirections k used for the PCA-projection is computed for
each layer and resembles the number of eigendirections that explain δ% of
the variance. The percentage of explained variance δ for all PCA-Layers is set
globally for the entire network. We refer to a network that is modified in such
a way as a projected network, since all layers effectively operate on data that is
projected into their reduced eigenspace Ek

l in all layers during inference time.
If not mentioned explicitly otherwise, the training of any model is conducted
over 30 epochs using a batch size of 64 and the ADAM optimizer by Kingma,
Ba (2014). No further hyperparameter optimization was undertaken, since
it is not the goal of the experiments to achieve state-of-the-art performance.
Instead, we choose a training setup that resembles a standard configuration
found in frameworks like PyTorch, Keras and Tensorflow (Abadi et al. (2015);
Chollet (2015); Paszke et al. (2019)). The intention behind this is to bring the
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tested scenario closer to an early development scenario in a real-world appli-
cation. The data is augmented during inference time by channel-wise normal-
ization using means and standard deviations computed from the ImageNet-
training set. During training the data is randomly horizontally flipped with a
probability of 50% as well as randomly cropped.

7.2 Demonstrating That Projected Networks can Maintain Some

Predictive Quality.

The manifold hypothesis suggests that data in a high dimensional space
occupies a lower dimensional subspace within this higher dimensional space.
The output space of a neural network layer can be considered such a high-
dimensional space. The dimensionality of a layer’s output is determined for
this purpose by the number of filters 11 (convolutional layer) or the num-
ber of output units (fully connected layer). We refer to this space as feature
space, for it effectively consists of information about the presence and absence
of learned features in the data. If the manifold hypothesis is applicable for
neural network layers, it should be possible to find a subspace in the feature
space, that contains the latent representations of the data. When the data is
projected into this subspace during the forward pass of the model, the infor-
mation critical for the quality of the prediction should be maintained, since
the data remains unchanged by the projection.

This experiment is a proof of concept, testing whether it is possible to ap-
proximate this subspace, which we refer to as the latent space. Since we can
batch-wise approximate covariance matrices based on the training data dur-
ing the forward pass (see section 6.1.3) we decide to use PCA as a candidate
method for the approximation of the latent space. PCA was initially proposed
by Jolliffe (1986) and is a popular technique for dimension reduction. PCA is
a linear projection of the data into a subspace spanned by k eigenvectors of
the data’s covariance matrix. However, since convolutional neural networks
perform non-linear transformations in each layer, we cannot say exactly how
much information will be lost by linearly projecting the data inside a feature
space of a layer.

In this section, we test if PCA can maintain at least some predictive quality

11Since the processing of every feature map position on an image is independent of any
other position on the feature map, we can consider each feature map position an individual
data point in terms of information processing. This simplification is not unprecedented and
was previously made by other authors that study the output of neural network layers such
as Raghu et al. (2017) and Garg et al. (2020).
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of our model, when the output of every layer in the model is projected into its
respective eigenspace. In this experiment, we are not (yet) interested in quan-
tifiable results (a more quantitative study on classifiers will be conducted in
the next section). Instead, we want to obtain an intuitive understanding of
what the effects are, when each layer is projected into their approximated
latent space Ek

l . For this reason, we will conduct the experiments on a convo-
lutional autoencoder. The reconstruction of input images by the autoencoder
allows for an intuitive analysis of the ablation in prediction quality caused by
the projection. We also directly observe the dimensionality of Ek

encoding, which
is the dimensionality of the reduced eigenspace in the encoding layer, the low-
est dimensional layer in the model. By doing so, we can obtain a grasp on the
upper bound of the size of the latent space, relative to the surrounding fea-
ture space in the given setup. If the manifold hypothesis is applicable in this
scenario, we expect Ek

encoding to be substantially lower dimensional than the
feature space, when no visible differences in the reconstruction loss occurs.

7.2.1 Methodology

To test whether it is possible to approximate the latent space using PCA,
we train a neural network and project the output of each layer l into a k-
dimensional, PCA-based approximation of the latent space Ek

l . Ek
l is com-

posed of the k highest variance eigendirections of the data. In combination,
these eigendirections explain a percentage δ of the data’s variance. The tech-
nical details of this process are described in section 6.1.6. We refer to these
networks as projected networks, since the latent representations are projected
into our approximation of the latent space. As a proof of concept, we want
to see whether a projected network can maintain some predictive quality for
any amount of explained variance δ < 100%. Furthermore, we are interested
in visualizing the ablative effect that will likely occur for decreasing values of
δ. To get a basic idea of the ablative effects, we train a simple convolutional
autoencoder on the Food101 dataset on a reconstruction loss. Reconstructing
an input image is a simple task that allows for an easy visualization and in-
terpretation of the ablative effect caused by the projections. The convolutional
autoencoder architecture is depicted in table 1. A convolutional autoencoder
is a special type of neuro-architecture consisting of two components. The first
part is referred to as an "encoder". Its structure similar to a convolutional
neural network feature extractor in the sense that it is fully convolutional. It
also has a pyramidal shape like a feature extractor described in section 3.2.
The flattened output of the encoder is referred to as "encoding" or "code".
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This encoding is strongly reduced in dimensionality compared to the input,
forcing the autoencoder to compress the information contained in the input
image, which can be considered the main purpose of the encoder. The second
part of the model is referred to as "decoder" and resembles a mirrored version
of the structure of the encoder. Its purpose is to "decode" the low-dimensional
encoded image back to the original input image. The so-called reconstruction
loss is the mean-squared-error of the pixel wise distance between the input
image and the prediction.

Table 1: Convolutional Autoencoder Architecture.

Encoder Decoder

224 × 224 × 3 Input (3× 3) conv, 8 ReLU
(3× 3) conv, 16 filters, ReLU upsampling, nearest, scale-factor 2

(2× 2) max pooling, strides 2 (3× 3) conv, 8 filters, ReLU
(3× 3) conv, 8 filters, ReLU upsampling, nearest, scale-factor 2

(2× 2) max pooling, strides 2 (3× 3) conv, 16 filters, ReLU
(3× 3) conv, 8 filters, ReLU upsampling, nearest, scale-factor 2

(2× 2) max pooling, strides 2 (3× 3) conv, 3 filters, ReLU

Since this is a proof of concept, we are interested in using a dataset that is
challenging for the model to solve while not being too resource intensive. The
Food101 dataset by Bossard et al. (2014) features real world, high-resolution
imagery of 101 different food items (75.750 train, 25.2500 test images), mak-
ing it a sufficiently heterogeneous and high dimensional dataset, while still
being manageable in terms of size and required computational resources for
training.

Table 2: Hyperparameters for the convolutional autoencoder.

Parameter Values

Input Resolution (224× 224)
Epoch 50

Batch size 128

Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999

ADAM: epsilon 1e-8
ADAM: learning rate 0.0001

The remaining setup of the training can be read from table 2. After the
training has concluded, we evaluate the reconstruction loss on the test set on
for different values of δ. This is necessary, since δ is a hyperparameter of the
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projection, and thus influences the quality of the latent space approximation
by influencing the dimensionality of Ek

l . A lower δ-value will result in a
lower dimensional Ek

l , which in turn will likely have a negative effect on the
prediction, i.e. the reconstruction of the input image. We test the following
values for δ: 90%, 95%, 99.5%, 99.9% as well as 100%, the latter being the
unprojected network acting as a baseline reference. In preparation for this
experiment, we also tested lower values of δ. However, Ek

encoding is already 1-
dimensional for δ = 90%. For this reason, we decide to omit these additional
results, since they do not add any additional insights.

7.2.2 Results

From the aggregated results in table 3 we can make multiple interesting
observations. We can see from the example that the reconstruction image
is still recognizable for δ ≥ 95%, demonstrating that for these values of δ

the inference process still produces recognizable output. While the loss of
δ = 99.9% is still almost double the loss of the unprojected network, the
model clearly did not collapse as a result of the projections and perceived loss
of detail on the image is minimal. Also interesting is that the dimensionality
of this subspace is only 597 dimensional, which is 7.29% of the dimension-
ality of the feature space. Even at δ = 99.9% explained variance Ek

encoding is
still only 4374 dimensional, which is 53.34% of the feature space dimensional-
ity. Apparently, relatively few (compared to the feature space dimensionality)
high-variance eigendirections are responsible for a large part of the qualita-
tive inference process - even in the bottleneck of an autoencoder. Based on
these results, we proceed to investigate PCA as a candidate method for latent
space approximation further.
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Table 3: When projecting all layers l of an autoencoder into their reduced eigenspaces Ek
l , the

reconstructed examples are still recognizable, even when only a fraction of the dimensionality
of the feature space is used in every layer. It is also worth noting that an eigenspace with
only 53.3% of the feature space dimensionality is needed in the bottleneck of the autoencoder,
where the feature space has the lowest dimensionality, to explain 99.9% of its variance. The
images depicted here can also be found in Richter et al. (2021c).

δ dim Ek
encoding loss Reconstruction Example

Input Image - -

100% 8192 0.033

99.9% 4374 0.065

99.5% 1332 0.089

99% 597 0.120

95% 17 0.216

90% 1 0.234
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7.3 Investigating the Information Content of Projected Net-

works

The previous experiment demonstrated that an autoencoder can still re-
construct recognizable images, while the processing of the network is re-
stricted to an PCA-based approximation of the latent space Ek

l in each layer.
However, we do not know how good the Ek

l -projections conserve the perfor-
mance relative to other projections of the same dimensionality. Therefore,
the conservation of predictive quality observed in the previous section could
still be a product of chance. Neither do we know whether the observed be-
havior is transferable to cross-entropy minimizing classifiers, which this work
focuses on primarily. In the following experiment, we aim to answer these
two questions in a quantifiable manner. We do this by training networks of
various depth (number of layers) and width (number of filters) on a dataset.
We observe the ablation in predictive performance of the projected networks
for various values of δ and compare this to the performance-ablation of pro-
jected networks that utilize a k-dimensional randomly chosen orthonormal
subspace instead of Ek

l . With ablation, we refer to the relative loss in per-
formance of a projected network compared to the unprojected model. If the
PCA-projections are reliably maintaining information critical for the infer-
ence process, the performance ablation relative to the unprojected model will
be smaller for the Ek

l -projected network than for the projected networks using
random orthonormal basis of the same sizes.

7.3.1 Methodology

To make the experiments more quantifiable, we train in this experiment
a total of 20 architectures 3 times, to obtain a larger size of samples. The
architectures are based on the VGG-network family by Simonyan, Zisserman
(2015), since they can be considered very conventional from a design perspec-
tive without significant design quirks that could bias the results. The VGG
family consists of 4 architectures in total with 11, 13, 16 and 19 layers (named
VGG11, VGG13, VGG16 and VGG19 respectively). We use all of these ar-
chitectures to include variations in network depth. We also train a total of 4

additional variants of each of the aforementioned architectures. These vari-
ants have their "width" (number of filters per layer) reduced by a factor of
1
2 , 1

4 , 1
8 and 1

16 , to also account for varying degrees of overparamterization
in each layer. By doing so, we cover the two-major axis that are commonly
used for scaling architectures, the width and depth of a network (He et al.
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(2016a); Huang et al. (2017); Real et al. (2019); Tan, Le (2019); Zagoruyko, Ko-
modakis (2016)). The models are trained on Cifar10 using the setup described
in section 7.1.

The trained models are evaluated a total of 41 times each. For reference,
the model is evaluated once with disabled PCA layers. Twenty times, with
enabled projections into a reduced eigenspace Ek

l in every layer for various
values of δ. Based on previous experiments, we test δ ∈ {90%, 91%, ..., 99%}
as well as δ ∈ {99.1%, 99.2%, ..., 99.9%}. The first set of values for δ is used to
observe the ablation of the model performance until chance-level12 is reached,
which can be considered the catastrophic collapse of the inference process.
The second set of values is for a closer observation on the ablation, close to
100% explained variance. The latter is necessary to limit the search space to
find the relevant eigenspace in later experiments. All models are evaluated
one more time for each value of δ. However, instead of projecting the out-
put of every layer into the respective version of Ek

l , the models are instead
projected into subspaces spanned by k randomly chosen orthonormal vectors.
We do this to see how well the reduced eigenspace Ek

l can maintain the pre-
dictive performance compared to a random orthonormal basis of the same
dimensionality. If Ek

l reliably contains information critical for the inference
process, the observed ablation of predictive performance when reducing δ

will be more severe for the random orthonormal basis than for Ek
l .

The predictive performance for this experiment is measured in relative ac-
curacy. The relative accuracy is computed by dividing the accuracy of the
projected model by the accuracy of the unprojected model of the same archi-
tecture. This is done because of the high variance in accuracy between the
different neuro-architectures. This makes the effects observed in this experi-
ment harder to visualize in absolute terms.

Since we are interested in the ablation of the predictive performance as
a function of δ we normalize the accuracy value by computing the accuracy
relative to the accuracy of the unprojected model.

Since this experiment requires large quantities of model trainings and eval-
uations, we decide to use the Cifar10 dataset, which can be trained and eval-
uated fast due to its small native resolution of 32× 32 pixels. See section 2.2.2
for a more detailed description of the Cifar10 dataset.

12With "chance level" we refer to a model with an accuracy equal to a model that makes
random predictions based on a uniform probability distribution over all classes. Since this
model can be considered the least informed decision maker, the performance of a chance
level predictor can be considered the worst possible performance realistically achievable by a
model. On Cifar10, the random predictor will achieve ≈ 10% accuracy
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7.3.2 Results

From the evaluation results, visualized in figure 43, we can see a stronger
ablation, when the data is projected on the k-dimensional random orthonor-
mal basis instead of Ek

l in every layer. The performance stabilizes at chance
level at δ = 96%, which is significantly earlier than models with layers pro-
jected into Ek

l , where even at δ = 90% some models still outperformed a
chance level predictor. The degradation when projecting the networks layers
in the eigenspaces is also slower, decaying over the entire range of tested δ

values, while the orthonormal basis decay very rapidly for δ > 99%.
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Figure 43: Random orthonormal projections (right) with same dimensionality as Ek
l degrade

the performance significantly faster than projections into Ek
l (left). This image was first pub-

lished in Richter et al. (2021c).

From these observations, we can conclude that projecting the output of
each layer l into the reduced eigenspace Ek

l can maintain the original per-
formance significantly better than projections into k dimensional random or-
thonormal subspaces of the feature space. This means that we can view Ek

l
as an approximation of the "active subspace" of ls feature space, where the
information critical for inference is processed.

7.4 Finding Relevant Eigenspaces

So far, we demonstrated that projections of every output layer into its
reduced eigenspace Ek

l can maintain parts of the original predictive perfor-
mance, depending on the explained variance percentage threshold δ. We now
attempt to find relevant eigenspaces for various convolutional neural network
architectures. The relevant eigenspace is a reduced Eigenspace of a convolu-
tional neural network layer l’s output with k < dim(Zl), where k is the di-
mensionality of Ek

l and dim(Zl) is the dimensionality of the feature space.
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Additionally, when the network is projected into the relevant eigenspaces at
every layer, the test error is statistically indistinguishable from the original
network. We refer to this eigenspace as relevant, since the predictive per-
formance and by extension the behavior of the model is not significantly in-
fluenced by the projections, the relevant eigenspace thus contains all relevant
information for the qualitative inference process. If such a space can be re-
liably found for multiple different architectures, we have demonstrated that
the processing in a convolutional neural network is utilizing only a portion of
the available feature space dimensions.

7.4.1 Methodology

In section 7.1 we describe that the dimensionality of the reduced eigenspaces
is controlled by a value δ ∈ (0%, 100%), which acts as a percentage thresh-
old for the explained variance. Finding a relevant eigenspace can therefore
be reduced to finding a value for δ, such that performance of the model is
statistically indistinguishable from the unprojected network. Thereby, we can
guarantee that the data is processed exclusively in our approximation of the
eigenspace and that this projection is not affecting the predictive performance.
We train the models using the same setup for the previous experiment. We
evaluate the projected networks with δ values in the range from 99% to 99.99%
in steps of 0.0001.

We train each architecture using the same configuration multiple times to
obtain multiple samples and conduct the aforementioned evaluations on ev-
ery instance (the sample size n is provided in the caption of the respective re-
sult table). We will provide the results of ResNet18 in this section. This model
was chosen to demonstrate that projecting networks is still possible, when the
architecture is more complex and features modern architecture components
like stems (see section 3.3.2) and skip connections (see section 3.3.4).

To test whether the predictive performance of the projected network is
indistinguishable from the unprojected network, we use student’s two-tailed
t-test to check whether the unprojected accuracies and the projected accura-
cies from the same network are drawn from the same distribution. The test is
repeated for every value of δ. We also provide additional information, like the
average difference in performance between the unprojected and the projected
network µdi f f as well as the standard deviation in predictive performance over
the projected networks σsample. We also compute the average total number of
eigendirections used in a single network ± the standard deviation of the same
value.
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7.4.2 Results

Based on the results in table 5 we can see that we indeed were able to
find a relevant eigenspace at δ = 0.9998. Even more interesting is that from
3904 dimensions in all feature spaces of the network, only 2153 ± 67 are used,
which is only 55.15%± 1.7% of the total eigendirections. We interpret this as
a confirmation of the manifold hypothesis in deep convolutional neural net-
works. This experiment also demonstrates that it is possible to approximate
the latent space inside the feature space by using PCA. The results are also
consistent with the lottery ticket hypothesis, which postulates that only small
subnetworks are responsible for the quality of the inference process (Frankle,
Carbin (2019)).

However, judging from the overall results in table 5 it is apparent that the
evaluation is not flawless. The basic assumption of the experimental setup is
that performance is either unaffected or degrading for any value δ < 100%.
In some situations, however, we observe small, consistent improvements in
the predictive performance. We were able to reproduce this phenomenon on
VGG13 (see table 4). This indicates that PCA-projections may have a very
slight denoising effect on the signal. However, since the effect size is so small,
this is unlikely to be useful in practice.

Table 4: VGG13 t-statistic, µ 6= 0, selected δ at α = 0.01 (n=26). µ 6= 0 in italics. Note that
projections for some values of δ improve performance.

δ µp− p̄ σ t p

0.9999 -0.0004 0.0008 -2.42 0.023

0.9998 -0.0005 0.0009 -2.81 0.010

0.999 -0.0017 0.0016 -5.50 0.000

0.998 -0.0017 0.0022 -3.92 0.001

0.996 -0.0005 0.0030 -0.91 0.371

0.994 0.0037 0.0043 4.45 0.000

0.99 0.0178 0.0136 6.68 0.000

7.5 Conclusion

By applying PCA-projections to the data while passing through the net-
work, we were able to demonstrate that processing of the data is occurring
in low dimensional subspaces of each layer. We demonstrated that we can
project data into approximations of this space with minimal performance
losses, depending on the percentage total of variance δ this subspace explains.
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Table 5: Sum of projections in ResNet18 (n=15). µdi f f 6= 0 (p=.95) in bold. µdi f f refers to the
average difference in performance between the projected network at threshold value δ and
the unprojected network. We also provide the standard-deviation of the accuracy σsample over
all samples. µ(∑ dimEk

l ) refers to the average number of eigendirections in the entire network
± the σ(∑ dimEk

l ).

δ µdi f f σsample t-stat p-value µ(∑ dimEk
l )

1.0 0.0000 0.0000 nan nan 3904± 0
0.9999 -0.0002 0.0012 -0.52 0.611 2338± 87
0.9998 0.0000 0.0013 0.0796 0.983 2153 ± 74
0.9997 -0.0002 0.0016 -0.521 0.610 2043± 67
0.9996 -0.0009 0.0020 -1.66 0.119 1963± 63
0.9995 -0.0005 0.0022 -0.813 0.430 1900± 61
0.9994 -0.0006 0.0019 -1.18 0.256 1847± 57
0.9993 -0.0007 0.0019 -1.48 0.162 1802± 55
0.9992 -0.0007 0.0022 -1.29 0.217 1763± 54
0.9991 -0.0006 0.0022 -1.13 0.279 1728± 52
0.998 0.0031 0.0046 2.63 0.020 1493± 40
0.996 0.0213 0.0285 2.9 0.012 1294± 32
0.994 0.0389 0.0454 3.32 0.005 1181± 28
0.992 0.0579 0.0596 3.76 0.002 1100± 27
0.99 0.0812 0.0782 4.02 0.001 1038± 26
0.98 0.1899 0.1042 7.06 0.000 841± 26
0.97 0.2918 0.1057 10.7 0.000 731± 26
0.96 0.3649 0.0834 16.9 0.000 654± 25
0.95 0.4333 0.0757 22.2 0.000 595± 24
0.94 0.4544 0.0667 26.4 0.000 548± 24
0.93 0.4787 0.0668 27.7 0.000 508± 24
0.92 0.4896 0.0638 29.7 0.000 475± 23
0.91 0.5119 0.0582 34 0.000 446± 22
0.9 0.5296 0.0574 35.8 0.000 421± 21

We were further able to show that we can approximate relevant eigenspaces
using PCA, which do not alter the predictive performance of the networks
significantly, when the data is projected into them in every layer. Based on
these findings, we have shown that eigenspaces of latent representations in-
side a convolutional neural network bear information about the processing
inside the network. In the following chapters, we investigate the sequence
of these eigenspaces closer to derive an analysis tool for understanding the
forward pass of convolutional neural networks.
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8 Understanding the Behavior of Layer-Based Anal-

ysis Tools

The experiments of Tan, Le (2019), Zhang et al. (2017), and Frankle, Carbin
(2019) show that overparameterization is to some degree necessary for neu-
ral networks to generalize well but eventually leads to diminishing returns.
Therefore, finding a "sweet spot" of overparameterization could allow for the
development of a model with good efficiency. In chapter 7 we demonstrate
that the feature space of a convolutional neural network layer is relatively
oversized compared to the subspace the data actually occupies in common
architectures by approximating the latent space using PCA. The dimension-
ality of the feature space in a layer is strongly related to the number of pa-
rameters of the respective layer. Based on this relation, we hypothesize that
our proposed approximation of the latent space can be used to better under-
stand the overparameterization in the network by gaining a more profound
understanding of the processing during the forward pass. We refer to the
processing of data during the forward pass as an inference process.

For analyzing the inference process, we first propose a metric, saturation,
which is based on the PCA-based latent space approximation described in
chapter 7. In the experiments of this section, we demonstrate the reliability
of the saturation (section 8.2) and logistic regression probes (section 8.3). We
further investigate how saturation responds to changing degrees of overpa-
rameterization (section 8.4) and problem difficulty (section 8.5) and whether
the observations agree with the hypothesis that saturation is indicative of the
overparameterization level. Finally, we investigate the patterns of saturation-
levels and logistic regression probe performances to investigate how the in-
ference process is distributed in the neural network and how this is reflected
in saturation. The experiments in this section were separately published in
Richter et al. (2021c) and Richter et al. (2022).

8.1 Saturation

When looking at the dimensionality of all approximated latent spaces (see
table 5 in the previous chapter 7) inside a convolutional neural network, it
is apparent that their combined dimensionality is much lower than the sum
of feature space dimensions. However, we did not yet study how the dimen-
sionality of the approximated latent spaces changes in between layers. Simply
looking at dim(Ek

l ) on a layer-by-layer basis is possible but hard to interpret,
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since the number of filters and thus the dimensionality of the feature space
changes between layers. To normalize the measurements for all layers, we
instead compute the dimensionality of the latent space dim(Ek

l ) relative to the
dimensionality of the feature space dim(Zl) of the same layer l:

sl =
dim(Ek

l )

dim(Zl)

We refer to the resulting value sl as the layer saturation of the layer l. Since
dim(Ek

l ) ≤ dim(Zl) this value is bound between 0 and 1 for all layers l and
thus allows for a simple comparison between different layers and networks.
We chose the name "saturation" since this value effectively describes how
much the feature space is "saturated" with data. The intuition here is that
high saturation corresponds to a low degree of overparameterization, and
vice versa for low saturated layers.

In all subsequent experiments, we standardize the value of δ to 99% for
computing Ek

l , which is akin to the threshold chosen by similar techniques
such as SVCCA by Raghu et al. (2017) and the pruning techniques by Garg
et al. (2020) and Chakraborty et al. (2019). From a practical perspective, we
find that while this value is unlikely to produce relevant eigenspaces for the lay-
ers of complex networks, the resulting saturation values are easy to interpret,
which is more relevant for the empirical part of this work.

Conceptually, this metric was initially proposed by Shenk (2018) and the
computation methodology and analysis presented here were proposed and
developed and utilized by Shenk et al. (2019), Richter et al. (2021c), Richter
et al. (2022), Richter et al. (2021a) and Richter et al. (2021b).

8.2 Evolution and Stability of Saturation Patterns

Since we use saturation as a primary analysis tool for this work, it is of
vital importance to check the stability of the resulting saturation values given
the typical random components of model training, which are data augmenta-
tion, weight initialization, and shuffling of the training dataset. Quantifying
the influence of random variables in the training setup further allows us to
estimate the reliability of saturation values and the emerging patterns of sat-
uration values. Since the performance of the trained model also fluctuates
due to these components, we also expect slight fluctuation in the saturation ,
which should be less or equal in proportion to the fluctuation in test accuracy.
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8.2.1 Methodology

We test the stability of models on ResNet18 and VGG16. We test a model
with skip connections and a model without skip connections. This is espe-
cially important in this scenario, since a network with residual connections
can theoretically skip any layer in the network, which may result in different
saturation patterns. We train each model 50 times on Cifar10 to obtain a rea-
sonable sample size. The hyperparameters and preprocessing are equivalent
to the setup described in section 8.4.1. The saturation values of every layer
are visualized in order of the forward pass.

8.2.2 Results

The result in figure 44 suggests that ResNet18 and VGG16 have very stable
saturation values in all layers. The minimum and maximum deviations are
small and do not influence the overall pattern of saturation levels within the
architecture.

(a) Saturation values of 50 VGG16 models trained on Cifar10.

(b) Saturation values of 50 ResNet18 models trained on Cifar10.

Figure 44: When the same model is trained multiple times using the same setup, the same
saturation values emerge from the layers with only minor fluctuations. These figures were
previously published in Richter et al. (2021c).

In fact, the standard deviation σs of VGG16‘s saturation is 0.281 whereas
the standard deviation of the accuracy-performance σacc from the same model
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is significantly higher at 0.511, while both values are bound in [0, 1]. The same
can be said for ResNet18, where σs = 0.353 and σacc = 0.523. Based on these
observations, we can conclude that the saturation is sufficiently stable to allow
for the analysis of convolutional neural networks.

8.3 Logistic Regression Probe Ablation Study

To understand the semantics of high and low saturated subsequences of
layers it is essential to connect saturation with another measurement with
a known semantic. The logistic regression probes by Alain, Bengio (2017)
is such a measurement, and it is described in greater detail in section 4.3
(theoretical) and section 6.2.5 (technical).

However, before we proceed to compare these two analysis tools, we need
to ensure that the logistic regression probes produce reliable, artifact-free re-
sults. One of the key concerns with the original implementation of logistic
regression probes is the way high dimensionality in convolutional neural net-
works is reduced for logistic regression probe training. The dimension reduc-
tion on the extracted data from the layers is a necessary concession to prac-
ticality as the size of the datasets and the dimensionality of the data vectors
would otherwise make the application of logistic regression probes resource-
intensive to the point of impracticality (Alain, Bengio (2017)). To address this
issue, Alain, Bengio (2017) use two distinct techniques for dimension reduc-
tion. In one experiment, the authors downsample the feature maps using
global average pooling (GAP), while in another experiment a random selec-
tion of feature map positions is used instead. While both experiments show
consistent results, they also both induce unquantified biases into the analysis.

Since we want to extensively use logistic regression probes in this work,
we need to investigate the biases induced by dimension reduction techniques.
We decide against using a random selection of feature map positions, since
the selection adds a random component to the analysis. On the other hand,
GAP is commonly used in convolutional neural architectures as a readout-
layer between feature extractor and classifier. However, we suspect that re-
ducing a feature map of arbitrary resolution down to a 1× 1 feature map is
likely to induce biases at high resolutions. We also suspect that this effect
is especially severe for early layers, where the information contained in indi-
vidual feature map positions will be more local and, as a consequence, more
heterogeneous. However, common implementations of GAP also allow for
the reduction of feature maps to other feature map shapes, thereby effectively

96



averaging evenly sized sectors of the feature map to produce an output of
shape h× w with h and w being arbitrary integers smaller than the original
height and width of the input feature map. We also test nearest interpolation
as an alternative downsampling strategy.

8.3.1 Methodology

Since the main purpose of this experiment is to support the reliability of
the experiments of the following sections we choose a dataset and models that
are heavily used throughout this work. For the dataset, we choose Cifar10 and
2 ResNet18 variants for the models. Both variants were originally proposed
by He et al. (2016a), where one variant is optimized for 32× 32 pixel input res-
olution and the other variant is optimized for 224× 224 pixel input resolution.
The difference between the two versions is that the low-resolution variant has
the stem replaced by a 3× 3 convolution with stride size 1. The primary rea-
son we choose these architectures is that both do not exhibit a tail pattern (see
section 8.5) at their respective design resolution. Tail patterns are recogniz-
able in logistic regression probes by stagnating probe performances, which is
not useful for an ablative study. To observe the degenerative effect of down-
sampling, we require models that distribute the inference process as evenly
as possible across the network’s structure. In section 9.4, we demonstrate that
networks with residual connections are especially good at distributing the
inference across many layers. By training both models on their respective de-
sign resolution we can furthermore observe potential differences in ablation
between high and low-resolution feature maps on very similar architectures.
The training is conducted on Cifar10 using the following hyperparameters:

Table 6: Hyperparameters for the ablation study.

Parameter Values

Input Resolution (32× 32) and (224× 224)
Epoch 90

Batch size 64

Optimizer SGD
SGD: learn rate 0.1 (decayed every 30 epochs)
SGD: decay-factor 0.1
SGD: momentum 0.9
SGD: weights decay disabled

Since we want to maximize the presence of potential artifacts, we decide
to train the model for 90 epochs, which gives both models enough time to
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overfit on the data. Zhang et al. (2017) demonstrated that both models have
enough capacity to overfit on the Cifar10 dataset and thus be sensitive to arbi-
trary details. If this overfitting is structurally represented on the feature map,
downsampling could potentially destroy information required for classifica-
tion, which could create artifacts in the test accuracy of the logistic regression
probes that are dependent on the resolution of the feature map. We use the
preprocessing and data augmentation strategies that are also used in most
other experiments of this work. The images are channel-wise normalized
with µ = (0.4914, 0.4822, 0.4465) and σ = (0.2023, 0.1994, 0.2010), which is a
procedure proposed by Krizhevsky et al. (2012). At training time, the images
are first cropped randomly with a 4 pixel zero-padding on all edges. The size
of the crop is 32× 32 pixels. The crops are then randomly horizontally flipped
with a probability of 50%. Since the augmentation strategies contain random
components, they also have the potential to induce artifacts and inconsisten-
cies. Finally, the images are resized to the input resolution and the images
of the training set are reshuffled after each epoch. The models’ weights are
initialized using the Kaiming-He initialization proposed by He et al. (2015),
which is used for all models throughout this work.

All logistic regression probes are trained on the layer outputs of the trained
models. Unfortunately, due to resource limitations, it is not possible to di-
rectly measure the bias caused by the loss of information by feeding the entire
feature map into a logistic regression probe for all layers. However, we can
approximate the bias by feeding different feature map sizes into the logistic
probes and observing the difference in performance. If this approximation is
sufficient, we will see diminishing differences in the logistic regression probe
performances with increasing feature map resolution. We feed (1× 1), (2× 2),
(3× 3), (4× 4), (5× 5), (6× 6) and (7× 7) feature maps into the logistic re-
gression probes using either GAP or nearest interpolation. The aforemen-
tioned sizes are maximum feature map sizes, and the feature maps are not
up-sampled if they are naturally lower resolution. The logistic regression
probes are trained using the SAGA-solver by Defazio et al. (2014), which is
necessary to allow training within our resource limitation. No preprocess-
ing of the data of any kind is conducted while training the probes, except
for the mandatory flattening the downsampled feature map into a vector for
processing.
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8.3.2 Results

We first explore the results from logistic regression probes trained on
downsampled feature maps using the nearest interpolation algorithm. Down-
sampling to 1× 1 feature maps results in strong ablation on multiple levels
(see figure 45). First, the performance is strongly degraded on all layers for
both resolutions. Reducing the resolution to 1× 1 furthermore induces heavy
artifacts in the patterns of logistic regression probes when visualized in the se-
quence of the forward pass. For any other feature map resolution, the overall
pattern of the probe performances is similar. The overall predictive perfor-
mance of the probes decreases with smaller feature map sizes. Earlier probes
ablate more in terms of predictive performance than those trained on the out-
put of later layers. The ablation shrinks with increased resolution, indicating
convergence towards the "true" probe performance when trained on the entire
feature map. Besides the anomalous behavior of the 1× 1 downsampling, this
behavior was expected, since earlier layers feature more local information and
thus suffer the most from downsampling. An increase in probe performance
with increased feature map resolution after downsampling is also expected in
this regard, since more information is added to the feature vector.

When using GAP as a downsampling strategy, the ablation in terms of
performance is stronger for low resolutions such as 1× 1 and 2× 2 (see figure
46). Similar to nearest-interpolation, the ablation is strongest for early layers
and decreases in a converging manner with increased resolution. The anoma-
lous behavior of the 1× 1 downsampling when using nearest-interpolation is
not present when using GAP. Thus, we consider the observed behavior as be-
ing an artifact of the downsampling strategy. The probe performance patterns
look slightly different on 32× 32 and 224× 224 pixel resolution models. How-
ever, since these changes are consistent for the respective model over different
levels of downsampling, we attributed this to the changes in the architecture.
Interestingly, the ablation is not visibly stronger at higher resolution.
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(a) Probes trained on downsampled feature maps. The model was trained on a
32× 32 input resolution.

(b) Probes trained on downsampled feature maps. The model was trained on a
224× 224 input resolution.

Figure 45: Nearest-Interpolation downsampling to a single pixel induces heavy artifacts,
thereby destroying the otherwise prevalent pattern of probe performances. Otherwise, probe
performances maintain a visible pattern and improve with diminishing returns as the output
resolution of the downsampling is increased. These figures were previously published in
Richter et al. (2021c).
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(a) Probes trained on adaptive average pooled feature maps. The model was trained
on a 32× 32 input resolution.

(b) Probes trained on adaptive average pooled feature maps. The model was trained
on a 224× 224 input resolution.

Figure 46: Average pooling is better able to maintain the structure of probe performances,
thereby not showing the artifacts observed in figure 45. These figures were previously pub-
lished in Richter et al. (2021c).
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8.3.3 Implications for Experimental Setups Using Logistic Regression Probes

The results of this small ablation study show that artifacts are present and
visible when strongly downsampling the feature maps. For this reason, we
do not adopt the GAP strategy originally used by Alain, Bengio (2017). We
reject nearest-interpolation as an alternative, since the artifacts on 1× 1 down-
sampling are even more severe. Instead, as a compromise between accurate
probe performance measurement and practicality, we divert to using GAP
for downsampling to a 4 × 4 feature map. A 4 × 4 feature map is still 16

times more computationally expensive to train than a globally pooled vari-
ant. However, in our experiment, logistic regression probes trained on 4× 4
average pooled feature maps still performed close to probes trained on higher
resolution. Since we are most interested in patterns in the sequence of probe
performances, the ablation caused by downsampling to 4× 4 is still tolerable
as it maintains the structure of the probe performance sequence depicted in
figures 46 and 45.

8.4 Studying the Average Saturation of Convolutional Neural

Architectures

The underlying hypothesis in this and subsequent experiments is that
more complex data requires more model capacity in each layer to be pro-
cessed, which in turn is expressed in a higher dimensionality of the latent
representation, i.e., higher saturation values. We first test this hypothesis by
studying how saturation is affected by evenly increasing the number of pa-
rameters in the network. This is achieved by increasing the number of filters
in each convolutional and the number of units in each dense layer. This is
also colloquially referred to as changing the width of the network and it is a
common scaling strategy for increasing the capacity of convolutional neural
networks (Zagoruyko, Komodakis (2016), Tan, Le (2019), Tan, Le (2021), Tan
et al. (2020)). If saturation is indicative of the level of overparameterization,
we expect the average saturation sµ of the networks to increase proportion-
ally with a decrease in network width. By extension, we expect the predictive
performance of the models to change anti-proportionally to sµ. This anti-
proportional relationship is also suggested by the lottery-ticket hypothesis,
which postulates that overparameterization is necessary for a neural network
to generalize well during training, even though only a small portion (the "win-
ning ticket") of the network will be responsible for the quality of the prediction
(Frankle, Carbin (2019)).
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8.4.1 Methodology

We test this hypothesis on Cifar10 on a set of 20 different architectures.
We train VGG11, 13, 16, and 19 for 30 epochs on the respective dataset. To
observe changes in predictive performance and average saturation, we reduce
the dimensionality of each layer by reducing the number of filters per layer
by a factor of 1

2 , 1
4 , 1

8 , and 1
16 respectively. We use the standard input res-

olution of Cifar10 of 32 × 32 pixels. During training time, the images are
randomly horizontally flipped, cropped, and finally channel-wise normalized
using channel-wise means and standard deviations taken from Krizhevsky
et al. (2012). The exact hyperparameter configuration can be seen in table 7.

Table 7: Hyperparameters of training setups for all models trained on Cifar10 in this experi-
ment.

Parameter Values

Input Resolution (32× 32)
Epoch 30

Batch size 128

Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999

ADAM: epsilon 1e-8
ADAM: learning rate 0.0001

We use the accuracy metric as a measure of predictive performance. For
measuring the average saturation sµ of the entire model we compute:

sµ =
1
|L|

L

∑
l

sl

where L is the set of all layers l with trainable parameters (in essence all
convolutional and dense layers). We omit computing the saturation for non-
parameterized layers such as pooling, flattening, or dropout layers to avoid
biases of sµ. These non-parameterized layers are unlikely to drastically change
the intrinsic dimensionality and would thus closely resemble the feature space
from the previous convolutional or dense layer, resulting in oversampling
of specific feature spaces right before such a non-parameterized layer. All
model trainings are repeated 3 times, and the measurements are subsequently
averaged.
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8.4.2 Results

We visualize the results in figure 47. The average saturation decays when
the number of dimensions in the layers feature spaces is reduced and the pre-
dictive performance decays alongside it. The relationship between a model’s
sµ and predictive performance on Cifar10 is logarithmic. Since the number
of filters (and therefore the feature space dimensionality) were reduced in
exponential steps, this pattern can be expected.
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Figure 47: Predictive performance and average saturation form a logarithmic relationship
when we train models on different filter sizes. The reduction in model capacity leads to the
data "occupying" a higher percentage of the available feature space with a degrading effect
on the predictive performance. This image was first published in Richter et al. (2022).

The relation of sµ to the predictive performance also indicates that some
degree of overparameterization is required for these architectures to achieve
high predictive performance, which aligns with the lottery ticket hypothesis
of Frankle, Carbin (2019). In the experiment-scenario, highly saturated net-
works generally achieve lower performance, while low saturated networks
improve performance with diminishing returns.

In summary, sµ behaved as expected, increasing with a decrease in net-
work capacity and predictive performance. The diminishing decrease in sat-
uration resulting from increasing the capacity also implies that it should be
possible to find a sweet spot concerning the width of the network that can be
determined using a saturation interval. This is investigated further in section
11.3.
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8.5 Understanding Saturation Patterns

From section 8.4 we learn that the average saturation of a neural network
increases with decreasing capacity. However, this insight does not provide
any information regarding the distribution of the saturation within the net-
work. In this section, we aim to build a basic understanding of the semantics
of saturation based on comparing logistic regression probe performance with
saturation values. To achieve this, we view the saturation and probe perfor-
mance values as a sequence in the order of the layers during the forward pass,
similar to the visualization of section 8.2. By visualizing these sequences, we
aim to build an understanding of how saturation is distributed among the
layers and what the implications of this distribution are. Furthermore, we
explore how these patterns are affected by the input resolution and difficulty
of the dataset. The goal of these experiments is to understand how saturation
is affected by different circumstances on a basic level, and whether there are
states of trained models that can be detected by saturation and are undesir-
able from an efficiency and/or performance perspective.

8.5.1 Methodology

We first test how stable a saturation pattern is when the same model is
trained across multiple datasets of varying difficulty. We train ResNet18 on
MNIST, Cifar10, TinyImageNet, and ImageNet. We chose these datasets since
they can be considered as being of ascending difficulty, based on the hetero-
geneity of the input data, the number of classes, and the typical accuracy
achieved by models on these datasets (Scheidegger et al. (2021)). For all
datasets, we train the model using the same hyperparameter configuration
(see Table 8).

Table 8: Hyperparameters for training ResNet18 on datasets of varying difficulty.

Parameter Values

Input Resolution (224× 224)
Epoch 30

Batch size 64

Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999

ADAM: epsilon 1e-8
ADAM: learning rate 0.0001

The data augmentation and preprocessing are the same as the experimen-
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tal setup described in section 8.4.1. Due to resource limitations, we do not
train logistic regression probes for this particular experiment.

To investigate the influence of the input resolution, we train ResNet18 on
Cifar10 on three different resolutions using the hyperparameter settings and
preprocessing described in table 8. The first model is trained on the native
resolution of Cifar10 of 32× 32 pixels, whereas the second model is trained on
224× 224 pixel resolution, and the final model is trained on 1024× 1024 pixel
resolution. The tested architectures were initially designed and optimized
for a 224 × 224 pixel input resolution. The largest and the smallest input
resolution are intentionally chosen to be very over and undersized to observe
the effect on probe performances and accuracy as clearly as possible. The
Cifar10 dataset was chosen since the native resolution of Cifar10 of 32× 32
pixels is rather small, thereby ruling out potential side effects by the addition
of details from an increased input resolution. We will analyze the distinct
effects of additional details and the input resolution in chapter 9.

To test the observed results for consistency, we reproduce these results on
MNIST and TinyImageNet. We also test this experimental setup and slight
variations of it on VGG16, ResNet34, and ResNet50. For the sake of read-
ability, this section does not depict these additional reproductions, since these
experiments only showcase that the observed behavior can be reproduced on
different datasets and models. The results of these additional experiments
can be found in appendix D.

8.5.2 Results

The results concerning the difference in dataset complexity can be seen in
figure 48. The depiction shows that the overall saturation increases with the
problem complexity. ImageNet causes the highest overall amount of satura-
tion per layer and is also the most complex dataset with 1,000 classes and a
high heterogeneity in the resulting images (Scheidegger et al. (2021)). MNIST,
on the other hand, can be regarded the simplest dataset, only consisting of
28× 28 pixel binary images belonging to 10 classes. The model trained on
MNIST is also the lowest saturated. Another observation made during this
experiment is that the overall pattern of how the saturation is distributed
does not substantially change in shape. From these observations, we can
conclude that the dataset has an influence on saturation. An increase in dif-
ficulty primarily causes an increase in saturation, possibly due to an increase
in processing required to advance the solution quality. This also implies that
problem difficulty and the capacity in each layer are related, since the lower
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capacity networks tend to have a higher average saturation (see section 8.4).
In later experiments (section 11.3) we will demonstrate that this property can
indeed be leveraged to optimize convolutional neural network architectures
by matching the model capacity and problem difficulty

Figure 48: Overall patterns increase in contrast, and the overall saturation increases when the
dataset is more difficult. This figure was previously published in Richter et al. (2022).

While the previous results demonstrate that the interaction of dataset and
neural architecture is reflected in the sequence of saturation values, we have
yet to identify specific patterns that are indicative of inefficiencies in the an-
alyzed model. To find such a pathological pattern, we proceed to study the
sequence of saturation values in a convolutional neural network and compare
these to the logistic regression probe performances obtained from the same
layers. In figure 49 we can see that an interesting pattern emerges when a
model is trained on a resolution of 32× 32 pixels, which is lower than the in-
put resolution the architecture is designed for, which is 224× 224 pixels in the
case of all architectures used for this experiment. Starting from layer "Conv8"
the predictive performance of the logistic regression probes has reached the
predictive performance of the softmax output of the trained model on both
datasets. The following layers thus no longer improve the quality of the inter-
mediate solutions. We can consider this an inefficiency in the trained model,
since the parameters of all layers past Conv8 are effectively unused as they
do not change the predictive quality of the model. This is also reflected by
the saturation of these layers, which is substantially lower in the unproductive
part between Conv8 and the output of the model compared to the layers in the
rest of the network. We refer to this saturation pattern as a tail or tail pattern,
due to its visual appearance when plotting the saturation values in the order
of the forward pass. Based on this observation and other tail patterns created
on the different dataset and neural architecture combinations (see appendix
D), we define a tail as follows:

A tail is a subsequence of at least 3 consecutive layers in a feed-forward neural
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architecture with an average saturation that is at least 50% lower relative to the
average saturation of the rest of the network.

This definition is imperfect and does not fit all patterns that we would
visually classify as being similar to a tail pattern. However, to test the im-
plications of the presence of such patterns, it is necessary to have a more
rigorous definition than purely visual observation.

(a) VGG16 trained on Cifar10

(b) VGG16 trained on MNIST

Figure 49: Examples of tail patterns from Conv8 to the output of the model. This pattern
emerges when training a model, in this case VGG16, optimized for high resolution, in this
case 224× 224 pixels, on a low input resolution, which is 32× 32 pixels in both scenarios.
Layers that are part of the tail pattern are substantially lower saturated relative to the rest
of the model, and the logistic regression probes stagnate at the performance level of the
final model. The probe performance indicates that these layers act as pass-through layers
and do not contribute to the quality of the solution, which can be regarded as a parameter-
inefficiency since these layers are effectively underutilized.

By studying the result in figure 50, we further observe that it is possible to
shift and remove the tail pattern by changing the input resolution. ResNet18

in figure 50a shows an unproductive tail similar to VGG16 in figure 49. When
oversizing the resolution to 1024× 1024 (see figure 50c), the tail is shifted to
the input of the model, with the result that these layers do not contribute
qualitatively to the inference according to the logistic regression probes. In
both cases, the predictive performance of the model is also substantially lower
than the same model trained on the design-resolution of 224 × 224 pixels.
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(a) 32× 32 (Cifar10 native resolution)

(b) 224× 224 (ResNet standard)

(c) 1024× 1024

Figure 50: Changing the input resolution changes how the inference is distributed among
the layers. The resolution ResNet18 that was designed for (b) distributes the inference most
evenly, while too small (a) and too large (c) resolution shift the bulk of the inference process
to early and later layers respectively, resulting in worse predictive performance.
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The drop is from 92.55% to 84.61% in the case of 32× 32 pixel images and to
86.77%, when trained on 1024× 1024 pixel images.

In summary, the results provide further evidence that saturation con-
tributes interesting insights to the inference process. We can see that more
complex problems, which could be argued to require more processing to be
solved as a consequence, increase the overall saturation of the model. Fur-
thermore, we can see that mismatches between input resolution and neural
architecture result in unproductive layers that consequently have substantially
lower saturation than the rest of the network (tail pattern). The latter provides
evidence that not only the absolute saturation value may be important, but
also the saturation values in a network relative to each other. The causes
for this resolution-dependent distribution of the inference process will be in-
vestigated in greater detail in chapter 9, where we will also provide further
evidence (section 9.2) that only higher saturated sequences of layers tend to
actively contribute to the inference process when saturation is distributed un-
evenly. In chapter 11, we will also show that removing the layers of the tail
pattern is an effective way to reduce overparameterization and increase com-
putational and parameter efficiency.

8.6 Conclusion

In this section, we investigated whether our PCA-based approximation
of the latent space can provide interesting insights on the inference process
of convolutional neural networks for the entire network and on a layer-by-
layer basis. We proposed the saturation metric and studied its properties
experimentally. We were able to show that the average saturation of models
is influenced by the problem difficulty and model capacity.

Furthermore, we identified a pathological pattern in the saturation values,
which is indicative of underutilized layers in the model. This pattern can be
described as a sequence of layers with substantially lower saturation values
than the rest of the model. Due to its appearance in the visualization, we
refer to this pattern as a "tail pattern". Based on the comparison with logis-
tic regression probes, it is possible to show that layers that are part of the
"tail" do not advance the quality of the intermediate solution and can thus be
considered as being underutilized and unproductive, thereby providing fur-
ther evidence that saturation can provide insights into the inference process.
We further demonstrated that the presence and location of tail patterns are
caused by a mismatch between neural architecture and input resolution.
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While saturation has shown promising results, further investigation is
needed to gain a more profound understanding of saturation and the rela-
tionship of model and input resolution, both of which are explored in chapter
9 and chapter 10. We will proceed to use saturation with logistic regression
probes as redundant metrics in future experiments to demonstrate the con-
sistency of the results. This is also relevant for demonstrating the usability of
saturation for practical applications, since saturation is computed live during
training with little overhead, while the training of logistic regression probes
often exceeded the computation time of the models themselves, thereby mak-
ing the former a substantially more practical tool to use in real-world appli-
cations than the latter.
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9 Exploring the Relationship Between Input Reso-

lution and Neural Architecture

The superior performance of convolutional neural networks in computer
vision can be attributed to the way they extract information from image data.
The information processing follows a bottom-up approach, whereby smaller,
less complex features extracted by earlier layers are successively combined to
larger and more complex features in later layers (see section 2.3). The recep-
tive field of a convolutional layer can be seen as an upper bound of the size of
features it can extract13. This property results in deeper layers being able to
detect larger patterns than earlier layers, since they can "see" an increasingly
wider area on the input image. This also means that the size of the input
image controls – to some degree – how the inference process is distributed
inside the network’s structure. In section 8.5, we demonstrate this using lo-
gistic regression probes and saturation. For any conventional CNN classifier,
the input images are resized to a standardized, square (often 224× 224 pixels)
input resolution, which means that there is also an upper limit to the useful-
ness of implementing increasingly larger receptive field sizes. The relevance
of this is demonstrated by Tan, Le (2019), who show that a network needs
to be scaled together with the input resolution to achieve good efficiency.
Independently, we also demonstrate experimentally in section 8.5 that convo-
lutional neural networks have a preferred input resolution, where over and
undersized images would perform suboptimally due to unproductive layers
that do not contribute qualitatively to the inference.

In this section, we investigate the relation of input resolution and neural
architecture further by answering the following questions:

• Does the size of the input image have an effect on the predictive per-
formance of CNN classifiers? Answer: yes, altering the resolution and
adding details improves performance independently of each other (sec-
tion 9.1).

• Does the size of discriminatory features14 influence how the information
is processed in the network? Answer: yes, we can show that processing

13In this work, we refer to the height and width measured in pixels (absolute size) as "size".
14We refer to any pattern depicted on images in the dataset that yields useful information

for solving the classification task as a discriminatory feature. We find this term less problem-
atic than "object of interest", since a classifier does not have a concept of "objectness", "object",
or "object of interest" and will thus opportunistically detect any feature if it helps to minimize
the cross-entropy loss. Furthermore, a classifier could be used to detect textures, scenes, or
other data that has no well-defined object of interest.

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG
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significantly differs depending on input size (section 8.5) and the size of
the depicted objects in a very similar way (section 9.2).

• Can we know in advance which layers will contribute to the quality of
the prediction based on the input size? Answer: For strictly sequen-
tial architectures the receptive field size allows for the identification of
unproductive layers (section 9.3).

• Do residual connections influence the observed behavior? Answer: Yes,
residual connections can help to involve more layers in the inference
process (section 9.4).

• Do the results have implications on neural architecture design? Answer:
Yes, we propose methods to optimize architecture before and after train-
ing (section 9.5).

The results of these sections were previously published in Richter et al.
(2021a).

9.1 The Effect of Input Resolution and Details on the Predic-

tive Performance

A simple explanation for the positive effects of larger input resolutions in
modern architectures like EfficientNet and GPipe on predictive performance
is the addition of more detailed information contained in the data, allowing
for better decision-making. This argumentation was brought forward by mul-
tiple authors over the years, including Szegedy et al. (2016); Tan, Le (2019)
and Szegedy et al. (2017). However, this explanation contradicts the results in
section 8.5, where we show that models perform substantially differently on
Cifar10 when the resolution is altered, even though the input resolution in all
scenarios is greater or equal to the native resolution of Cifar10. This means
that the addition of detail cannot explain the effect on the predictive perfor-
mance in this scenario. Based on these results, we hypothesize that the in-
fluence on predictive performance by input resolution and by the addition of
information (details) on the image are separate effects. We investigate this by
training models multiple times on high-native-resolution datasets using small
and large input resolutions. The third training setup will use the downsized
low-resolution input images upscaled to the large input resolution. This third
setup therefore maintains the large input resolution, while having no more

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG
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details than the low-resolution images. As our working hypothesis, we as-
sume that the addition of details is the only influencing factor when it comes
to predictive performance. If this hypothesis is true, the model trained on a
large input resolution will outperform the other two training setups, since it
has the most information content. The other two setups will perform equally,
since every image effectively contains the same information for both datasets.

9.1.1 Methodology

We train multiple models on the ImageNet-dataset and iNaturalist in three
different settings A, B, and C. Models of set A are trained on images with a
size of 224× 224 pixels, thereby providing the performance baseline. Set B
models are trained on images of size 32× 32. Based on our hypothesis, we
expect a drop in performance relative to A. Set C is trained on the images
used in set B up-sampled to 224× 224 pixels, thereby effectively keeping a low
amount of detail on higher resolution input images. According to the working
hypothesis, performance should not increase relative to group B. In any other
regard, the training setup is identical for all runs, using the hyperparameter
settings in table 9.

Table 9: Hyperparameters for the resolution experiments.

Parameter Values

Input Resolution (32× 32) and (224× 224)
Epoch 60

Batch size 64

Optimizer SGD
SGD: learn rate 0.1 (decayed every 20 epochs)
SGD: decay-factor 0.1
SGD: momentum 0.9
SGD: weights decay disabled

The preprocessing pipeline consists of a channel-wise normalization using
the same parameters for µ and σ as Krizhevsky et al. (2012). During train-
ing, the data is augmented by randomly cropping the image using a square
containing between 5% and 100% of the original image, in addition to hor-
izontal flipping. The same pipeline was used by He et al. (2016a), Szegedy
et al. (2016), and Simonyan, Zisserman (2015) and can be considered typical
for high-resolution datasets such as ImageNet and iNaturalist.

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG
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Table 10: Relative Top1-Accuracy: The table shows the predictive performance of trained
models relative to a baseline model. The baseline uses the same model and architecture
and is trained on images resized to 224× 224 pixels. Training the models on 32× 32 pixel
images results in less than half the predictive performance in all tested scenarios relative to
the baseline. Resizing the 32× 32 images back to 224× 224 results in a significant recovery
of lost performance in all tested scenarios, despite the fact that no information is added by
upscaling. These results were previously published in Richter et al. (2021a).

Model Dataset downscaled upscaled
32× 32 224× 224

VGG16 ImageNet 15.35% 66.08%
VGG16 iNaturalist 36.83% 58.38%
ResNet18 ImageNet 45.74% 67.39%
ResNet18 iNaturalist 30.4% 52.68%
ResNet50 ImageNet 28.21% 71.8%
ResNet50 iNaturalist 33.87% 54.38%
EfficientNet-B0 ImageNet 19.32% 64.45%
EfficientNet-B0 iNaturalist 15.34% 63.79%

9.1.2 Results

From the results in table 10 we can conclude that decreasing the resolu-
tion has a negative effect on performance. Using up-sampled versions of these
low-detail images for training partially regains the lost performance. Based
on these results, we conclude that the size of the input images is an addi-
tional factor to the amount of information contained in the image, thereby
influencing the accuracy of the model.

9.2 The Role of the Size of Discriminatory Features in the

Relation of Model and Input Resolution

In the introduction of chapter 9, we briefly elaborated on how the recep-
tive field size influences the distribution of the inference among the layers by
limiting the size of features that can be recognized by a layer. Since the input
resolution implicitly changes the size of discriminatory features (measured
in pixels), we can deduct that the expansion of the receptive field could be
responsible for the saturation patterns observed in section 8.5.

We test how the size of discriminatory features influences the formation
of saturation patterns by restricting them to a local area on the image. We do
this by training three distinct models using similar setups. The first model
is trained on resized 160× 160 resolution images of Cifar10, while a second
model is trained on the native Cifar10 resolution of 32 × 32 pixels. These
models serve as references for high and low-resolution saturation patterns. A

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG
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third model is trained on Cifar10 images in their native resolution, but placed
randomly on a 160× 160 canvas. While the images that this model is trained
on are of high resolution, the discriminatory features are restricted to an area
of 32× 32 pixels, whereas the remaining image carries no information. If the
size of the discriminatory features influence how saturation patterns form, we
would expect a similar tail pattern from the model trained on 32× 32 pixel
images and the model trained on the Cifar10 images on the 160× 160 pixel
canvas.

9.2.1 Methodology

We train the models on the same setup as in section 8.5, differing only in
the resolution in two out of three experiments. As previously mentioned, the
first two experiments act as baselines and differ only in the input size. The
first model is trained on 160× 160 pixel input size, while the second model is
trained on 160× 160 pixel inputs. The third model is trained on input images
consisting of a 32× 32 black canvas that contain a single Cifar10 image at a
position with coordinates uniformly drawn from [0, 128] for the top left pixel
that serves as a placement-anchor. By doing so, the Cifar10 image on the can-
vas is never truncated, thus guaranteeing that the object of interest is always
restricted to the same area as in Cifar10. The random position was chosen to
avoid biases that could be caused by always placing the object of interest in the
center (or any other) fixed position on the image. This position is chosen as
the first step of the preprocessing pipeline during training and inference. The
random position likely makes the problem more difficult and will thus affect
the predictive performance. However, we can neglect this for this particular
setup since we are primarily interested in the emerging saturation patterns
and not in any changes concerning the predictive performance. We chose the
Cifar10 dataset for its small input resolution and repeat the experiment on
MNIST to demonstrate that the results are reproducible on other datasets (see
Appendix E). The experiments are conducted on ResNet50 (Cifar10), VGG16

(MNIST, Cifar10), and ResNet18 (Cifar10) to reproduce the observed phenom-
ena on models of different structures and depths. The results are analyzed
using saturation (computed during the final epoch of training) in addition to
probe performances, which serve as a redundant measurement to saturation.
We expect the behavior of these two measurements to yield similar results
and primarily chose to use both techniques for redundancy and to demon-
strate the consistency of the observed relations between probe performance
and saturation patterns initially presented in section 8.5.

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG
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9.2.2 Results

As expected, the saturation patterns of the two baseline models (figure 51c
and figure 51a) are very differently distributed, which is also reflected in the
logistic regression probes. The model trained on the smaller resolution ex-
hibits a tail pattern at the beginning of the network, while the model trained
on the higher resolution does not, as is expected based on the results of sec-
tion 8.5. The saturation of the model trained on the canvas-images in figure
51b is similar in shape to the 32× 32-pixel baseline model (figure 51a). The
low saturated tail starts on convolutional layer 8 (Baseline) and 9 (Canvas)
respectively.

However, there are also some deviations between the saturation patterns
in figure 51a and figure 51b that need to be addressed. First, the overall lower
saturation in absolute values needs to be considered. We suspect that this can
be attributed to the fact that the black canvas that the image was placed in
drastically reduces the size of the gradient. We hypothesize that this is also
the reason for the sub-optimal performance of the model, combined with the
added difficulty of the object of interest being randomly placed on the image.
The latter is also the suspected cause for the slightly shorter tail of the model
since the information is ingested slower when it is not centered on the image,
as the receptive field expands out of bounds on some edges earlier than oth-
ers. This does not detract from the key observation made in this experiment,
namely that the formation of a tail pattern is not caused by the resolution of
the image but rather by the size of the discriminatory features. Differently
sized discriminatory features are processed by different layers, and this does
not change even if the input resolution changes. However, we proceed to
use the input resolution as an approximation of the size of the largest dis-
criminatory features in future experiments. We decide to do so, since it is
impossible to primitively compute the size and shape of discriminatory fea-
tures that the models may learn to detect. Using an object size like a bounding
box as an estimation would also be possible, but it would further complicate
the computation, since such object sizes would be different for every image.
Furthermore, a classifier has no concept of "object" and therefore will simply
detect any pattern regardless of any context that a human would perceive as
an object.

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG
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(a) 32× 32 without canvas

(b) 160× 160 with canvas

(c) 160× 160 upsampled

Figure 51: A tail of unproductive layers can be produced by placing the Cifar10 images on
a 160× 160 pixel canvas (b). This indicates that the locality of discriminatory features (es-
sentially the size of the object) is responsible for the observed effect on the inference process.
These figures were previously published in Richter et al. (2021a).

9.3 Receptive Field Size and Tail Patterns

From the previous section, we can derive that features of different sizes are
recognized by different layers in the model. In this section, we investigate the
causes of this phenomenon from an architectural point of view. From the per-
spective of the architecture, the receptive field of a layer can be considered as
an upper bound for the size of recognizable features. Since the receptive field
expands with every layer that has a stride and/or kernel size > 1, increasingly
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larger features can be recognized. We hypothesize that for simple, sequential
architectures like the VGG-family of networks 15 the receptive field is the
dominating factor that influences the presence and position of unproductive
subsequences of layers. We test this hypothesis by studying the relationship
of the receptive field, saturation, and probe performance, with the goal of
finding a regularity that allows us to predict which subsequence of layers will
be unproductive. For this experiment, we assume that the expansion of the
receptive field promotes a greedy strategy of information integration. This
means that a layer will always try to integrate all novel information available
to it and will only use this mechanism to improve the quality of the solution.
Based on this assumption, we can define a clear border rl−1 > I, where rl−1

is the receptive field size that the input of the layer l is based on and I is the
input resolution. We refer to the first layer that fulfills this property as the
border layer. In a sequential architecture, this layer would be the first layer to
be unproductive (dropping saturation, no probe performance improvement
relative to the previous layer), since it – and any following layer – cannot
integrate additional information by expanding the receptive field.

9.3.1 Methodology

We investigate the above aspects by conducting two distinct sets of exper-
iments. The first set of experiments is conducted on Cifar10 using the entire
VGG-family of networks, and thus consisting of VGG11, 13, 16, and 19. The
training setup utilizes the following hyperparameters:

Table 11: Hyperparameters for the experiments conducted on the VGG-family of networks
and the modified VGG and ResNet models.

Parameter Values

Input Resolution (32× 32)
Epoch 60

Batch size 64

Optimizer SGD
SGD: learn rate 0.1 (decayed every 20 epochs)
SGD: decay-factor 0.1
SGD: momentum 0.9
SGD: weights decay disabled

We compute the receptive field, probe performances, and saturation val-

15We define a simple architecture as a sequential architecture only consisting of convolu-
tional and (global) pooling layers. Convolutional layers may contain dropout, batch normal-
ization, and non-linear activation functions.
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ues for each layer. We choose the VGG family of networks for their archi-
tectural simplicity, which, we believe, will yield more clearly visible results.
We train the model on the Cifar10 dataset using the dataset’s native resolu-
tion of 32× 32 pixels to guarantee the emergence of a tail pattern on all four
architectures. To further study the behavior of the differences between the
layers of the tail and rest of the network, we train logistic regression probes
on every position of every feature map of VGG16. By plotting these probe
performances as heatmaps, we can observe how much information each po-
sition of a feature map contains. To make these heatmaps easier to read, we
depict the relative accuracy, which is the probe test accuracy relative to the
model test accuracy. For readability, we only provide a few selected layers in
the results of these experiments. All heatmaps can be found in the appendix
G, alongside a repetition of the same experiment on ResNet18. To confirm the
observations made during these experiments, we repeat the experiments and
analysis conducted on the VGG family of networks on a modified version of
VGG19 with dilated convolutions instead of regular convolutions. The convo-
lution’s dilation rate is 3 for all layers and the pooling layers are not dilated.
Another repetition is conducted on ResNet18 with removed skip connections,
which makes it a sequential architecture similar to VGG19. We do this to
observe whether the observed regularities can be reproduced when applied
to other architectures that use components that affect the receptive field and
that are different from the ones used in the VGG-network family. In the case
of the modified VGG19, the component is the dilated convolution operation,
which effectively increases the kernel size in each layer to a 9× 9 kernel. The
ResNet18 variant features several such components. First, convolutions with
stride = 2 are used instead of max-pooling layers for downsampling, a stem
consisting of two layers (see section 3.3.2) and a different (more even) spac-
ing of downsampling layers compared to the VGG-network family. We add
the receptive field as an additional graph to our plot and mark the border layer
with a black vertical bar. We define the border layer as the first layer to receive
an input based on a receptive field size rl−1 bigger than the input resolution
I: rl−1 > I. Since the size of the receptive field grows monotonically over the
sequential structure of the network, every layer after the border will fulfill the
same property and will thus be unproductive.

As a final analysis, we also train logistic regression probes on every indi-
vidual feature map position to obtain a heatmap showing how far the partial
solutions have progressed. The goal of this experiment is to get another view
of the processing inside a layer that can show us the differences between the

Adapted by permission from Springer: ICANN 2021. Lecture Notes in Computer Science,
vol 12892 Richter et al. (2021a), © 2021 Springer Nature Switzerland AG

120



productive and unproductive layers.

9.3.2 Results

For the tested sequential neural architectures of the VGG-family, the bor-
der layer predicts the start of unproductive layers precisely, as we can see in
figure 52, which confirms our suspicions regarding the greedy integration of
novel information and its relevance in advancing the intermediate solution
quality during the forward pass.

We further investigate this observation by testing additional sequential ar-
chitectures with properties that alter the receptive field size in ways different
from previously tested VGG-models. These architectures are the previously
described VGG19 variant with dilated convolutions and the ResNet18 variant
with removed skip connections.

In figure 53, the results for these variants show that it is still possible to
predict the border layer accurately, even when stems, a different spacing in
downsampling layers, strided convolutions (ResNet18 depicted in figure 53

(a)) and dilated convolution (VGG19 depicted in figure 53 (b)) are used to
influence the size of the receptive field. We see this as a further confirmation
of our hypothesis.

Finally, we investigate how the solution develops inside the feature maps
of different parts of the network. For this, we inspect the logistic regres-
sion heatmaps in figure 54 that are generated from training logistic regression
probes on every individual feature map position and plotting their test per-
formance relative to the model performance. Effectively, the plot visualizes
the quality of the partial solutions contained in every position of the feature
map based on their position. The central positions on the feature map gener-
ally perform best in early layers, while outer positions perform increasingly
worse, with the corner positions generally being the worst. We suspect that
the receptive field is at least partially responsible for this, since outer posi-
tions on the feature map will receive more black padding as input and thus
less information with the receptive field expansion as a center pixel.

Another interesting observation in figure 54 (b) is that the center-most po-
sitions on the feature map contain partial solutions roughly equivalent to the
performance of the entire model. As the saturation drops and layers become
part of the low saturated tail, the partial solution quality becomes increasingly
homogeneous across the feature map positions. In the final convolution layer
depicted in figure 54 (d), the probe performance of all feature map positions
is approximately equal to the predictive performance of the model. Based on
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these measurements, we conclude that this homogenization of partial solution
quality is also responsible for the drop in saturation.

We can thus conclude, based on these observations, that simple, sequen-
tial neural networks may develop two stages of inference when the image is
smaller than the receptive field size of the model. The first of these is the
solving stage, where the data is processed incrementally to achieve loss mini-
mization. The second stage, starting from the border layer, is the compressing
stage. This stage compresses the latent space by homogenization of the partial
solutions for every position in the feature map.
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(a) VGG11—border layer at layer 6
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(b) VGG13—border layer at layer 7
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(c) VGG16—border layer at layer 8
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(d) VGG19—border layer at layer 8

Figure 52: By analyzing the receptive field size, the start of the unproductive convolutional
layers within the network architecture can be predicted. The border layer, marked with a black
bar, separates the part of the network that contributes to the quality of the prediction from the
part that does not. The border layer is the first layer with a rl−1 > I, where I is the maximum
value of either the height or the width of the input image and rl−1 refers to the receptive field
the layer’s input is based on. Here, Cifar10 with the resolution of 32× 32 pixels is used, and
therefore I = 32. These figures were previously published in Richter et al. (2021a).
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(a) ResNet18 (no res. connections)—border layer at layer 5
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(b) VGG19 (dilation=3)—border layer at layer 5

Figure 53: ResNet18 exhibits the same patterns observed in figure 52, when the skip-
connections are removed (a). Increasing the receptive field by dilating convolutions (b) for
VGG19 produces results consistent with figure 52. These figures were previously published
in Richter et al. (2021a).

(a) Pre Border (b) Border (c) Post Border (d) Last Layer

Figure 54: The heatmaps display the relative performance of probes trained on individual
positions of the feature map to the performance of the model. The partial solutions contained
in every feature map position improve from the image borders to the center, since the center
can integrate the most information by expanding the receptive field (a). Once the border layer
is reached (b), the partial solutions in the center reach the quality of the model prediction.
In the following layer (c, d) the other partial solutions reach a similar quality. Effectively, the
tail layers homogenize the partial solution quality of their feature maps. These figures were
previously published in Richter et al. (2021a).
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9.4 The Impact of Residual Connections on the Relation of

Receptive Field Size and Tail Patterns

Residual connections are a popular component used in many neural archi-
tectures (He et al. (2016a); Huang et al. (2017); Szegedy et al. (2016); Tan, Le
(2019)). According to He et al. (2016a), the networks with residual connections
can add "deltas" to the existing representation of the data rather than trans-
forming it entirely, thereby leading to a more distributed inference process.
Explaining this property from a receptive field point of view, the residual con-
nection itself does not expand or change the receptive field. However, after
the residual connection is added to the output of a convolutional layer, infor-
mation based on multiple receptive field sizes is present in the feature map.
This theoretically allows features based on lower receptive field sizes to "skip"
layers and to be processed later in the network, resulting in the network being
able to distribute the inference on more layers.

The aforementioned claims about the effects of residual connections sug-
gest that models utilizing residual connections can utilize layers for improving
the prediction after the border layer. This would also suggest that skip con-
nections allow the neural network to integrate information in a less greedy
manner, which is different from the previously tested sequential architectures
in section 9.3. We investigate this by analyzing ResNet-style models in the
same manner as the VGG-style models in section 9.3.

9.4.1 Methodology

We train two variants of ResNet18 and 34 on the same setup, using the
same analysis techniques that were previously described in section 9.3.1. We
also repeat the experiments concerning the probe-heatmaps for every layer.
However, we omit these when discussing the results, since they only provide
further evidence for the consistency of the findings from previous observa-
tions but do not add any interesting additional insights beyond this. The
heatmaps can be found in appendix G. The first version of the ResNet mod-
els is the ImageNet optimized version of the architectures as proposed by He
et al. (2016a). The second variants are Cifar10 optimized versions of the same
architectures, also proposed by He et al. (2016a). The Cifar10-variants only
differ from the original architecture in the stem, which is replaced by a sin-
gle 3× 3 convolution with 64 filters and a stride size of 1, thereby effectively
reducing the receptive field by approximately a factor of 8 in every subse-
quent layer. We deliberately chose the smallest version of the ResNet models
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for two primary reasons. First, ResNet50 and beyond use the "bottleneck"
blocks instead of the residual block, which features 1× 1 convolutional layers
for dimension reduction and expansion. We do not want dimension reduc-
tion and expansion inside the building blocks to influence these experiments,
since we focus strictly on the residual connection. The residual connections
in ResNet18 and 34 are therefore the only major deviation in the architec-
tures that was not previously tested to be consistent with the observations
in section 9.3. Secondly, the large number of layers for ResNet50, 101, 152,
and 1000 makes the analysis much more computationally intensive and the
visualizations harder to interpret.

9.4.2 Results

(a) ResNet18)—border layer at layer 5

(b) ResNet34)—border layer at layer 5

Figure 55: Residual connections allow networks to utilize layers past the border layer (marked
with the horizontal bar). The zig-zag-pattern and drops of probe performances observed in
both networks are artifacts previously observed by Richter et al. (2021c) and Alain, Bengio
(2017). These indicate that the networks attempt to "skip" the convolutional layers in the low
saturated tail. It is also worth noting that these skips are only present on later layers that are
part of the tail. These figures were previously published in Richter et al. (2021a)
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We can confirm our hypothesis by looking at the results in figure 55. Both
networks improve the probe performances and stay highly saturated long
after the border layer has processed the data. We can attribute this behavior
to the residual connections, since we tested ResNet18 without them in the
previous section (see figure 53), which resulted in behavior consistent with
other sequential architectures (and lower performance).

While the presence of residual connections has a positive effect on the pre-
dictive performance of ResNet18 (84.61% accuracy with and 79.05% accuracy
without residual connections), the performance still remains worse than the
performance of the previously tested VGG-style models (see section 9.3). We
attribute this to the lower overall receptive field size of these models. VGG19

(the VGG-model with the largest receptive field size) has a receptive field of
252 pixels in the final convolutional layer of the feature extractor. ResNet
models utilize a stem that drastically increases to the receptive field growth
from layer to layer. For this reason, the receptive field size of the final layer of
ResNet18’s feature extractor has a receptive field size of 413, despite having
roughly the same number of layers as VGG19. ResNet34 has a receptive field
size of over 800 pixels. All in all, we deduct from this that while residual con-
nections distribute the inference process better among the network, they do
not result in tail-pattern resistant models. Thus, it is still relevant for ResNet-
style models to have an input resolution close to the receptive field size of the
final layer of the feature extractor to achieve good predictive performance at a
high parameter-efficiency—despite apparently having a higher tolerance for
mismatches than sequential architectures.

To demonstrate this, we improve the predictive performance and parameter-
efficiency of the (ImageNet optimized) ResNet18 and 34 by reducing the size
of the receptive field. This was implicitly done by He et al. (2016a), who
proposed a Cifar10 optimized variant in addition to the ImageNet optimized
versions of ResNet. The Cifar10 variant of ResNet has no max-pooling layer,
and the first layer has its stride size in kernel size halved. By doing so, the
receptive field of ResNet18, for example, was reduced from 413 (ImageNet
optimized) to 109 pixels (Cifar10 optimized). The effect of these reductions
can be seen in figure 56: the proportion of low saturated layers is drasti-
cally reduced for both models, and the inference process is now well/more
evenly distributed. Thus, the performance in both cases increases compared
to the ImageNet optimized models. The accuracy of ResNet18 improves from
84.61% (ImageNet optimized) to 91.95% (Cifar10 optimized) and ResNet34

improves from 82.76% to 92.21%.
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(a) Cifar10 optimized ResNet18—border layer at layer 13

(b) Cifar10 optimized ResNet36—border layer at layer 13

Figure 56: The Cifar10 optimized version ResNet18 and 34 has a roughly quartered receptive
field size in every layer. These networks still display similar behavior to the ImageNet opti-
mized version when it comes to the border layer. However, the reduction in the receptive field
size has further removed the low saturated tail and in both cases leads to a steady increase
in performance over the entire network’s structure. These figures were previously published
in Richter et al. (2021a)

9.5 Conclusion and Implications for Neural Architecture De-

sign

9.5.1 A Priori

From the observations made in this work, we can derive some basic guide-
lines regarding the design of neural architectures. In section 9.3, we show that
sequential models stop improving the intermediate solution qualitatively at
the border layer. The border layer is the first layer to receive input from a
layer with a receptive field size greater than the input resolution. Since the
receptive field size is known beforehand, we can adjust the architecture be-
fore training, such that the receptive field matches the input resolution, and
thereby avoiding the emergence of unproductive layers a priori. We will re-
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fine and expand on this implication in chapter 10 and derive guidelines for
neural architecture design in chapter 11.

9.5.2 Post Hoc

In section 9.2, we also show that the size of the discriminatory features
is the underlying reason for the observed behavior. Therefore, an implicit
assumption is that the size of the largest discriminatory features is (almost)
as large as the image. Since the object of interest is usually depicted very
prominently in classification tasks, this assumption can be regarded as true for
popular classification datasets such as Cifar10, MNIST, iNaturalist, ImageNet,
and Food101 but not for classification tasks in general. If the assumption is
not true for a given dataset, more layers may be part of the unproductive
tail. However, since saturation can be computed live during training (see sec-
tion 6.1.3), it requires little overhead to analyze the network for tail patterns
during and after training, thereby allowing more informed decision-making
based only on a single trained model. When a tail is detected, the archi-
tecture can be adjusted and retrained accordingly (see examples in figure 56).
Alternatively, the unproductive layers can be replaced by a new classifier com-
posed of a GAP and softmax layer, which is subsequently fine-tuned on the
trained model stump. The latter is effectively equivalent to training a logistic
regression probe on this layer. The effectiveness of this simple optimization
technique is demonstrated in chapter 11.
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10 Predicting Architectural Inefficiencies in Con-

volutional Neural Networks

Logistic regression probes (Alain, Bengio (2017)) and saturation (see chap-
ter 7) were shown to be useful techniques for analyzing convolutional neural
networks for inefficiencies (see chapter 9). In section 8.5, we demonstrate that
tail patterns 16 are an indicator for unproductive subsequences of layers in
the network that do not contribute qualitatively to the inference result. In
section 9.3, we also show experimentally that the receptive field expansion
in sequential convolutional neural networks17 can predict these unproductive
sequences of layers when analyzed together with the input resolution of the
model. However, we also provide evidence that these predictions are only
accurate for strictly sequential architectures (see section 9.4). This limitation
is problematic, since architectures that feature multiple sequential paths from
input to output like ResNet by He et al. (2016a), InceptionV3 by Szegedy et al.
(2016), AmoebaNet by Real et al. (2019), and EfficientNet by Tan, Le (2019)
have emerged as the norm in state of the art convolutional neural networks.
Furthermore, attention-mechanisms (see section 3.3.6) such as squeeze and
excitation modules (Hu et al. (2018)) are a popular add-on to these architec-
tures to improve their predictive performance (Sandler et al. (2018), Howard
et al. (2019), Tan, Le (2019)). The effects of these add-ons on the distribution
of the inference process are unknown at this point.

In this section, we expand the predictability of unproductive layers to
multipath-networks and to models that feature attention mechanisms. This
allows us to not only predict tail-patterns for ResNet-like architectures with
skip connections, but also for arbitrary feed-forward convolutional neural net-
work architectures.

We first investigate attention mechanisms that technically induce global in-
formation into the feature map by multiplying dynamically generated weights
on the output of certain layers.

We then move on to multipath architectures. We can expand the pre-
dictability of border layers to multipath architectures by using the novel con-
cept of the minimum receptive field rl,min to predict the border layer bmin. This
refined border layer provides accurate predictions for tail patterns on sequen-
tial and multipath architectures. The details on the computation of rl,min are

16Low saturated subsequences of neural network layers
17Sequential architectures can be described as a sequence of layers leading from the input

to the output
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described in section 4.4.
The experiments and results of this section were published separately in

Richter et al. (2021b).

10.1 Attention Mechanisms and Their Effect on the Inference

Process

Attention mechanisms such as Squeeze-and-Excitation-Modules (SE-Modules)
and Spatial Attention Modules (SA-Modules) are added to existing neural ar-
chitectures to boost their predictive performance (Howard et al. (2019); Hu
et al. (2018); Tan, Le (2019)) by applying a multiplicative weight to the feature
map. These weights are computed from the same feature map by a secondary
pathway (for further details, see section 3.3.6). Attention mechanisms heavily
make use of down and upsampling, thereby encoding global information in
the dynamically generated attention-weights. Since we have demonstrated
in chapter 9 that the receptive field and therefore the locality of information
encoded in a feature map has a strong influence on how the inference is dis-
tributed among the network’s layers, the use of attention mechanisms could
hypothetically have an influence on the inference dynamic as well. For this
reason, we investigate the influence of these add-on type attention mecha-
nisms on the inference process of neural architectures. Our working hypoth-
esis is that the addition of SA-Modules, SE-Modules, or both (also referred
to as CBAM) to each building block has an impact on the distribution of the
inference process. Since these modules deliver (theoretically) a more global
context to the individual feature map positions, for our working hypothesis
we expect that the tail patterns increase in size, meaning that additional layers
will be part of the tail according to probes and saturation.

10.1.1 Methodology

For testing this hypothesis, the attention mechanisms SE-Modules by Hu
et al. (2018), SA-Modules, and CBAM by Woo et al. (2018) are added to a
ResNet18 architecture. To ensure that there are no unexpected interactions
between skip connections and attention mechanisms, additional ResNet18 ar-
chitectures with attention mechanisms but with disabled skip connections
were trained. We refer to the ResNet-variant with disabled skip connections
as ResNet18NoSkip. As in previous experiments, the training is conducted on
Cifar10. For comparing the results, the logistic regression probes accuracy pl

and the saturation sl are computed. It is important to note that additional lay-
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ers added by the attention mechanism used are omitted to make the sequence
of values comparable.

All models are trained on Cifar10 using the native resolution to promote
the emergence of tail patterns during training.

Table 12: Hyperparameters used for training the ResNet variants with different attention
mechanisms.

Parameter Values

Input Resolution (32× 32)
Epoch 60

Batch size 128

Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999

ADAM: epsilon 1e-8
ADAM: learning rate 0.0001

The preprocessing and data augmentation are conducted as follows: The
images are channel-wise normalized with µ = (0.4914, 0.4822, 0.4465) and
σ = (0.2023, 0.1994, 0.2010), which is a procedure proposed by Krizhevsky
et al. (2012). At training time, the images are first cropped randomly with
a 4 pixel zero-padding on all edges. The size of the crop is 32× 32 pixels.
Subsequently, the crops are randomly horizontally flipped with a probability
of 50%. Finally, the images are resized to the input resolution. The images
of the training set are reshuffled after each epoch. The models’ weights are
initialized using the Kaiming-He initialization proposed by He et al. (2015),
which is used for all models throughout this work.

Since we are interested in seeing how the inference has shifted, the satu-
ration and probe performances are only computed on the main path of the
network and not on the added attention modules. Furthermore, the attention
mechanism is multiplied with the weights and thus acts as a dynamically
generated weight, which makes the probe performance less meaningful since
the attention modules are not meant to directly make the data more linearly
separable.

10.1.2 Results

Based on the result in figure 57, we can see that the observed patterns
in logistic regression probe performances and saturation are very similar for
ResNet18NoSkip. Most importantly, the low saturated tail starts at the same
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point for the baseline architecture and for all tested variants with attention
mechanisms. This indicates that while attention modules technically enrich
the data with more global information, they do not similarly expand the re-
ceptive field, which would result in an observable shift of the low saturated
tail since information from a wider receptive field is available earlier. We
can see that the same can be said for ResNet with enabled skip connections
(see figure 57). It is interesting to see, however, that the layer skipping ob-
servable in Block6-Conv2 and Block8-Conv2 is apparently reduced by spatial
attention and CBAM (which partially consists of spatial attention). However,
the phenomenon cannot be directly linked to any improvements in the pre-
dictive performance. Furthermore, the skipped layers still do not contribute
qualitatively to the inference process.

Based on these results, we can conclude that while attention can have a
positive impact on the predictive performance, it does not affect where the
information is processed in the network. This also indicates that the layers
process features of similar sizes regardless of the use of attention mechanisms.
However, it could be argued that this is somewhat expected, since attention
mechanisms are meant as a dynamic weighting mechanism that does not di-
rectly contribute information to the intermediate solution. Attention mech-
anisms rather prioritize information by multiplying dynamically generated
weights to the feature map, thereby improving the feature representation in
the process.
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(d) Saturation values sl for ResNet18 with disabled skip connections

Figure 57: The attention mechanisms Squeeze-and-Excitation modules (SE), spatial attention,
and CBAM added to the ResNet 18 architecture with skip connectors (a, b), and without
skip connectors (c, d). Attention mechanisms neither change the logistic regression probes’
accuracy nor their saturation value. This indicates that attention mechanisms aid the feature
extraction for the receptive field size present, but do not change the size of features extracted.
These figures were previously published in Richter et al. (2021b).
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10.2 Characteristics of Multipath Architectures

In section 9.3, we demonstrated that it is possible to predict unproductive
sequences of layers for sequential neural networks. However, with the defi-
nition of a receptive field used in chapter 9, we were unable to expand the
predictive power of the border layer to non-sequential architectures, which are
currently the most prevalent architecture in convolutional neural networks
(Khan et al. (2020)). In this section, we expand the prediction of accurate
border layers to multipath architectures by introducing the border layer bmin

based on the minimum receptive field size rl,min.
We have previously shown in section 9.4 that simply using the receptive

field as the spatial upper bound is insufficient to predict the border layer
for ResNet18 and 34. We hypothesize that this is caused by the presence of
information based on multiple different receptive field sizes in the feature
maps. In turn, this is caused by the multitude of pathways information can
take from the input to the layer in question. In essence, the possible receptive
field sizes present in a layer l exist within an interval (rl,min, rl,max), where
rl,min is the smallest and rl,max the largest possible receptive field size present
in the layer l. Both the upper and the lower bound of the receptive field in
a given layer can be obtained by calculating the receptive field sizes of all
possible sequences of layers leading from the input to the layer l and picking
the minimum and maximum value respectively. For further details regarding
the minimum receptive field size rl,min and the maximum receptive field size
rl,max we refer to section 4.4.1, where this topic is discussed in greater detail.

We investigate whether a multipath architecture behaves similarly to ResNet
in the sense that the border layer based on rl,max and the way it was computed
in section 9.3, cannot predict the start of tail patterns. We refer to the border
layer as it was computed in section 9.3 as bmax. Second, we are interested
in learning more about the relationship of the tail pattern and rl,min. In sec-
tion 9.3, we established that the tail pattern effectively starts at the first layer,
which is unable to enrich feature map positions by adding additional context.
We hypothesize that this border is as accurate as bmax for sequential archi-
tectures, since information in any layer of a sequential architecture is always
based on a single receptive field size. Hence, effectively bmin = bmax in the
case of sequential architectures. However, in a multipath architecture this is
not the case, since rl,min = rl,max cannot be guaranteed for all layers l. Theoret-
ically, the feature map can still be enriched with novel information until there
is no information based on a receptive field size present, which is smaller
than the input resolution. However, this is only the case if rl−1,min < I. For
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(a) Overall structure

(b) Module A (c) Module B

Figure 58: The architecture used for the experiments in this section. Each stage consists of
k blocks and has double the filters of the previous stage. The first layer of each stage is a
downsampling layer with a stride size of 2. The building block for the shallow architecture
MPNet18 is depicted in (a), and the building block of the deep architecture MPNet36 is
depicted in (b). These figures were previously published in Richter et al. (2021b).

this reason, we also compute the border layer bmin based on the lower bound
of the receptive field size rl,min. We define bmin as the first layer in a sequence
with rl−1,min > I and with all layers in this sequence leading from bmin to the
output fulfilling the same condition. Essentially, we define the border layer as
the first layer in a sequence of layers leading to the output that can no longer
enrich information on the input feature map by expanding the receptive field.
The central hypothesis we investigate is that the tail pattern will start at bmin,
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since bmin will accurately predict the tail pattern for multipath architectures.

10.2.1 Methodology

To properly visualize and analyze the result, a simple multipath archi-
tecture is required that can serve as a "model organism" for non-sequential
architectures, similar to the VGG family of networks in previous experiments.
This basic architecture is depicted in figure 58. It follows the design conven-
tions concerning downsampling and the general structure utilized in various
architectures such as ResNet, VGG, Inception-ResNet, EfficientNet, and many
others (He et al. (2016a); Simonyan, Zisserman (2015); Szegedy et al. (2017);
Tan, Le (2019)). The networks have 4 stages consisting of building blocks with
similar filter sizes (see figure 58 (a)). The first layers in each stage are down-
sampling layers that reduce the size of the feature maps by having a stride size
of 2. We use two distinct building blocks for two architecture variants. The
first, shallow variant uses the small building block depicted in figure 58 (b).
It consists of a 3× 3 convolutional path and a 7× 7 convolutional path, which
are combined again by an element-wise addition. The second, deeper variant
uses the building block depicted in figure 58 (c), which features a different
number of layers in each pathway and thus a larger difference between rl,min

and rl,max for most layers. The convolutional layers utilize same-padding,
batch normalization, and ReLU-activation functions, which can be considered
standard for many common architectures. We choose element wise addition,
since it does not increase the number of filters like concatenation and there-
fore does not require the use of 1× 1 convolutions for dimension reduction,
which could induce noisy artifacts in the analysis. The two distinct pathways
with distinct kernel sizes make it easy to compute the path of the largest re-
ceptive field pmax and the path of the shortest receptive field pmin, which can
easily be visualized without leaving out layers that are part of neither path-
way, which would happen in more complex architectures such as GoogLeNet
and InceptionV3 (Szegedy et al. (2015, 2016)). The shallow variant uses two
of these building blocks for each of the stages and is therefore 18 layers deep
with a total of 34 layers and utilizes the module depicted in figure 58(b). The
deeper architecture uses double the amount of building blocks per stage and
utilized the module depicted in figure 58(c). We chose the layout to observe
whether changes to the number of layers and a stronger deviation in the re-
ceptive field sizes within a module affect the distribution of the inference
process in unexpected ways.

We reuse the same experimental setup from section 10.1 regarding training
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and evaluation. However, we visualize the receptive field rl, saturation sl

and probe performance pl for the path of the largest receptive field and the
path of the smallest receptive field. These paths are sequential in nature and
only share the first and last layer of the model. We refer to the sequence of
probe performances and layer saturation as pl,min / pl,max and sl,min / sl,max

respectively, analog to the designation of the receptive fields in both paths
through the network.

10.2.2 Results

From the results in figure 59 we can see that in both architectures the
probes of both pathways perform in a very similar way. Interestingly, the bor-
der layer bmax based on the largest receptive field has no apparent effect in
the development of the solution quality. This behavior was predicted by our
working hypothesis, where we suspected that a multipath architecture would
behave similarly to ResNet18 and ResNet34 in the experiments of section 9.4
regarding the border layer. However, the border layer bmin of the smallest
receptive field exhibits the same behavior that was observed for the border
layer in sequential architectures. This supports the notion that the integration
of novel information is critical for the improvement of the solution. How-
ever, it also shows that layers still greedily integrate all available information
as soon as possible into a single position on the feature map. Multipath ar-
chitectures can better distribute the inference process, primarily because they
intentionally provide information with rl−1,min < I, which allows layers after
bmax to expand the receptive field that some information in the feature maps
is based on, even though information with a larger receptive field size may
already be present in the layer.

These results are also consistent with the results of sequential neural ar-
chitectures, since bmin = bmax for sequential neural architectures. This is the
case because information based on only one receptive field size is present in
any given layer rl,min = rl,max = rl for sequential neural architectures.
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(a) Small Multipath Architecture
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(b) Large Multipath Architecture

Figure 59: The border layer computed from the smallest receptive field size bmin can predict
unproductive layers for ResNet architectures. The skip connections allow information based
on smaller receptive field sizes to skip layers, resulting in a later border layer bmin compared
to the same network with disabled skip connections. This allows networks with skip connec-
tions to involve more layers in the inference process than would be possible compared to a
simple sequential architecture with a similar layout. For an example of this, compare Fig. 53

(a) to Fig. 60 (a). These figures were previously published in Richter et al. (2021b).
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10.3 bmin can Predict Tail Patterns in Networks With Residual

Connections

Skip connections are a special case of non-sequential architectures, since
they effectively feature pathways that do not expand the size of the receptive
field and often contain no layer. Multiple versions of skip connections have
been proposed over the years, which generally deviate in the way the path-
ways are reunited and whether the skip connection itself is parameter-less
(He et al. (2016a); Huang et al. (2017); Zilly et al. (2017)). In this work, we pri-
marily focus on the residual connection proposed by He et al. (2016a), which
uses an element-wise addition for reuniting the pathways and only features
parameters in the skip connection if the residual block is downsampling the
feature map with the first layer. We decided to use this approach as it is the
most commonly used type of skip connection in popular architectures such
as ResNet, and it has many derivatives including AmoebaNet, MobileNetV2,
MobileNetV3, EfficientNet, and EfficientNetV2, to only name a few (Howard
et al. (2019); Real et al. (2019); Sandler et al. (2018); Tan, Le (2019)).

If the receptive field expansion behavior is consistent with the behavior of
multipath architectures discussed in the previous section, bmin should predict
the unproductive tail of layers. We compute rl,min for the convolutional layers
and compute the border layer bmin based on this sequence of receptive field
sizes.

10.3.1 Methodology

For our analysis, we choose ResNet18 and ResNet34 as model organisms
for their architectural simplicity. Modern networks with skip connections like
EfficientNetV2 only deviate in nuances from this original architecture regard-
ing the spacing of the downsampling layers between stages and the exact
sequence of layers within each building block (Howard et al. (2019); San-
dler et al. (2018); Tan, Le (2019, 2021); Zagoruyko, Komodakis (2016)). The
training uses the same setup as in section 10.1 and is conducted on Cifar10.
We only compute and visualize rl,min for each layer, since we are primarily
interested in knowing whether the observations made in section 10.2 trans-
late to networks with residual connections. Furthermore, we already know
from section 9.4 that residual connections enable the network to improve the
intermediate solution quality past the bmax and, therefore, we only need to
investigate whether bmin predicts the start of a tail pattern.
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10.3.2 Results
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(a) ResNet18—border layer at layer 11
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(b) ResNet34—border layer at layer 17

Figure 60: The border layer computed from the smallest receptive field size bmin can predict
unproductive layers for ResNet architectures. The skip connections allow information based
on smaller receptive field sizes to skip layers, resulting in a later border layer bmin compared
to the same network with disabled skip connections. This allows networks with skip connec-
tions to involve more layers in the inference process than would be possible compared to a
simple sequential architecture with a similar layout. For an example of this, compare Fig. 53

(a) to Fig. 60 (a). These figures were previously published in Richter et al. (2021b).

From the results in figure 60 we can clearly see that ResNet-networks be-
have similarly to the multipath architectures in section 10.2. In both scenarios,
the qualitative improvement of the predictive performance stops when reach-
ing the border layer bmin. The zig-zag-pattern of the minimal receptive field
size derives from the fact that residual connections effectively allow the net-
work to skip all layers except the stem, while still downsampling the layers at
certain positions in the network. This has the result of a residual block with
the same input and output feature map sizes having the same sequence of
receptive field sizes. The downsampling increases the receptive field growth,
which can be observed by the higher receptive field size and amplitude dif-
ference between layers in the same residual block. There are also additional
anomalies present in the probe performances of ResNet18 and ResNet34 in
the form of sudden drops in the predictive performance, occurring exclu-
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sively after the border layer. We find that these are the result of "skipped"
layers, where the model does not utilize layers and "bypasses" them using the
skip connection. This phenomenon was first observed by the authors of Alain,
Bengio (2017). The same effect was reproduced in this work on a multilayer
perceptron in section 4.3 and on a DenseNet-architecture in appendix C. Ef-
fectively, the skipped layers learn a representation of the data that does not
contribute qualitatively, but also does not deteriorate the quality of the state of
the information when added back to the layers’ input. Based on these exper-
imental results, we can conclude that it is possible to predict tail patterns in
multipath architectures (including networks with skip-connections) reliably
using bmin. Concerning the results in section 10.2, these results are consistent
with the results observed in sequential architectures, since bmin = bmax and
rl,min = rl,max for sequential architectures.

10.4 Conclusion

In this section, we expanded the predictability of tail patterns to networks
with parallel pathways in section 10.2 and residual connections in section
10.3. We can also show that attention mechanisms do not influence the way
the inference is distributed (see section 10.1).

By doing so, we can effectively make the saturation and logistic regres-
sion probes obsolete for detecting unproductive sequences of layers for most
common classification architectures. Implicitly, this means that training the
model itself is no longer necessary to locate and resolve tail patterns, since
the minimum receptive field size rl,min for a layer l and the input resolution I
are independent of the model’s state and can thus be obtained before training.

From a broader perspective, the results of this section and chapter 9 imply
that the interaction of receptive field and input resolution is the dominating
factor in the distribution of the inference process. While this assumption is
likely to be an oversimplification, it has been demonstrated to be a useful
heuristic for detecting potential inefficiencies. In the following section, we
will demonstrate how this heuristic can be leveraged to improve the predictive
performance and efficiency of convolutional neural network architectures.
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11 Implications for Neural Architecture Design

Until now, in this work we established analysis techniques and used these
to identify parameter-inefficiencies in neural architectures (see section 8). In
section 8.4, we show that changes in the width of the network (number of
filters in all layers) affects the average saturation of the model, which in turn is
strongly correlated with the predictive performance of the model. In chapter
9 and chapter 10, we explored the causes of unproductive "tail"-layers (see
section 8.5), which we can now predict precisely before training the model.

From these insights, design strategies can be derived that can improve
neural architectures in an informed manner. We refer to this as neural archi-
tecture optimization, since we cannot provide a holistic design guideline that
covers all aspects of creating neural architectures. Instead, we will use the
collective insights gained from this work and derive strategies for optimizing
existing designs of convolutional neural network architectures, with the goal
of adapting these to a task that deviates from the task the architecture was
originally designed for. The reasoning behind these strategies and why they
are not implemented in the form of a neural architecture search algorithm or
other forms of automation are elaborated in section 11.1. Next, the optimiza-
tion of the network width using saturation is discussed in section 11.3. We
then move on to discuss the optimization of the neural network depth and
illustrate the proposed strategies with selected examples in section 11.4.

We consider this section as the culmination of this work, since the strate-
gies proposed here are based on saturation and the insights on the distribu-
tion of the inference process in convolutional neural networks obtained from
the many experiments conducted throughout this work. Furthermore, the
strategies proposed here demonstrate that an informed and goal-oriented op-
timization of neural architectures is possible without the necessity of excessive
trial-and-error based on the comparative evaluation of trained models. The
results, strategies, and illustrations were also separately published in Richter
et al. (2021c) and Richter et al. (2021b).

11.1 On the Goals of Architecture Optimization

Before we move on to discuss concrete strategies of optimizing convolu-
tional neural network architectures, we have to elaborate on the goal of neural
architecture optimization. In section 3.1, we have established that any convo-
lutional neural network classifier can be reduced to 4 basic characteristics:
the predictive performance, number of parameters, computations required
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per forward pass, and memory footprint. An optimal model will maximize
the predictive performance while minimizing the other three characteristics,
which are strongly related to each other. However, in practice, achieving the
highest possible predictive performance requires compromising efficiency, by
for example increasing the parameters of the model and thereby reducing the
computational, memory, and parameter efficiency. This circumstance has the
effect that optimizing an architecture for predictive performance is not nec-
essarily useful for the task at hand. Application scenarios may have require-
ments that necessitate high efficiency, for example in robotics applications
where computational resources are scarce (Chakraborty et al. (2019)). There-
fore, there is no algorithmic optimization strategy that can be applied with
equal success in every application scenario, which is the main reason why we
do not provide an algorithm or even an automated neural architecture search,
as the latter commonly requires a singular, well formulated optimization goal.
Instead, we provide basic guidelines and examples that demonstrate how the
insights gathered in this work can be leveraged to increase the efficiency and
predictive performance of models, thereby opening the possibility to a more
guided and informed neural architecture design process.

11.2 Methodology

In the following sections, the proposed guidelines for optimizing the width
and depth of convolutional neural network architectures will be illustrated
with examples from various architectures and datasets. We will now briefly
discuss the setups used to train and evaluate the models. We utilize the
datasets of Cifar10, ImageNette, and ImageWoof, whereby the latter two
are 10-class subsets of the ImageNet dataset. The ImageNette and Image-
Woof datasets were chosen to demonstrate the proposed strategies on high-
resolution datasets. Due to the number of experiments, we decide to use these
subsets instead of the full ImageNet dataset or similar-sized datasets such as
iNaturalist. Furthermore, it allows us to train logistic regression probes on the
models, which would otherwise be impossible due to resource limitations. All
models are trained using the setup outlined below.

The preprocessing and data augmentation is conducted as follows: The
images are channel-wise normalized with µ = (0.4914, 0.4822, 0.4465) and
σ = (0.2023, 0.1994, 0.2010), which is a procedure proposed by Krizhevsky
et al. (2012). At training time, the images are first cropped randomly with
a 4 pixel zero-padding on all edges. The size of the crop is 32× 32 pixels.
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Table 13: Hyperparameters used for training the ResNet variants with different attention
mechanisms.

Parameter Values

Input Resolution (32× 32)
Epoch 60

Batch size 128

Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999

ADAM: epsilon 1e-8
ADAM: learning rate 0.0001

Subsequently, the crops are randomly horizontally flipped with a probability
of 50%. Finally, the images are resized to the input resolution. The images of
the training set are reshuffled after each epoch.

11.3 Optimizing the Width of Neural Architectures

In section 8.4, we find that models with lower average saturation sµ tend to
perform better than architecturally similar models with higher sµ (see figure
63). There are two main factors influencing sµ: Problem difficulty, increasing
sµ, (see section 8.5) and the width of the network, decreasing sµ (see section
8.4). The width of a network is the number of filters or units in each layer.
Effectively, more difficult problems require more capacity in each layer and
thus more computational resources to be processed effectively. Therefore,
finding a sweet spot for sµ for a given architecture and dataset by scaling its
width optimizes the efficiency of the model for the given setup.
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Figure 61: ResNet18 can be considered overparameterized for the ImageNette-dataset, which
is apparent from the low saturation level (blue line). Halving the number of filters also halves
the computational and memory footprint while slightly improving performance (green line).
Reducing the width of the network too much results in a poor performing, underparame-
terized model (red line). The saturation of all layers (dots) is depicted in the order of the
forward pass from input to output. This image was also published in Richter et al. (2021c).

To demonstrate this, we train ResNet18 on ImageNette, a 10-class subset of
ImageNet, using an 224× 224 input resolution. To demonstrate over-, under-
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and well- parameterized variants of the model, we scale its width by a factor
of 1, 1

8 and 1
2 respectively. From the results in figure 61, we can see that

ResNet18 with 1
2 width provides the best performance while requiring half the

memory and FLOPS compared to ResNet18 with full width. We attribute the
slightly poorer predictive performance of the full-width-model to overfitting.
Similar effects were also observed by Tan, Le (2019).
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Figure 62: The width of the VGG16 model trained on the ImageWoof dataset at 32× 32
pixel input resolution does not change the size of the tail, meaning that inefficiencies caused
by low-saturated tails and under-parameterized layers are independent. This image was also

published in Richter et al. (2021c).

From additional experiments on VGG and ResNet-style models, we find
that an average saturation sµ of roughly 20% to 30% delivers the best perfor-
mance in the tested scenarios, assuming all networks have roughly the same
relative distribution in saturation across layers and follow the conventional
pyramidal structure of modern classifiers (He et al. (2016a); Simonyan, Zisser-

146



man (2015); Tan, Le (2019, 2021)). Models with sµ below this interval provide
approximately similar performance at reduced efficiency, while models with
higher sµ will degrade in predictive performance, as figure 61 demonstrates.

By adjusting the scaling of the network’s width based on the current sµ, the
network can be optimized in an informed manner. While it is possible to ma-
nipulate individual layers similarly, we advise against it for multiple reasons.
First, the saturation of individual layers is also subject to noise induced by
some components like (1× 1) convolutions, downsampling and skip connec-
tions, which makes clear rules of action hard to quantify. Second, this practice
can theoretically mask true inefficiencies such as tail-patterns. For example,
strongly overparameterizing the productive part of the model brings the satu-
ration of these layers down until tail-patterns in the (less overparameterized)
unproductive layers become hard to locate.

Generally, the inefficiencies of width (too high/low sµ) and depth (tail pat-
tern) can be considered independently, as shown in figure 63. Both models
are trained on the ImageWoof-dataset, another 10-class subset of ImageNet,
and the images were downsampled to 32× 32 pixels. The resulting difference
in saturation and predictive performance does not affect the number of inac-
tive layers in the tail pattern. Based on these observations, we conclude that
width and depth can be treated as mostly independent factors when optimiz-
ing an architecture for a fixed input resolution, as long as the saturation is
distributed similarly. For this reason, optimizing the depth should be done
first to guarantee an even distribution of saturation as the width can then be
scaled to put sµ into the sweet-spot of sµ ∈ (20%, 30%).
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Figure 63: The width of the VGG16 model trained on the ImageWoof dataset at 32× 32
pixel input resolution does not change the size of the tail, meaning that inefficiencies caused
by low-saturated tails and under-parameterized layers are independent. This image was also

published in Richter et al. (2021c).
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11.4 Optimizing the Depth of Neural Architectures
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Figure 64: A simple exemplary modification based on receptive field analysis. All layers
with rl−1,min > I are replaced by a simple output-head, effectively removing the border layer
and every layer after it. Removing these layers improves the efficiency by improving the
performance and reducing the number of parameters and computations required. This image
was also published in Richter et al. (2021b). © 2021 IEEE

By means of saturation and probe performances, this work has demon-
strated experimentally that unproductive parts of the network can be iden-
tified and predicted using only the receptive field. Since we predict unpro-
ductive sequences of layers given only the architectures of receptive fields in
each layer and input resolution, we can leverage this knowledge to improve
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architectures. The biggest advantage of this approach is that all necessary
properties are known before the start of training and thus allow for a very
efficient design process, since the architecture can be optimized without re-
quiring multiple training steps for comparative evaluation.

Layers
0.0

0.2

0.4

0.6

0.8

1.0
Sa

tu
ra

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 86.63%

(a) VGG19

Layers
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 89.35%

(b) VGG19 (truncated)

Figure 65: Removing the tail layers of VGG19 and retraining the truncated model reduced
the computational and memory footprint, while slightly improving the performance. Both

models are trained on Cifar10 at native resolution. This image was also published in Richter
et al. (2021c).

We exemplify, by employing a simple optimization strategy on VGG11, 13,
16, 19, ResNet18, ResNet34, and the multipath architectures used in section
10.2 (abbreviated as MPNet18 and 36). The models are trained on Cifar10

using one setup from section 10.1. We then train truncated variants of these
architectures, where all layers of the tail (including the border layer) are cut
and replaced by a simple classifier consisting of a global average pooling
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layer followed by a softmax layer. This can be seen as the simplest possible
change to the architecture that removes the tail pattern. We train all models 10

times and average the test accuracy to mitigate the random fluctuations in the
predictive performance. We further compute the number of parameters and
FLOPS required for a forward pass of a single image. While it is unsurprising
that the removal of layers leads to a reduction of parameters and computa-
tions required per forward pass, the performance of the truncated models
also improves in all tested scenarios (see figure 64). Thus, all tested archi-
tectures became more computationally and parameter efficient compared to
their truncated counterparts trained on the same setup.

We can further see from the example of VGG19 in figure 65 that this sim-
ple modification has also removed the tail from the saturation pattern of the
model. However, the demonstrated technique can be considered crude and
is not necessarily the most effective way of improving the predictive perfor-
mance.

Another possibility to remove unproductive layers is to influence the growth
rate of the receptive field in the neural architecture. This is done most effec-
tively by adding, removing, or re-positioning pooling layers in the network.
For instance, by removing the first two downsampling layers (colloquially
referred to as "stem") in ResNet18 and ResNet34 the growth of the recep-
tive fields in the entire network is reduced by a factor of 4. Removing the
stem in ResNet34 improves the performance from 82.76% to 92.21%, while for
ResNet18 the improved performance is 91.95% from the previous 84.61%. In
both cases, the tail pattern is also removed in the process. Counterintuitively,
the removal of the stem layers will also increase the computations required per
image. In the case of ResNet34 the computation per forward pass increases
from 0.76 GFLOPs to 1.16 GFLOPs, whereas for ResNet18 the computations
increase from 0.04 GFLOPs to 0.56 GFLOPs. This is the case because the re-
moval of a downsampling layer not only reduces the growth of the receptive
field for consecutive layers but also increases the size of the feature maps for
these layers. This in turn increases the computations required to process these
layers, since more positions of the convolutional kernel need to be evaluated.

The changes to the architecture presented here for removing the tail also
demonstrate that there is no singular optimal path to a well performing con-
volutional neural architecture, which is the main reason why we do not pro-
vide an optimization algorithm. Instead, changes to the architecture often
resemble a trade off between the predictive performance and computations
required. The best decision for a given scenario thus depends on the scenario
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itself and the requirements for the task concerning the model. However, by
analyzing the receptive field, the trade-off decision can be made more quickly
and in a more informed manner.

In summary, the analysis of the receptive field allows for more discrete
decision-making regarding the predictive performance without requiring model
training. We explicitly do not provide an algorithm, since the decision gener-
ally involves a trade-off between predictive and computational performance,
which is highly dependent on the specific problem and application.
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12 Summary and Future Work

This work provides the foundation and basics for a high level guided de-
sign for convolutional neural architectures. With PHD-Lab and Delve, in our
experiments we developed a basis for a reproducible workflow. By approxi-
mating the latent space of convolutional neural network layers with PCA, we
establish that the space where the data is processed within a convolutional
layer is a subspace of the available feature space. We further explore the prop-
erties of these subspaces and show that model capacity, problem difficulty,
and the input resolution have an effect on the size of these subspaces and,
by extension, on how the inference process is distributed. We also show that
the subspaces are stable over many model training-procedures given similar
setups. Based on these insights, we derive saturation as a metric for analyzing
the information processing in convolutional neural networks. Together with
logistic regression probe performances and the computation of the receptive
field sizes of layers, we identify inefficiencies referred to as "tail patterns". We
experimentally demonstrate – using logistic regression probes and saturation
– that these tail patterns are pathological symptoms of inefficiencies caused
by a mismatch between input resolution and neural architecture. We show
experimentally that the absolute size of discriminatory features (measured in
pixels) in the model extracts is the leading cause of these mismatches. Based
on these insights, we can predict the start of these unproductive tails of lay-
ers by predicting a "border layer" based on the receptive field sizes present
in every layer. In multiple experiments, we can demonstrate and expand this
predictability of unproductive layers from sequential to multipath architec-
tures, and architectures with residual connections and attention mechanisms.
Finally, we show that simple optimization strategies based on the analysis of
the receptive field and saturation consistently lead to improvements in pre-
dictive performance and efficiency. The proposed optimization and design of
neural networks is strictly based on the analysis of the receptive field and thus
does not require training, which allows for a guided design process that is less
trial and error heavy. Furthermore, the experiments on saturation demon-
strate that the metric delivers interesting insights into the utilization of the
network’s inference process on a layer by layer basis with little computational
overhead.

From here on, there are two major points that need to be addressed next.
The first is a shift in the investigation towards more automation. While we
deliberately chose not to provide a neural architecture search algorithm in
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this work, it is clear that these insights, especially those concerning the tail-
pattern inefficiency, invite researchers to build some automatized system to
search and/or optimize convolutional neural network architectures. Ideally,
saturation and the proposed analysis of the receptive field can be used to
drastically limit the search spaces of potential architecture by ruling out can-
didates with predictable inefficiencies.

Secondly, these analysis techniques should be expanded to other tasks.
Currently, the clear focus of this work is on classification problems. However,
many related fields such as cancer mammography classification (Rakhlin et al.
(2018); Shen et al. (2021); Wu et al. (2020)), object detection (Bochkovskiy et al.
(2020); He et al. (2017); Ren et al. (2015)), and face recognition (Jiang, Xiang
(2021)) (to only name few) are using multitask systems that solve additional
and more complex tasks. Some of these tasks break with assumptions that
were made throughout this work. For example, object detection systems usu-
ally feature large numbers of small objects of interest, that cannot be assumed
to be as large as the image, which is an assumption made for predicting the
tail pattern (see chapter 9). Knowing whether – and to which degree – the ob-
served behavior translates to these other tasks and whether other pathological
patterns are observable is crucial for practical use.
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A Full t-Test Tables of VGG11, VGG13, VGG16

and ResNet18

These are the full experimental results of the experiments in section 7.4 The
result of this section were published previously as part of the supplementary
material of Richter et al. (2021c).

Table 14: Sum of Projections in VGG11 (n=15). µ 6= 0 (p=.99) in bold.

Explained σ Mean difference sample σ t-stat p-value

0.9999 -0.0001 0.0007 -0.714 0.487

0.9998 -0.0005 0.0008 -2.44 0.029

0.9997 -0.0007 0.0012 -2.07 0.058

0.9996 -0.0005 0.0018 -1.1 0.292

0.9995 -0.0010 0.0018 -2.16 0.049

0.9994 -0.0008 0.0016 -1.8 0.094

0.9993 -0.0010 0.0015 -2.72 0.017

0.9992 -0.0013 0.0014 -3.65 0.003

0.9991 -0.0011 0.0018 -2.51 0.025

0.999 -0.0015 0.0021 -2.74 0.016

0.998 -0.0019 0.0029 -2.49 0.026

0.997 -0.0013 0.0034 -1.46 0.166

0.996 -0.0009 0.0039 -0.888 0.390

0.995 0.0005 0.0037 0.537 0.600

0.994 0.0022 0.0038 2.2 0.045

0.993 0.0056 0.0071 3.03 0.009

0.992 0.0114 0.0110 4.03 0.001

0.99 0.0260 0.0179 5.61 0.000

0.98 0.1073 0.0253 16.4 0.000

0.97 0.2824 0.0954 11.5 0.000

0.96 0.4356 0.0767 22 0.000

0.95 0.5118 0.0616 32.2 0.000

0.94 0.5658 0.0568 38.6 0.000

0.93 0.6385 0.0476 52 0.000

0.92 0.7070 0.0510 53.7 0.000

0.91 0.7574 0.0240 122 0.000

0.9 0.7727 0.0090 333 0.000

167



Table 15: Sum of projections in VGG13 (n=26). µ 6= 0 (α = 0.01) in bold.

Explained σ Mean difference sample σ t-stat p-value

0.9999 -0.0004 0.0008 -2.42 0.023

0.9998 -0.0005 0.0009 -2.81 0.010

0.9997 -0.0010 0.0010 -5.26 0.000

0.9996 -0.0009 0.0010 -4.92 0.000

0.9995 -0.0011 0.0010 -5.46 0.000

0.9994 -0.0012 0.0012 -4.91 0.000

0.9993 -0.0012 0.0012 -4.83 0.000

0.9992 -0.0013 0.0013 -5.17 0.000

0.9991 -0.0016 0.0015 -5.48 0.000

0.999 -0.0017 0.0016 -5.50 0.000

0.998 -0.0017 0.0022 -3.92 0.001

0.996 -0.0005 0.0030 -0.910 0.371

0.994 0.0037 0.0043 4.45 0.000

0.992 0.0096 0.0062 7.91 0.000

0.99 0.0178 0.0136 6.68 0.000

0.98 0.1123 0.0377 15.2 0.000

0.97 0.2254 0.0578 19.9 0.000

0.96 0.4803 0.1022 24.0 0.000

0.95 0.7026 0.0368 97.3 0.000

0.94 0.7536 0.0227 169 0.000

0.93 0.7654 0.0202 193 0.000

0.92 0.7785 0.0164 242 0.000

0.91 0.7867 0.0143 280 0.000

0.9 0.7929 0.0117 345 0.000
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Table 16: Sum of projections in VGG19 (n=40). µ 6= 0 (p=.99) in bold.

Explained σ µdi f f σsample t-stat p-value µSat σSat µ(∑ dimEk
l )

0.9999 -0.0003 0.0008 -2.65 0.011 60.0 0.6 2613± 102
0.9998 -0.0006 0.0011 -3.31 0.002 54.5 0.6 2268± 97
0.9997 -0.0006 0.0014 -2.82 0.008 51.2 0.7 2071± 93
0.9996 -0.0003 0.0016 -1.28 0.208 48.8 0.6 1938± 88
0.9995 -0.0001 0.0017 -0.352 0.727 47.1 0.7 1841± 86
0.9994 0.0007 0.0019 2.18 0.035 45.6 0.7 1766± 84
0.9993 0.0009 0.0022 2.62 0.012 44.5 0.7 1705± 83
0.9992 0.0012 0.0031 2.42 0.020 43.4 0.7 1653± 80
0.9991 0.0016 0.0032 3.14 0.003 42.5 0.7 1608± 79
0.998 0.0107 0.0148 4.57 0.000 36.0 0.7 1318± 73
0.996 0.0771 0.0585 8.33 0.000 30.0 0.7 1074± 67
0.994 0.1873 0.0812 14.6 0.000 26.3 0.7 934± 62
0.992 0.2754 0.0822 21.2 0.000 23.7 0.6 837± 58
0.99 0.3643 0.0900 25.6 0.000 21.8 0.6 765± 54
0.98 0.6176 0.0413 94.6 0.000 16.1 0.5 556± 41
0.97 0.6559 0.0386 107 0.000 13.1 0.4 451± 32
0.96 0.7008 0.0384 115 0.000 11.2 0.3 385± 27
0.95 0.7351 0.0337 138 0.000 9.8 0.3 339± 24
0.94 0.7550 0.0265 180 0.000 8.8 0.2 303± 21
0.93 0.7639 0.0231 209 0.000 7.9 0.2 275± 19
0.92 0.7727 0.0167 293 0.000 7.2 0.2 252± 17
0.91 0.7775 0.0143 344 0.000 6.6 0.2 233± 16
0.9 0.7796 0.0127 387 0.000 6.1 0.2 215± 15
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B On the Evolution of Saturation Patterns in Fully

Connected and Convolutional Neural Networks

During Training

This section can be seen as supplementary to the results in chapter 8 and
was initially omitted from this chapter, since its insights do not directly af-
fect the primary results of this work. However, since the experiments of this
section demonstrate interesting behavior in overfitting scenarios, we find that
these results are worth to be included.

The tail pattern we discussed earlier in this work allows for the identifi-
cation of inefficiencies caused by mismatches between the neural architecture
and the input resolution. The analysis of saturation patterns in generally done
after training has concluded. However, since saturation can be computed live
during training with little overhead (see section 6.1.3) it might be interesting
to see how these patterns emerge during the training process. Furthermore,
we are interested in how saturation reflects overfitting, when a dense neural
network is strongly overtrained on a given dataset. The result of this section
were published previously as part of the supplementary material of Shenk
et al. (2019).

B.1 Methodology

We first investigate how the saturation level evolves in a single layer for
different feature space dimensionalities. We train a 3 layer fully connected
neural network, the first layer has 256 units, the second layer has 8, 16, 32,
64 and 128 units (a different number for each run). We train these networks
using the ADAM optimizer and a batch size of 128. The training is conducted
twice. Once using 8 epochs, which is enough for all models to converge, the
second experiment is run for 20 epochs, which results in the loss increasing
again due to overfitting. We compute the saturation of the hidden-layer of the
3-layer architecture after each epoch to observe the evolution of the model. We
further compute the loss of the architecture to observe a potential relationship
between loss and saturation convergence.

Based on these observations, we repeat the experiment on VGG11 and 19

as well as sparse (low capacity) versions of these models with 1
8 of the original

number of filters. We do this to observe whether the evolution of saturation
patterns depends on the architecture, depth and capacity of the network.
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B.2 Results

We observe that an increase in the number of units in the fully connected
layer will result in an increased saturation during every epoch (see figure 66).
Furthermore, the saturation converges at a similar pace than the loss, starting
from a low-saturation level and increasing epoch by epoch.
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(a) Validation loss during training.
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(b) Saturation of layer 2 during training.

Figure 66: Saturation and loss converge at a similar pace. These results are also published in
Shenk et al. (2019). © 2022 IEEE

This joint convergence is interrupted, when the model starts to overfit. In
figure 67 we can see that the increase in validation loss is not followed by a
drastic change in saturation. Instead, the curve of saturation values flattens
for all sizes of the second layer. The fact that overfitting is not reflected in
saturation values indicates that the changes to the way the data is processed
when the model starts to overfit are subtle but have a drastic effect on gener-
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alization.
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Figure 67: When overfitting the saturation pattern keeps converging, indicating that overfit-
ting is not drastically altering the lossless eigenspace. © 2022 IEEE

The converging behavior that is observed on the fully connected network
can be observed in a fully convolutional network as well (see figure 68). This
converging behavior is independent of the position of the layer in the network,
the number of layers and the capacity of the network. However, it is harder
to observe in low capacity convolutional neural networks due to their low
feature space dimensionality, which limits the numbers of possible saturation
values.

Another interesting observation is that tail pattern seem to be observable
rather early during training, which indicates that an on-line analysis during
training allows the data scientist to detect inefficiencies early before training
has concluded.
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Figure 68: Saturations of convolutional neural networks show a converging behavior regard-
ing saturation similar to previous observations in figure 66. This figure was also published
in Shenk et al. (2019). © 2022 IEEE

173



C Different Types of Tail Patterns - A Brief Expla-

nation

This section is complementary to section 8 and demonstrates different
types of tail patterns and how they are reflected in logistic regression probe
accuracy and saturation. We find that saturation is subject to noise induced
by certain features of the neural architecture like the increase or decrease in
filters from layer to layer, the use of 1× 1 convolutions and downsampling lay-
ers are common culprits for zigzag-like behavior or sudden dips and spikes in
saturation, an example for the latter is DenseNet18 in figure 69 (b). It has to be
stressed that these factors are neither random nor non-reproducible. Instead,
they usually result in anomalous patterns that a very stable over multiple
runs (which is exemplified in section 8.2), indicating that more insights may
be gained from analyzing these in later works.

Logistic regression probes are considerably more robust against the afore-
mentioned properties. However, they are influenced by the path the infor-
mation takes during the forward pass, revealing different types of tail pat-
terns that can be differentiated based on the processing in the tail-layers. The
three examples found commonly are depicted in figure 69. These examples
also provide insights into the ways neural network process information dif-
ferently, which is the main reason why we dedicate an additional section to
these findings. All the networks are trained on Cifar10 using a 32× 32 pixel
input resolution. In figure 69 (a) we find a pass-through tail, where the layers
process the information but do not advance the quality of the intermediate
solution. We find this type of tail pattern is typical for sequential neural net-
works (which you can see from other results in the supplementary material).
The second type of tail, depicted in figure 69 (b), is caused by the multiple
pathways inside the DenseBlock of DenseNet. Information can pass from any
previous layer to the current layer within the DenseBlock, effectively allow-
ing the information to skip layers. When layers are skipped, the intermediate
solution quality degrades and instantaneously recovers after the skipped sec-
tion is over. The latter is apparent in the depicted example by the high model
performance relative to the probe performance of the last DenseBlock lay-
ers. This phenomenon was initially observed on a simple MLP-example by
Alain, Bengio (2017) and is reproduced by this work in figure 34 of chap-
ter 4. If necessary, the signal may jump more than a single building block
in the architecture. An example of which can be seen in figure 69 (c) on a
ResNet34 architecture. This jumping is indicated by the zigzag-pattern in the
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probe performance, where the higher performing layer resembles the first and
lower performing layer the second layer of a residual block. The result of this
section were published previously as part of the supplementary material of
Richter et al. (2021c).
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(a) VGG16 tail layers maintain the quality of the intermediate solution
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(b) The tail of DenseNet18 shows a decay in probe performance, indicating that the last
DenseBlock is skipped entirely (Alain, Bengio (2017)).
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(c) ResNet34 skips most residual blocks in the tail, which is apparent by the zick-zack pat-
tern in probe performances caused by the starts and end of skip-connections (Alain, Bengio
(2017)).

Figure 69: Depending on the neural architecture, tail patterns may deviate in their appear-
ance in probe performance. In sequential architectures (a) the layers maintain the quality
of the intermediate solution. If shortcut connections exist in the architecture, layers may be
skipped. Skipped layers are apparent by their decaying probe performance (Alain, Bengio
(2017)). This is apparent on DenseNet18 (b) and ResNet34 (b) where a single DenseBlock and
multiple ResiduaBlocks are skipped respectively. All models are trained on Cifar10 at native
resolution. © 2022 IEEE

This shows that architecture decisions, influencing the potential pathway’s
information can take from input to output, can have a significant influence on
the way the model processes (or chooses not to process) information. In any
case, the semantic of the tail-pattern remains unchanged, since a skipped layer
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and an unproductive layer can both be considered a parameter and computa-
tional inefficiency.
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D Resolution Shifts the Distribution of the Infer-

ence Process on Different Models

In chapter 9 we show on a ResNet18 architecture how resolution affects the
distribution of the inference process by training ResNet18 on three different
resolutions on Cifar10. By analyzing probe performances and saturation, we
show that the inference is distributed differently on different resolutions, even
if not information is added by upscaling.

To show that this observation does generalize, we repeat the experiment.
We use TinyImageNet as a more complex but still small resolution problem.
We further show that the hypothesis holds also true for VGG16 and ResNet50

models. The result of this section were published previously as part of the
supplementary material of Richter et al. (2021c).

D.1 VGG16 - Cifar10

(a) 32× 32 (Cifar10 native resolution)

(b) 160× 160

(c) 1024× 1024

Figure 70: Reproduction of the experiment depicted in figure 50 using the VGG16 architec-
ture. Because of the larger memory footprint of the model, the batch size of this experiment
is reduced to 20. The observed pattern stays the same. Low-resolution results in a tail close to
the output, while high resolution exhibits a tail at the input. The (medium-sized) resolution
of 160× 160 pixels performs best. © 2022 IEEE
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D.2 VGG16 - MNIST

(a) 32× 32 (Cifar10 native resolution)

(b) 160× 160

(c) 1024× 1024

Figure 71: Reproduction of the experiment depicted in figure 50 using the VGG16 architec-
ture. Because of the larger memory footprint of the model, the batch size of this experiment
is reduced to 20. The observed pattern stays the same. Low-resolution results in a tail close to
the output, while high resolution exhibits a tail at the input. The (medium-sized) resolution
of 160× 160 pixels performs best.
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D.3 ResNet18 - MNIST

(a) 32× 32

(b) 224× 224

(c) 1024× 1024

Figure 72: Resolution Experiment reproduced on ResNet18 using the MNIST dataset
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D.4 ResNet18 - TinyImageNet

In this experiment, the setup varies slightly from the original setup of
chapter 9 based on properties of the TinyImageNet dataset. TinyImageNet
consists of 200 classes of 64 × 64 pixel images. Therefore, the first experi-
ment is conducted on 64× 64 pixel input resolution instead of 32× 32 pixel
resolution, which is the native resolution of Cifar10.

(a) 64× 64 (TinyImageNet native resolution)

(b) 1024× 1024

Figure 73: The higher native resolution combined with the residual connection removes the
tail pattern even at 64× 64 pixels for ResNet18. We see that a tail pattern can be produced
in the input part of the network when the resolution is increased drastically to 1024× 1024,
confirming observations from Cifar10.
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D.5 ResNet50 - Cifar10

Due to an error in the setup, the mid-sized image experiment was con-
ducted with a 160× 160 pixel resolution instead of 224× 224. However, even
though the resolution was altered it still shows the expected behavior ob-
served with other models. The performance on 32× 32 pixel resolution is still
suboptimal and later layers are low saturated and do not contribute to the
inference process. In contrast, the low saturated tail is gone at a resolution of
160× 160, which is also the resolution with the best overall predictive perfor-
mance. At high resolution the overall performance decreases again, the tail
pattern is present close to the input and the probes show a stagnating (and
noisy) behavior, similar to other models.

(a) 32× 32 (Cifar10 native resolution)

(b) 160× 160 (ResNet standard)

(c) 1024× 1024

Figure 74: Producing a tail pattern in the layers near the input and the output is also possi-
ble for very deep models like ResNet50 with the expected effects on the performance. The
Bottleneck-Modules with 1× 1 convolutions and varying filter sizes induce additional noise
into saturation patterns.
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E Object Size Experiments on MNIST and ResNet

models

In section 9.2 we make the claim that the observed relation of input resolu-
tion and the performance of the model is an artifact caused by the underlying
interaction of object size and neural architecture. We repeat the experiments
in section 9.2 that demonstrate this claim on ResNet-style models as well as
on the MNIST dataset. As we can see in figure 75, figure 76 and figure 77, the
results are consistent with the observations shown in section 9.2 in all three
scenarios. This means that the saturation patterns and probe performances of
models trained 32× 32 pixel images placed on 160× 160 black canvases more
closely resemble the saturation patterns and probe performances of the mod-
els trained on 32× 32 pixel images rather than models trained on upscaled
160× 160 pixel images from the same dataset.

E.1 ResNet18 - Cifar10

(a) 32× 32 without canvas

(b) 160× 160 with canvas

(c) 160× 160 upsampled

Figure 75: Random Positioning Experiments conducted with ResNet18 on Cifar10 data.
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E.2 VGG16 - MNIST

(a) 32× 32 without canvas

(b) 160× 160 with canvas

(c) 160× 160 upsampled

Figure 76: Random Positioning Experiments conducted with VGG16 on MNIST data.
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E.3 ResNet50 - Cifar10

(a) 32× 32 (Cifar10 native resolution)

(b) 160× 160 with canvas

(c) 160× 160 upsampled

Figure 77: Random Positioning Experiments repeated on ResNet50.
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E.4 Reproducing Tail Patterns on ImageNet and iNaturalist

This set of experiments is a recreation of the tail pattern phenomenon on
ImageNet and iNaturalist to demonstrate that this pattern is no quirk of low-
resolution datasets like Cifar10 and TinyImageNet. For these experiments
computing probe performances was not feasible due to resource limitations.
For this reason, only saturation is provided. Each model is trained 2 times.
Once on the design resolution of 224× 224 pixels of the respective models
(for reference purposes, we do not expect to see a tail pattern at this reso-
lution) and once on 32× 32 pixels, which reliably results in tail patterns for
these models. The training setup from section 9.3.1 is reused for these exper-
iments. The result of this section were published previously as part of the
supplementary material of Richter et al. (2021c).
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(b) ResNet18 - ImageNet - 224× 224

Figure 78: ResNet18 trained on ImageNet.
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(a) ResNet18 - iNaturalist - 32× 32
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(b) ResNet18 - iNaturalist - 224× 224

Figure 79: ResNet18 trained on iNaturalist.
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(a) VGG16 - ImageNet - 32× 32
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(b) VGG16 - ImageNet - 224× 224

Figure 80: VGG16 trained on ImageNet.
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(a) VGG16 - iNaturalist - 32× 32
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(b) VGG16 - iNaturalist - 224× 224

Figure 81: VGG16 trained on iNaturalist.
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F Predicting the Border Layers in Different Scenar-

ios Using VGG

These are reproductions of the experiments in section 9.3 using the VGG-
family of networks. The first set of experiments uses VGG-style networks
with 1

8 of their original filter sizes in each layer. This effectively reduces the
capacity of the network. The question we try to answer with this experiment
is whether it is possible to distribute the inference process more by reducing
the capacity (even if it is very uneconomical regarding the loss in predictive
performance). The second experiment uses the standard-VGG architectures
again, but uses the TinyImageNet-Dataset instead to demonstrate that the
observed behavior is not a quirk of the Cifar10 dataset. The result of this
section were published previously as part of Richter et al. (2021c).

F.1 Results

We find that reducing the capacity of the network is not affecting the bor-
der layer and the distribution of the inference process (see figure 82 and 83).
This indicates that the influence of the receptive field is still the dominating
factor, and that optimizing the depth and the width of the network can be
optimized independently. We expand upon this topic in chapter 11.
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F.2 VGG-models 1
8 Filter Size - Cifar10

(a) VGG11

(b) VGG13

(c) VGG16

(d) VGG19

Figure 82: Performance improvements past the border layer are miniscule, even though the
capacity of each layer is reduces to 1

8 of the original capacit. This indicates that the networks
unable to shuft processing to otherwise unused layers even if the capacity is limited.
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F.3 VGG11 / VGG16 - TinyImageNet

(a) VGG11

(b) VGG11

(c) VGG16

(d) VGG11

Figure 83: Repeating the experiment depicted in figure 52 on TinyImageNet yields consistent
results regarding the border layer.
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F.4 DenseNet18, 65 - Cifar10

This part of the appendix contains old results regarding tail patterns on
DenseNet-architectures. Note that the start of the degradation is predicted
by bmin as the border layer. The border layers depicted in the plots are bmax,
the receptive field size depicted in these experiments is also rl,max, thus the
printed border layer is not marking the end of the productive part of the
network. The main reason for this is that these experiments are based on
experiments in chapter 9. At the point where this section was written and
the experiments conducted, the differentiation between rl,min and rl,max was
unknown, and the then-conclusion that tails in DenseNet-architectures cannot
be predicted like ResNets tail patterns was resolved by using bmin instead of
bmax (see section 10.2). However, we think that it is still important to include
these results to show that tail pattern can be reproduced on other architectures
such as DenseNet on multiple datasets. A compilation of different types of
tail patterns can also be found in appendix C.

Figure 84: DenseNet18 - Cifar10 - 32× 32 input resolution.

Figure 85: DenseNet65 - Cifar10 - 32× 32 input resolution.
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G Receptive Field Analysis With Partial Solution

Heatmaps (Compilations from Chapter 9)

(a) VGG16 trained on Cifar10 using 32× 32 pixel input size

(b) Conv1 (c) Conv2 (d) Conv3 (e) Conv4 (f) Conv5

(g) Conv6 (h) Conv7 (i) Conv8 (j) Conv9 (k) Conv10

(l) Conv11 (m) Conv12 (n) Conv13

Figure 86: VGG16 trained on Cifar10 alongside the heatmaps generated from the relative
accuracy of the partial solutions in each layer. Note that the border layer (Conv8) is the first
layer to have partial solutions of equal quality to the model’s solution (measured in accuracy).
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(a) ResNet18 trained on Cifar10 using 32× 32 pixel input size

(b) Conv1 (c) Block1-Conv1 (d) Block1-Conv2 (e) Block2-Conv1 (f) Block2-Conv2

(g) Block3-Conv1 (h) Block3-Conv2 (i) Block4-Conv1 (j) Block4-Conv2 (k) Block5-Conv1

(l) Block5-Conv2 (m) Block6-Conv1 (n) Block6-Conv2 (o) Block7-Conv1 (p) Block7-Conv2

(q) Block8-Conv1 (r) Block8-Conv2

Figure 87: ResNet18 trained on Cifar10 alongside the heatmaps generated from the relative
accuracy of the partial solutions in each layer. Note that "skipped" layers (Block6-Conv2 and
Block8-Con2) have a worse performance and worst partial solutions.
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(a) ResNet18 (Cifar10 Optimized) trained on Cifar10 us-
ing 32× 32 pixel input size

(b) Conv1 (c) Block1-Conv1 (d) Block1-Conv2 (e) Block2-Conv1 (f) Block2-Conv2

(g) Block3-Conv1 (h) Block3-Conv2 (i) Block4-Conv1 (j) Block4-Conv2 (k) Block5-Conv1

(l) Block5-Conv2 (m) Block6-Conv1 (n) Block6-Conv2 (o) Block7-Conv1 (p) Block7-Conv2

(q) Block8-Conv1 (r) Block8-Conv2

Figure 88: Cifar10 optimized ResNet18 trained on Cifar10 alongside the heatmaps generated
from the relative accuracy of the partial solutions in each layer. Note that no layers are
skipped and the solution quality of the partial solution develops up until the final residual
block.
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Ceterum censeo Carthaginem esse delendam.
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