
Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) des
Fachbereichs Mathematik/Informatik der Universität Osnabrück

Cut Problems on Graphs

vorgelegt von
Alexander Nover

Osnabrück, 2022

Datum der Disputation: 06.05.2022

Prüfungskommision: Prof. Dr. Martina Juhnke-Kubitzke (Universität Osnabrück)
Prof. Dr. Markus Chimani (Universität Osnabrück)
Prof. Dr. Volker Kaibel (Otto-von-Guericke-Universität Magdeburg)
Dr. Friedrich Bökler (Universität Osnabrück)

Abstract

Cut problems on graphs are a well-known and intensively studied class of optimiza-
tion problems. In this thesis, we study the maximum cut problem (MaxCut),
the maximum bond problem (MaxBond), and the minimum multicut problem
(MinMultiCut) through their associated polyhedra, i.e., the cut polytope, the
bond polytope, and the multicut dominant, respectively.

Continuing the research on MaxCut and the cut polytope, we present a lin-
ear description for cut polytopes of K3,3-minor-free graphs as well as an algorithm
solving MaxCut on these graphs in the same running time as planar MaxCut.
Moreover, we give a complete characterization of simple and simplicial cut poly-
topes. Considering MaxCut from an algorithmic point of view, we propose an
FPT-algorithm for MaxCut parameterized by the crossing number.

We start the structural study of the bond polytope by investigating its basic
properties and the effect of graph operations on the bond polytope and its facet-
defining inequalities. After presenting a linear-time reduction of MaxBond to
MaxBond on 3-connected graphs, we discuss valid and facet defining inequalities
arising from edges and cycles. These inequalities yield a complete linear descrip-
tion for bond polytopes of 3-connected planar (K5 − e)-minor-free graphs. This
polytopal result is mirrored algorithmically by proposing a linear-time algorithm
for MaxBond on (K5 − e)-minor-free graphs.

Finally, we start the structural study of the multicut dominant. We investigate
basic properties, which gives rise to lifting and projection results for the multicut
dominant. Then, we study the effect of graph operations on the multicut dominant
and its facet-defining inequalities. Moreover, we present facet-defining inequalities
supported on stars, trees, and cycles as well as separation algorithms for the former
two classes of inequalities.

i

ii

Kurzzusammenfassung

Cutprobleme auf Graphen sind eine bekannte und intensiv untersuchte Klasse
von Optimierungsproblemen. In dieser Arbeit untersuchen wir das Maximum-
Cut-Problem (MaxCut), das Maximum-Bond-Problem (MaxBond) und das
Minimum-Multicut-Problem (MinMultiCut) über ihre jeweiligen assoziierten
Polyeder, d.h. das Cut-Polytop, das Bond-Polytop und die Multicut-Dominante.

Als Fortführung der Forschung zu MaxCut präsentieren wir eine lineare Be-
schreibung für Cut-Polytope von K3,3-Minor-freien Graphen sowie einen Algo-
rithmus, der MaxCut auf diesen Graphen in der Laufzeit von planarem Max-
Cut löst. Darüber hinaus geben wir eine vollständige Charakterisierung von ein-
fachen und simplizialen Cut-Polytopen. In einer algorithmischen Betrachtung von
MaxCut präsentieren wir einen FPT-Algorithmus für MaxCut, der durch die
Kreuzungszahl parametrisiert ist.

Wir beginnen die strukturelle Untersuchung des Bond-Polytops, wobei wir
seine grundlegenden Eigenschaften und den Effekt von Graphoperationen auf das
Bond-Polytop und seine facetten-definierenden Ungleichungen untersuchen. Nach-
dem wir eine Linearzeitreduktion von MaxBond auf MaxBond auf 3-zusam-
menhängenden Graphen vorgestellt haben, diskutieren wir gültige und facetten-
definierende Ungleichungen, die sich aus Kanten und Kreisen ergeben. Diese Un-
gleichungen liefern eine vollständige lineare Beschreibung für Bond-Polytope von
3-zusammenhängenden, planaren, (K5 − e)-Minor-freien Graphen. Dieses poly-
topale Ergebnis spiegeln wir algorithmisch, indem wir einen Linearzeitalgorithmus
für MaxBond auf (K5 − e)-Minor-freien Graphen angeben.

Zuletzt beginnen wir die strukturelle Untersuchung der Multicut-Dominante.
Wir untersuchen grundlegende Eigenschaften, die zu Lifting- und Projektionser-
gebnissen führen. Dann untersuchen wir den Effekt von Graphoperationen auf die
Multicut-Dominante und ihre facetten-definierenden Ungleichungen. Darüber hin-
aus präsentieren wir facetten-definierende Ungleichungen, die auf Sternen, Bäumen
und Kreisen basieren, sowie Separationsalgorithmen für die beiden erstgenannten
Ungleichungsklassen.

iii

iv

Acknowledgements

First I would like to thank my supervisors Martina Juhnke-Kubitzke and Markus
Chimani for giving me the opportunity to work on this thesis, for drawing my at-
tention towards the interesting topic of polyhedra arising from optimization prob-
lems by linear programming, for constant guidance, and for beeing a source of
motivation and support during the work on this thesis.

I thank all former and current colleagues for every mathematical and non-
mathematical discussion during the coffee breaks and the overall pleasant atmo-
sphere. I am grateful for everyone who did their best to make the work as pleasant
and efficient as possible in times of corona lockdowns and home offices. In partic-
ular, I would like to to thank Niklas Troost for proofreading parts of this thesis.

Last but not least, I would like to thank my family and friends for the support,
encouragement, and distraction whenever I needed it over the past years.

v

vi

Contents

Introduction 1

1 Preliminaries 5
1.1 Graphs . 5
1.2 Polyhedra . 6
1.3 Integer Linear Programming . 8
1.4 The Maximum Cut Problem . 10
1.5 Cut Polytopes . 10

2 Cut Polytopes of Minor-free Graphs 17
2.1 K3,3-minor-free Graphs . 18
2.2 Simple and Simplicial Cut Polytopes 24
2.3 Open Problems . 26

3 Maximum Cut Parameterized by Crossing Number 29
3.1 Preliminaries . 30
3.2 Algorithm . 31
3.3 Minor Crossing Number . 37
3.4 Open Problems . 38

4 On the Bond Polytope 41
4.1 First Properties and Comparison to Cut□(G) 43
4.2 Constructing Facets from Facets . 46
4.3 Reduction to 3-connectivity . 51
4.4 Non-Interleaved Cycle Inequalities 53
4.5 Edge- and Interleaved Cycle Inequalities 58
4.6 (K5 − e)-Minor-Free Graphs . 62
4.7 Open Problems . 65

vii

viii CONTENTS

5 On the Dominant of the Multicut Polytope 67
5.1 Basic Properties . 69
5.2 Constructing Facets from Facets . 74
5.3 Star Inequalities . 78
5.4 Tree Inequalities . 83
5.5 Cycle Inequalities . 87
5.6 Open Problems . 91

6 Conclusion 93

Bibliography 95

Introduction

Cut problems in graphs are a well-established class of problems attracting interest
since the beginning of modern algorithmic research. Probably the most prominent
such problems are the maximum cut problem and the minimum cut problem.
Given a graph G = (V,E), a selection of nodes S ⊆ V defines a cut in G is an
edge set δG(S) = {e ∈ E : |e ∩ S| = 1}.

The maximum cut problem in a weighted graph, MaxCut for short, is well-
known in combinatorial optimization, and one of Karp’s original 21 NP-complete
problems [Kar72]. Formally, considering a graph G with edge weights ce ∈ R,
MaxCut is the problem of finding a cut δG(S) that maximizes

∑︁
e∈δG(S) ce. Al-

though MaxCut is NP-complete in general, polynomial algorithms are known for
some graph classes, e.g., planar graphs or more generally K5-minor-free graphs
[Bar83, OD72, Had75] (see Chapter 1.4 for more details).

The problem is constantly receiving attention in the literature due to its ap-
plicability to various scenarios: these range from ℓ1-embeddability [DL94b], over
the layout of electronic circuits [BGJR88, DSDJ+95], to solving Ising spin glass
models, which are of high interest in physics [Bar82]; also see [DL94a, DL94b] for
a more detailed overview on applications.

In contrast to MaxCut the minimum cut problem and the minimum s-t-cut
problem, MinCut and s-t-MinCut for short, are known to be solvable in polyno-
mial time [FF56]. Formally, given a graph G, non-negative edge weights ce ∈ R≥0,
MinCut asks for a non-empty cut δG(S) minimizing

∑︁
e∈δ(S) ce; s-t-MinCut ad-

ditionally receives two nodes s, t ∈ V as input and asks for a minimum cut with
|S ∩ {s, t}| = 1. Research on these two problems is driven by applications includ-
ing network design, network reliability, graph partitioning, partitioning items in
databases, and information retrieval [PQ80, Bot93, Kar01].

A commonly used method to tackle graph optimization problems is linear pro-
gramming. Here, we transfer the graph optimization to the respective optimiza-
tion of a linear function over a polyhedron. One way to solve such problems
is using branch-and-cut algorithms (see Chapter 1.3 for details). Using this ap-
proach, knowing facet-defining inequalities of the considered polyhedra as well as
separation routines for these inequalities can massively speed up the computa-

1

2 INTRODUCTION

tions. Hence, considering polyhedra arising from graph optimization problems, it
is particularly interesting to find their linear description, i.e., their facet-defining
inequalities. Moreover, the question arises, whether there are polynomial-time
separation algorithms for these inequalities.

Approaching MaxCut and s-t-MinCut by linear programming gives rise to
the cut polytope and the minimum s-t-cut dominant. The cut polytope Cut□(G) is
defined as the convex hull of all incidence vectors of cuts, the minimum s-t-cut poly-
tope MinC□(G, {s, t}) is the convex hull of all incidence vectors of s-t-cuts, and the
minimum s-t-cut dominant is given as MinC(G, {s, t}) = MinC□(G, {s, t}) + RE.
MaxCut can be solved by maximization over Cut□(G); s-t-MinCut can be
solved by minimization over MinC□(G, {s, t}) or MinC(G, {s, t}). Since the ver-
tices of the minimum cut dominant are precisely the incidence vectors of (inclusion-
wise) minimal s-t-cuts, it is the relevant object for minimization. The minimum
cut dominant was studied in [SW10]. Besides characterizing its vertices and adja-
cency among them, a complete facets-description of the minimum cut dominant is
given.

Complementing the complexity gap between s-t-MinCut and MaxCut the
cut polytope is the more complex of the two polyhedra. Although cut polytopes of
complete graphs have been studied intensively (see, e.g., [DL92a, DL92b, DL10]),
there are still many open problems; the facets of complete graphs on up to 7 nodes
have been classified up to symmetry [DL10] and those of K8 have been computed
[CR01, DS16]. Determining the facets of Cut□(Kn) for n ≥ 9 remains an open
problem.

Even less is known about cut polytopes of general graphs. There are a few
graph classes for which complete descriptions of the cut polytope are known, e.g.,
K5-minor-free graphs [BM86]. Moreover, in [BM86] Barahona and Mahjoub pro-
vided an extensive study of the effect of graph operations such as node splittings,
edge subdivisions, and edge contractions on the cut polytope and its facet-defining
inequalities. Many questions regarding cut polytopes are still open, see e.g., Chap-
ter 2.3.

A variety of cut problems arise from MaxCut and s-t-MinCut by general-
ization or by adding additional restrictions to the cuts under considerations. Over
the time, many of those have been studied, e.g., k-cut problems [DGL91, DGL92]
and equicut problems [dSL95, BB97, BCR97, DT98].

This thesis studied different cut problem on graphs. Mainly we focus our at-
tention on the polyhedra arising from these problems by considering the respective
linear programs. The original content is contained in Chapters 2 to 5. These chap-
ters are based on the publications [CJNR22] (Chapter 2) and [CDJ+20] (Chap-
ter 3), and the preprints [CJN20] (Chapter 4) and [CJN21] (Chapter 5). At the end
of each chapter we collect open problems arising from the work on the respective
contents.

3

Besides the work presented in this thesis, the author was also involved in re-
search on properties of 2-crossing critical graphs [BCN+21]. Since crossing criti-
cality is out of scope for this thesis, these results are not included.

Organization of the Thesis. In Chapter 1, we introduce basic results and
terminology on graphs, polyhedra, and (integer) linear programming. Afterwards,
we introduce the maximum cut problem. We provide an overview on complexity
results for this problem as well as on previous work on cut polytopes which form
the starting point for the following chapters.

In Chapter 2, we continue the research on cut polytopes. Complementing the
results from [BM86] on K5-minor-free graphs, we give the facet-description of cut
polytopes of K3,3-minor-free graphs and introduce an algorithm solving MaxCut
on those graphs in the same running time as planar MaxCut. Moreover, starting
a systematic geometric study of cut polytopes, we classify graphs admitting a
simple or simplicial cut polytope.

In Chapter 3, we consider MaxCut from a more in-depth algorithmic point
of view. We propose a fixed-parameter tractable algorithm parameterized by the
number k of crossings in a given drawing of G. Our algorithm achieves a running
time of O(2k·p(n+k)), where p is the polynomial running time for planar MaxCut.
The only previously known similar algorithm [DKM18] is restricted to graphs with
at most one crossing per edge and its dependency on k is of the order of 3k.
Finally, combining this with the fact that the crossing number problem is fixed-
parameter tractable with respect to its objective value, we see that MaxCut is
fixed-parameter tractable with respect to the crossing number, even without a
given drawing. Moreover, the results naturally carry over to the minor-monotone-
version of the crossing number.

In Chapter 4, we consider the maximum bond problem, MaxBond for short—
a variant of MaxCut. There, given a graph G = (V,E), we ask for a maximum
bond, i.e. a maximum cut δ(S) ⊆ E with S ⊆ V under the restriction that
both G[S] as well as G[V \ S] are connected. We emphasize that connectivity
arises naturally in optimal solutions of s-t-MinCut. Thus, both MaxBond and
MaxCut can be seen as inverse problems to s-t-MinCut. While MaxCut and its
corresponding polytope have received a lot of attention in literature, comparably
little is known about maximum bond.

The bond polytope is the convex hull of all incidence vectors of bonds. Similar
to the connection of the corresponding optimization problems, the bond polytope
is closely related to the cut polytope. In contrast to the intensive study of cut
polytopes, previous to our research were no results on bond polytopes. We start a
structural study of the latter, which additionally allows us to deduce algorithmic
consequences.

4 INTRODUCTION

We investigate the relation between cut- and bond polytopes and the additional
intricacies that arise when requiring connectivity in the solutions. We study the
effect of graph modifications on bond polytopes and their facets; moreover, we
study facet-defining inequalities supported on edges and cycles. In particular, these
yield a complete linear description of bond polytopes of cycles and 3-connected
planar (K5−e)-minor-free graphs. Finally, we present a reduction of the maximum
bond problem on arbitrary graphs to the maximum bond problem on 3-connected
graphs. This yields a linear-time algorithm for maximum bond on (K5−e)-minor-
free graphs.

In Chapter 5, we consider the minimum multicut problem, MinMultiCut for
short—a generalization of the minimum cut problem. Given a graph G = (V,E)
and a set S ⊆

(︁
V
2

)︁
of terminal pairs, the minimum multicut problem asks for a

minimum edge set δ ⊆ E such that there is no s-t-path in G− δ for any {s, t} ∈ S.
For |S| = 1, this is the minimum s-t-cut problem, but in general the minimum
multicut problem is NP-complete, even if the input graph is a tree. The multicut
polytope MultC□(G,S) is the convex hull of all incidence vectors of multicuts
in G; the multicut dominant is given by MultC(G,S) = MultC□(G,S) + RE.
The latter is the relevant object for the minimization problem. While polyhedra
associated to several other cut problems have been studied intensively there is only
little knowledge for multicut.

We investigate properties of the multicut dominant and in particular derive
results on liftings of facet-defining inequalities. This yields a classification of all
facet-defining path- and edge inequalities. Moreover, we investigate the effect of
graph operations on the multicut-dominant and its facet-defining inequalities. In
addition, we introduce facet-defining inequalities supported on stars, trees, and
cycles and show that the former two can be separated in polynomial time when
the input graph is a tree.

Chapter 1

Preliminaries

In this chapter we provide some background used in the thesis. After giving basic
results and terminology for graphs and polyhedra, we briefly discuss integer linear
programming. Then, we introduce the maximum cut problem and close the chapter
by introducing the cut polytope and recapitulating previous work on it.

1.1 Graphs

In this section, we provide basic background on graphs. For more details, we refer
to [Die18].

An (undirected) simple graph is a pair G = (V,E) where V is a set and E ⊆
(︁
V
2

)︁
is a set of two-element subsets of V . Elements of V are called nodes or vertices ;
elements of E are called edges. Given a graph G, we also write V (G) and E(G) for
its set of nodes and its set of edges, respectively. For v, w ∈ V (G), let vw = {v, w}
be the edge between v and w. We call v, w the end nodes of vw. Two nodes v
and w are adjacent if vw ∈ E(G); two edges e, f ∈ E(G) are adjacent if e∩ f ̸= ∅.
An edge e ∈ E(G) and a node v ∈ V (G) are incident if v ∈ e.

Multigraphs generalize simple graphs by allowing multiple edges with the same
end nodes. Unless specified otherwise, we only consider simple undirected graphs
that contain no isolated nodes.

A path of length k is a sequence of edges e1, . . . , ek with ei = vi−1vi such that
vi ̸= vj for 0 ≤ i < j ≤ k. Such a sequence but with v0 = vk is a cycle; a cycle of
length 3 is a triangle. A graph H is a subgraph of G, denoted by H ⊆ G, if (after
possibly renaming) V (H) ⊆ V (G) and E(H) ⊆ E(G). Given a subset W ⊆ V ,
the subgraph induced by W is the graph G[W] = (W, {uv ∈ E : u, v ∈ W}). If
an induced subgraph forms a cycle, this is an induced cycle and thus chordless. A
graph G is chordal, if every induced cycle in G has length 3. We fix the following
notations for some special classes of graphs: Cn for the cycle of length n; Kn for
the complete graph on n nodes; Kn,m for the complete bipartite graph on n and m

5

6 CHAPTER 1. PRELIMINARIES

nodes per partition set. We denote the graph obtained from G by deleting nodes
v1, . . . vk (resp. edges e1, . . . ek) by G− {v1, . . . , vk} (resp. G− {e1, . . . , ek}). If we
remove a single node v (resp. edge e), we might just write G− v (resp. G− e).

The graph G/e is obtained from G by contracting edge e = vw, i.e., the nodes v
and w are identified, and we delete the arising self-loop and merge parallel edges.
A graph G contains an H-minor, if H can be obtained from G by contracting
and deleting edges and isolated nodes; otherwise G is H-minor-free; G is an H-
subdivision, if G is obtained from H by replacing edges by internally node-disjoint
paths.

G is k-connected if |V (G)| ≥ k+1 and for each pair of nodes v, w ∈ V (G) there
exist k (internally) node-disjoint paths from v to w. 1-connected graphs as well as
the graph consisting of a single node and the empty graph are called connected. If
G is 1-connected but not 2-connected, there exists some cut-node v ∈ V (G) such
that G− v is disconnected.

For two graphs G and H, their union G ∪H = (V (G) ∪ V (H), E(G) ∪E(H))
is disjoint if their node sets are; in this case we write G ·∪H. Consider two graphs
G, H containing Kk as a subgraph, for some k ∈ N>0, the k-sum (or clique-sum)
of G and H is obtained by taking their union, identifying the Kk subgraphs and
possibly removing edges contained in this specific Kk. A k-sum is strict, if no
edges are removed. We denote the strict k-sum of G and H by G⊕k H. Observe,
that this notation does not explicitly state the specific Kk in question.

A drawing of a graph (in the plane) consists of a map of its nodes to distinct
points in R2 together with a map of its edges to curves connecting the respective
endpoints. The interior of the curve of an edge must not contain the point of
any node. Any point in the plane either corresponds to a graph node, or is con-
tained in at most two edge curves. A shared non-endpoint between two curves is
called a crossing. A graph is planar if it admits a drawing without any crossings.
(Edge-)maximal planar graphs are triangulations. By Kuratowski’s (Wagner’s)
Theorem [Kur30, Wag37], a graph is planar if and only if it contains no K5- or
K3,3-subdivision (minor, respectively). Given a K5-subdivision H contained in G
we call the nodes of degree 4 in H Kuratowski nodes. The paths in H between
these nodes are Kuratowski paths.

1.2 Polyhedra

In this section we provide basic background on polyhedra. For more details, we
refer to [BG09, Zie12].

For k ∈ N, let [k] = {1, . . . , k}; for vectors a, b in Rd, we write a ≤ b
if ai ≤ bi for all i ∈ [d]; for A ∈ Rn×d and b ∈ Rd we use the shorthand
{Ax ≤ b} for {x ∈ Rd : Ax ≤ b} and the analogon for equalities. Given a halfspace

1.2. POLYHEDRA 7

H = {aTx ≤ b0} with a ∈ Rd and b0 ∈ R we call the vectors in {λa : λ ∈ R>0}
outer normals of H and those in {−λa : λ ∈ R>0} inner normals. While we de-
scribe halfspaces by their outer normals in the following discussion, everything can
be done similarly using inner normals as {aTx ≤ b0} = {−aTx ≥ −b0}. As a rule of
thumb we will use outer normals (≤-inequalities) when maximizing some objective
function over a polyhedron and inner normals (≥-inequalities) when minimization
is considered.

A V-polytope is the convex hull of a finite set of points in Rd, i.e., it is a set of
the form P = conv(M) for some finite set M ⊆ Rd. The Minkowski sum of two
sets P ,Q ⊆ Rd is given by P +Q = {p+ q : p ∈ P , q ∈ Q}. A V-polyhedron is the
Minkowski sum of a V-polytope and the conical hull of a finite set, i.e., it is a set
of the form P = conv(M) + cone(N) for finite sets M,N ⊆ Rd. A V-polyhedron
is a V-polytope if and only if it is bounded.

An H-polyhedron is the intersection of finitely many closed halfspaces, i.e., it
is a set of the form P = {Ax ≤ b} ⊆ Rd for some A ∈ Rm×d and b ∈ Rm. An H-
polytope is a bounded H-polyhedron. Due to the following theorem by Minkowski
and Weyl, we will not explicitly distinguish between H- and V-polyhedra and just
call these objects polyhedra.

Theorem 1.2.1. Let P ⊆ Rd. Then, P is an H-polyhedron (resp. H-polytope) if
and only if P is an V-polyhedron (resp. V-polytope).

In the following, let P be a polyhedron. The dimension dimP of P is the
dimension of its affine hull. A linear inequality aTx ≤ b0 with a ∈ Rd and b0 ∈ R
is a valid inequality for P if it is satisfied by all points x ∈ P . The inequality is
tight if there is some p ∈ P with aTp = b0. A (proper) face of P is a (non-empty)
set F of the form F = P ∩ {aTx = b0} for some valid inequality aTx ≤ b0 with
a ̸= 0. Faces of dimension 0 and dim(P)− 1 are vertices and facets, respectively.
For each face F ⊆ P there is a facet F ′ ⊆ P dominating it, i.e., F ′ ⊇ F .

A tight inequality aTx ≤ b0 is facet-defining if P∩{aTx = b0} is a facet of P . If
P = {Ax ≤ b} for some matrix A and vector b, the system of inequalities Ax ≤ b
is a linear description of P . If P is full-dimensional a minimal linear description
is given by taking the system of all facet-defining inequalities.

A simplex of dimension d is the convex hull of d+1 affinely independent points.
A d-dimensional polytope P is simple if each vertex of P is contained in exactly d
facets; the polytope is simplicial if each facet of P is a simplex.

Given Theorem 1.2.1, it is straightforward to verify that both the intersection
of a polyhedron with a hyperplane and the projection of a polyhedron onto a
linear subspace are again polyhedra. Moreover, given the linear description of a
polyhedron P we can derive a linear description of the orthogonal projection of P
onto a coordinate hyperplane using Fourier-Motzkin elimination. An example for
this can be found in Example 2.1.5.

8 CHAPTER 1. PRELIMINARIES

Theorem 1.2.2 (Fourier-Motzkin elimination). Let P = {Ax ≤ b} be a polyhedron
with A ∈ Rm×d and b ∈ Rm and k ∈ [d]. Denote by πk : Rd → Rd−1 the orthogonal
projection onto {xk = 0}. Let Ai = (ai,1, . . . , ai,k−1, ai,k+1, . . . ai,d) be obtained from
the i-th row of A by ignoring the k-th entry.

Then, the following system of inequalities is a linear description of π(P):

Aix ≤ bi for all i ∈ [d] with ai,k = 0,

(ai,kAj − aj,kAi)x ≤ ai,kbj − aj,kbi for all i, j ∈ [d] with ai,k > 0 and aj,k < 0.

1.3 Integer Linear Programming

A common way to approach optimization problems is integer linear programming.
In this section we provide some background on the fundamental ideas of this
technique. For more details we refer to [NW88].

A linear program (LP) is the maximization or minimization of a linear function
over a polyhedron, i.e., we ask for for

max{cTx : x ∈ P} or min{cTx : x ∈ P}

where P ⊆ Rd is a polyhedron and c ∈ Rd. The function f(x) = cTx is called
the objective function. A linear program is infeasible if there is no solution, i.e., if
P = ∅; otherwise it is feasible.

Given a polyhedron P ⊆ Rd, its integer hull is PI = conv{x ∈ P : x ∈ Zd}.
We also say P is a relaxation of PI . An integer linear program (ILP) is the
maximization or minimization of a linear function over the integer points in a
polyhedron, i.e., the question for

max{cTx : x ∈ P ∩ Zd} or min{cTx : x ∈ P ∩ Zd},

where P ⊆ Rd is a polyhedron and c ∈ Rd. In terms of the considered vertices
and the optimal value, this is equivalent to the respective linear program over PI .
However, while linear programs can be solved in polynomial time, solving integer
linear programs is in general NP-complete.

One way to solve an integer linear program is to use the branch-and-cut method.
In the following we describe this procedure for maximization; this method can be
transferred to minimization by simply considering the negative of the objective
function. To this end, let P be a polyhedron and consider the integer linear
program max{cTx : x ∈ P ∩ Zd}.

A cutting plane is a hyperplane H = {aTx = b} such that the corresponding
cutting plane inequality aTx ≤ b is valid for PI but not for P . Given a class of
cutting planes and some x ∈ Rd, an (exact) separation algorithm gives a violated
inequality of this class if it exists.

1.3. INTEGER LINEAR PROGRAMMING 9

Branch-and-cut solves the integer linear program by an enumeration starting
with the relaxation P . Formally, we perform the following steps:

0. Initialization: Set Π = {P}, x∗ = 0 and v∗ = −∞.

1. Termination: If Π = ∅, terminate with optimal solution x∗ of value v∗.

2. LP Selection: Select a polyhedron Q ∈ Π and remove it from Π.

3. LP Solving: Solve the linear program max{cTx : x ∈ Q}.

4. Bounding: If the linear program is infeasible or v ≤ v∗, go back to step 2.

5. Update Bound: If x̂ ∈ Zd, set v∗ = v, x∗ = x̂, and go back to step 2.

6. Cutting: We may check whether there are cutting planes separating x̂ from QI .
If such a cutting plane inequality aTx ≤ b is found, update Q = Q∩{aTx ≤ b}
and go back to step 3.

7. Branching: Choose some index i ∈ [d] with x̂i /∈ Z, add Q ∩ {xi ≥ ⌈x̂i⌉} and
Q∩ {xi ≤ ⌊x̂i⌋} to Π, and go back to step 2.

In each step we have a collection Π of active polyhedra and apply the following
steps to a chosen polyhedron. We start with bounding, i.e., we check whether
the maximization over the chosen polyhedron yields a larger value than the best
feasible solution value seen so far. If it does not, we remove the chosen polyhedron
from the list of active polyhedra; otherwise, if it does and the found point attaining
this value is integral, we update the best feasible solution value and discard the
polyhedron as well. If neither of these cases applies, we try to cut the polyhedron
with a halfspace defined by some cutting plane and resolve the corresponding
linear program. If there is no identified cutting plane, we branch, i.e., we generate
linear programs as subproblems which are then added to the collection of active
polyhedra instead of the chosen polyhedron. Note that in each iteration cutting is
optional and dependent on the set of known cutting planes and separation routines
for these. The procedure terminates when the list of active polyhedra is empty.
The at this point best found solution is in fact optimal.

Note that while branching always adds two new active polyhedra, the number
of active polyhedra does not grow as long as cutting is successful. Thus, the pro-
cedure performs better when “good” cutting planes—i.e., cutting planes yielding
inequalities that are “as tight as possible”—can be found. The best candidates
for these hyperplanes are the facets of PI that are not facets of P . Thus, deter-
mining facets of PI and finding separation algorithms for these hyperplanes can
substantially speed up the branch-and-cut procedure.

10 CHAPTER 1. PRELIMINARIES

1.4 The Maximum Cut Problem

Let G = (V,E) be a graph. A selection S ⊆ V of nodes defines the cut δG(S) =
{e ∈ E : |e ∩ S| = 1}. We may omit the subscript when the graph is clear
from the context. If G is connected, there are 2|V |−1 pairwise different cuts as
δ(S) = δ(V \ S). Given a graph G and edge weights ce ∈ R, for e ∈ E, the
maximum cut problem, MaxCut problem for short, asks for a cut δ in G that
maximizes its value

∑︁
e∈δ ce. Since a graph can have multiple cuts of equal value,

only the value of a maximum cut is unique, not the cut itself.
It is well-known that MaxCut is NP-complete [Kar72]. Papadimitriou and

Yannakakis [PY91] showed that it is even APX-hard, i.e., there does not exist
a polynomial-time approximation scheme unless P=NP. A few years later, Goe-
mans and Williamson proposed a randomized constant-factor approximation algo-
rithm [GW95], which has been derandomized by Mahajan and Ramesh [MR95],
achieving a ratio of 0.87856. Although MaxCut is NP-complete on general
graphs, there are some graph classes on which polynomial-time algorithms are
known. In [OD72, Had75] it was shown that MaxCut can be solved in poly-
nomial time for unweighted planar graphs. This result can be extended to the
weighted case; the currently fastest algorithms for the weighted case have been
suggested by Shih et al. [SWK90] and by Liers and Pardella [LP12], and achieve
a running time of p(n) = O(n3/2 log n) on planar graphs with n nodes.

Extending the class of planar graphs, Barahona [Bar83] proposed a polynomial-
time algorithm solving MaxCut on K5-minor-free graphs in O(n4) time. This was
generalized by Kaminski [Kam12] by proving that MaxCut can be solved in O(n4)
time on H-minor-free graphs, for an arbitrary graph H that admits a drawing with
exactly one crossing. A further extension of the class of K5-minor-free graphs was
given by Grötschel and Pulleyblank by introducing weakly bipartite graphs [GP81,
FMU92]. These are by definition the graphs, whose bipartite subgraph polytope is
completely described by certain edge- and cycle inequalities (see Theorem 1.5.3).
Moreover, they proved that for positive edge weights, MaxCut can be solved in
polynomial time on these graphs by using linear programming. In contrast to these
results, MaxCut is still NP-complete on K6-minor-free graphs [Bar83].

1.5 Cut Polytopes

Given a graph G = (V,E), we associate to each set δ ⊆ E its incidence vector
xδ ∈ RE given by

xδ
e =

{︄
1, if e ∈ δ,

0, else.

1.5. CUT POLYTOPES 11

The cut polytope of G is defined as the convex hull of the incidence vectors of all
cuts in G:

Cut□(G) = conv({xδ : δ is a cut in G}) ⊆ RE.

The cut polytope has dimension dim(Cut□(G)) = |E|, see, e.g., [BGM85,
p.344]. Given a valid inequality aTx ≤ b of Cut□(G) with a ∈ RE and b ∈ R,
its support graph supp(a) ⊆ G is the subgraph of G induced by the edge set
{e ∈ E : ae ̸= 0}. If supp(a) consists of a single edge, the inequality is called an
edge inequality. The homogeneous edge inequality associated to an edge e ∈ E is
−xe ≤ 0.

In the following we recapitulate results on cut polytopes of general graphs.

Graph Decompositions. It follows directly from the definition of cut polytopes
that for disconnected graphs G with connected components G1 . . . Gk we have

Cut□(G) = Cut□(G1)× · · · × Cut□(Gk). (1.1)

As many classes of graphs can be described in terms of clique sums, the fol-
lowing result is a very helpful cornerstone for the understanding of cut polytopes.

Theorem 1.5.1. [Bar83, Theorem 3.1.] Let G = G1⊕k G2 be a strict k-sum with
k ∈ {1, 2, 3}. The facet-defining inequalities of G are given by taking all facet-
defining inequalities of G1 and G2 and identifying the variables of common edges.
In particular, it holds that

Cut□(G1 ⊕1 G2) = Cut□(G1)× Cut□(G2). (1.2)

Symmetry Operations. Any automorphism ϕ of a graph G gives rise to a map
on cuts. Thus, ϕ induces a permutation on the vertices of Cut□(G) by mapping xδ

to xϕ(δ), which yields a symmetry of Cut□(G). Another symmetry of cut polytopes
is given by switching :

Lemma 1.5.2 (Switching Lemma [BM86, Corollary 2.9.]). Let G = (V,E) be
a graph and aTx ≤ b be a facet-defining inequality for Cut□(G). Let W ⊆ V ,
and define b′ = b −

∑︁
e∈δ(W) ae, and a′e = (−1)1[e∈δ(W)] · ae for all e ∈ E. Then

(a′)Tx ≤ b′ defines a facet of Cut□(G).

Considering this on the level of cuts, switching in δ(W) is induced by the map
δ ↦→ δ△δ(W) = (δ ∪ δ(W)) \ (δ ∩ δ(W)). In particular, using notations of the
previous lemma, this maps the vertices on a facet Cut□(G) ∩ {aTx = b} onto the
vertices of the facet Cut□(G)∩{(a′)Tx = b′}. Moreover, switching a facet-defining
inequality by a cut corresponding to a vertex of this facet gives a homogeneous
facet-defining inequality. Thus, all symmetry classes of facets of Cut□(G) contain
facets of the cut cone Cut(G) = cone({x ∈ Cut□(G)}) ⊆ RE. It hence suffices
to understand the facets of cut cones to understand the facets of cut polytopes.

12 CHAPTER 1. PRELIMINARIES

Facet-Defining Inequalities. Considering cut polytopes, it is particularly in-
teresting to find their linear description, i.e., their facet-defining inequalities. If we
have a linear description of polynomial size in the input, this gives a polynomial
algorithm for MaxCut. Even though it is impossible to find such a description
for arbitrary graphs (unless P=NP), a better understanding of cut polytopes is
expected to improve algorithmic results.

Since Cut□(G) is contained in the unit cube, the inequalities 0 ≤ xe ≤ 1 are
valid. Given a cut δ and a cycle C in G, the number of edges in δ ∩ C is always
even. These observations give rise to validity of the following edge- and cycle
inequalities :

Theorem 1.5.3. [BM86, Section 3]

• The valid inequalities 0 ≤ xe ≤ 1 define facets of Cut□(G) if and only if e
does not belong to a triangle.

• The valid inequalities∑︂
f∈F

xf −
∑︂

e∈E(C)\F

xe ≤ |F |−1, for all cycles C ⊆ G, F ⊆ E(C) with |F | odd

define facets if and only if C is chordless.

In particular, for each triangle G with E(G) = {e, f, g} the following metric
inequalities (up to permuting the edges) are facet-defining for Cut□(G):

xe + xf + xg ≤ 2 and xe − xf − xg ≤ 0.

As a generalization of metric inequalities we get hypermetric inequalities by
considering the complete graph instead of triangles. Up to switching these in-
equalities are given by the following theorem:

Theorem 1.5.4. [BM86, Theorem 2.2 and 2.4] Let G = (V,E) be a graph, n ≥ 5
and H = ([n], F) ⊆ G be a copy of Kn. Moreover, let k ≥ 2 and t1, . . . , tn ∈ N>0

with
∑︁n

i=1 ti = 2k + 1 and
∑︁

i∈[n]:ti>1 ti ≤ k − 1. Then,∑︂
ij∈F

titjxij ≤ k(k + 1)

is facet-defining for Cut□(G).

The hypermetric inequality of K5 is displayed in inequality (2.1). The support
of all facet-defining inequalities treated so far correspond to complete subgraphs

1.5. CUT POLYTOPES 13

Figure 1.1: Two drawings of the bicycle 5-wheel. The red edges are those of the
cycle Cn.

or, in the case of cycle inequalities, subdivisions of these. There also exist facet-
defining inequalities whose support graph is not complete. One example for this
type of inequalities is given by bicycle n-wheel inequalities : A bicycle n-wheel, cf.
Figure 1.1, is the graph obtained from the cycle Cn by adding two adjacent nodes
v1, v2 and edges viw for each i ∈ [2] and w ∈ V (Cn).

Theorem 1.5.5. [BM86, Theorem 2.3] Let G = (V,E) be a graph and H = (W,F)
be a bicycle (2k + 1)-wheel contained in G. Then, the inequality∑︂

f∈F

xf ≤ 2(2k + 1)

is facet-defining for Cut□(G).

For complete graphs, further classes of facet-defining inequalities of the cut
polytope are given in [AI07, DL10]. In particular, for n ≤ 7 all facets of Cut□(Kn)
are classified up to symmetry [DL10, Chapter 30.6] and all facets of Cut□(K8)
have been computed (see [CR01, Section 8.3] and [DS16]). It is a major open
problem to determine the facets of Cut□(Kn) for n ≥ 9.

A main result in the study of cut polytopes of general graphs is the classification
of K5-minor-free graphs by the facet-defining inequalities of their cut polytopes:

Theorem 1.5.6. [BM86, Section 3] A graph G is K5-minor-free if and only if
Cut□(G) is completely defined by the cycle- and edge inequalities from Theo-
rem 1.5.3.

Graph Operations. We close this section by presenting results on the effect of
graph operations on the cut polytope and its facet-defining inequalities. As a first
step, note that for a graph G = (V,E) and an edge e ∈ E, cuts in G/e correspond
to cuts δ in G with e /∈ δ. Moreover, if δ is a cut in G, then δ \ {e} is a cut in
G − e and each cut in G − e can be constructed this way. Thus, the following
observation holds:

14 CHAPTER 1. PRELIMINARIES

Observation 1.5.7. Let G = (V,E) be a graph and e ∈ E. Then,

• Cut□(G/e) = Cut□(G) ∩ {xe = 0}, and

• Cut□(G − e) = π(Cut□(G)), where π : RE → RE\{e} is the orthogonal
projection.

Finally, we recapitulate more in-depth results on the effect of node splittings,
edge subdivisions, and edge contractions on facet-defining inequalities of cut poly-
topes. Though stating the following theorems is quite tedious and the precise
results are not used directly in the following work, we present these for easier com-
parison with the respective results in Chapter 4.2 and Chapter 5.2 We start by
considering a simple graph operation:

Theorem 1.5.8 (Contraction of an edge [BM86, Theorem 2.6(b)]). Let G = (V,E)
be a graph, aTx ≤ b be facet-defining for Cut□(G), and v1v2 ∈ E(supp(a)) such
that v1 and v2 have no common neighbor in supp(a). Assume that av1u ≥ 0 for each
v1u ∈ δ(v1) \ {v1v2} and −av1v2 =

∑︁
e∈δ(v1)\{v1v2} ae ≥

∑︁
e∈δ(v2)\{v1v2} ae. Obtain

G from G by removing all edges v1u with av1u = 0 and then contracting the edge
v1v2. Define a ∈ RE by

auw =

⎧⎪⎨⎪⎩
auw, if uw ∈ E ∩ E,
av1w if u = v and av1w > 0,
av2w if u = v, v2w ∈ E, and v1w /∈ E(supp(a)).

Then, aTx ≤ b is facet-defining for Cut□(G).

After considering edge contractions, we consider its inverse operation:

Theorem 1.5.9 (Node splitting [BM86, Theorem 2.6(a)]). Let G = (V,E) be a
graph, aTx ≤ b be a facet-defining inequality for Cut□(G) and v ∈ V (supp(a)).
Furthermore, let W ⊆ V such that v ∈ W and aTxδ(W) = b. Choose any nonempty
subset F ⊆ δ(v) ∩ {xy ∈ E : x, y ∈ W} such that ae > 0 for each e ∈ F and
construct the graph G = (V ,E) from G as follows: Split v into adjacent nodes
v1, v2 such that v1 is incident to each edge in F and v2 is incident to each edge
in δ(v) \ F . Moreover, any further edge v1u with u /∈ V (supp(a)) may be added.
Now, define a ∈ RE by

auw =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

auw, if uw /∈ δ(v),
auw, if u = v1, uw ∈ F ,
auw, if u = v2, uw ∈

(︁
δ(v) ∩ E(supp(a))

)︁
\ F ,

−
∑︁

f∈F af , if uw = v1v2,
0, else.

Then, aTx ≤ b is facet-defining for Cut□(G).

1.5. CUT POLYTOPES 15

G− v

v1

(a) G

G− v

v1v2

v3

(b) G

Figure 1.2: Visualization of the split operation in Theorem 1.5.10. Blue, green
and red edges represent F1, F2, and F3, respectively.

Although node splitting can be used as inverse to edge contractions, we can
also split a node into more than just two adjacent nodes:

Theorem 1.5.10 (Replacing a node by a triangle [BM86, Theorem 2.7]). Let
G = (V,E) be a graph, aTx ≤ b be facet-defining for Cut□(G), and v ∈ V (supp(a))
such that ae ≥ 0 for all e ∈ δ(v). Furthermore, let F1 ·∪ F2 ·∪ F3 be a partition
of δ(v). Assume that there exist W1,W2,W3 ⊆ V such that aTxδ(Wi) = b and
Fi ⊆ {vw ∈ W : v, w ∈ Wi} for all i ∈ [3]. Construct G = (V ,E) from G as
follows (cf. Figure 1.2): Remove v from G and add nodes v1, v2, v3 such that vi is
incident to all edges in Fi for i ∈ [3] and vj is adjacent to vk for 1 ≤ j < k ≤ 3.
Moreover, any edge viu with i ∈ [3] and u /∈ V (supp(a)) may be added. Define
a ∈ RE by

auw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

auw, if uw ∈ E \ δ(v),
auw, if u = vi, i ∈ [3], uw ∈ Fi,
1
2

(︂
−
∑︁

f∈F1
af −

∑︁
f∈F2

af +
∑︁

f∈F3
af

)︂
, if uw = v1v2,

1
2

(︂
−
∑︁

f∈F1
af +

∑︁
f∈F2

af −
∑︁

f∈F3
af

)︂
, if uw = v1v3,

1
2

(︂ ∑︁
f∈F1

af −
∑︁

f∈F2
af −

∑︁
f∈F3

af

)︂
, if uw = v2v3,

0, else.

Then, aTx ≤ b is facet-defining for Cut□(G).

After considering edge contractions and two different node split operations, we
turn our attention to another simple graph operation:

Theorem 1.5.11 (Subdivision of an edge [BM86, Corollary 2.10(a)]). Let G =
(V,E) be a graph, aTx ≤ b be facet-defining for Cut□(G) and vw ∈ E(supp(a)).
Let G = (V ,E) be the graph obtained from G−vw in the following way: Add nodes

16 CHAPTER 1. PRELIMINARIES

v1, . . . , vk and edges P = {vv1, v1, v2, . . . , vk−1vk, vkw}. Moreover, any further edge
vℓu with 1 ≤ ℓ ≤ k and u /∈ V (supp(a)) may be added. Let P+ ·∪ P− be a partition
of P such that |P+| is odd if avw > 0 and |P−| is even if avw < 0. Define a ∈ RE

by

ae =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ae, if e ∈ E \ {vw},
avw, if e ∈ P+,
−avw, if e ∈ P−,
0, else.

Then, aTx ≤ b is facet-defining for Cut□(G).

Finally, after considering edge subdivisions, we consider its inverse operation:

Theorem 1.5.12 (Replacing a path by an edge [BM86, Corollary 2.10(b)]).
Let G = (V,E) be a graph and aTx ≤ b be facet-defining for Cut□(G). More-
over, let P = {vv1, v1v2, . . . , vk−1vk, vkw} be an induced path in supp(a). Assume
there is some α ̸= 0 and a partition P = P+ ·∪ P− with ae = α for e ∈ P+ and
ae = −α for e ∈ P− with |P+| is odd if α > 0 and |P−| is odd if α < 0. Let G be
obtained from G by removing P and adding the edge vw. Define a ∈ RE by

ae =

{︄
ae, if e ∈ E ∩ E,
α, else.

Then, aTx ≤ b is facet-defining for Cut□(G).

Chapter 2

Cut Polytopes of Minor-free Graphs

This chapter is based on [CJNR22].

Not too long ago, Sturmfels and Sullivant [SS08] established a new connection
between the study of cut polytopes and commutative algebra, as well as algebraic
geometry, by considering related toric varieties. In particular, they conjectured
that the cut polytope of a graph is normal if and only if the graph is K5-minor-free.
Among others, the research on these toric varieties and associated cut algebras has
been pursued by Engström [Eng11], Ohsugi [Ohs10, Ohs14], Römer and Saeedi
Madani [RS18], Römer and Koley [KR21], and Lasoń and Michałek [LM20].

It turns out that not much is known about the polyhedral structure of cut
polytopes as objects in discrete geometry. We expect new insights in the study of
MaxCut by considering cut polytopes of graphs not containing a specific minor.

Organization of this chapter. In Chapter 2.1, we consider K3,3-minor-free
graphs. Complementing the results on K5-minor-free graphs, we provide the full
linear description of cut polytopes of K3,3-minor-free graphs.

Moreover, we give an algorithm solving MaxCut on K3,3-minor-free graphs,
requiring only the running time for MaxCut on planar graphs. This is somewhat
surprising, as K5-minor-free graphs admit an easier linear description, while we
achieve a better running time for MaxCut on K3,3-minor-free graphs.

Starting the investigation of geometric properties of cut polytopes, in Chap-
ter 2.2 we completely characterize graphs that provide a simple or simplicial cut
polytope. In particular, it turns out that graphs providing a simple cut polytope
are precisely the C4-minor-free graphs. The simplicial case can only occur for
finitely many graphs.

An aim of this chapter is more in putting together some loose ends in the
literature than providing completely novel results. Several results are in fact rather
expected and some proofs are rather straight forward. However, we emphasize that

17

18 CHAPTER 2. CUT POLYTOPES OF MINOR-FREE GRAPHS

there are some pitfalls one can easily run into, e.g.—as explained in Chapter 2.1—
Theorem 2.1.7 cannot be deduced just from a graph decomposition into 2-sums,
as has been previously suggested. As such, this chapter is also to be understood
as a collection and service.

2.1 K3,3-minor-free Graphs

In this section, we consider K3,3-minor-free graphs and provide the complete lin-
ear description of their cut polytopes. We also show that this yields an efficient
algorithm for MaxCut on K3,3-minor-free graphs. This complements the known
facts on K5-minor-free graphs. Moreover, since K5 is maximal K3,3-minor-free but
not weakly bipartite, we obtain the first full polyhedral description of a general
minor-closed graph class apart from weakly bipartite graphs.

We first characterize maximal K3,3-minor-free graphs. Per se, this is not new:
it is sometimes referenced to (different papers by) Wagner (see for example [Die90]
without a proof); a complete proof in modern terminology was given in [Tho99].
Here, we propose a slightly different approach, using 3-connectivity components.
This provides a simpler, more basic proof and turns out to be directly usable for
our polyhedral and our algorithmic results.

Let G = (V,E) be a 2-connected, not necessarily simple graph and let {v, w}
be a split pair in G, i.e., G − {v, w} is disconnected or there are parallel edges
connecting v and w. The split classes of {v, w} are given by a partition E1, . . . , Ek

of E such that two edges are in a common split class if and only if there is a path
between them neither containing v nor w as an internal node. As G is 2-connected,
it is easy to see that v and w are both incident to each split class. For a split class
C let C = E \C. A Tutte split replaces G by the two graphs G1 = (V (C), C∪{e})
and G2 = (V (C), C ∪ {e}), provided that G1 − e or G2 − e remains 2-connected.
Thereby, e is a new virtual edge connecting v and w; the other edges are called
original. Observe that this operation may yield parallel edges. Iteratively splitting
the graphs via Tutte splits gives the unique 3-connectivity decomposition of G. Its
components, the so-called skeletons can be partitioned into the following sets: a
set S of cycles, a set P of edge bundles (two nodes joined by at least 3 edges), and
a set R of 3-connected graphs. See, e.g., [Tut66, HT73].

Lemma 2.1.1. Any maximal K3,3-minor-free graph G is 2-connected.

Proof. Clearly, G is connected, as otherwise we could join two connected com-
ponents via an edge without obtaining a K3,3-minor. Assume that G is not 2-
connected and let v ∈ G be a cut-node separating G into G1 and G2. Choose
w1 ∈ G1 and w2 ∈ G2 adjacent to v and obtain the graph G̃ from G by adding the
edge w1w2. As a side note, this operation retains planarity for planar G. Since

2.1. K3,3-MINOR-FREE GRAPHS 19

(a)

w1v
w2

w3

w4

w5

(b)

Figure 2.1: The graphs of the proof of Proposition 2.1.2

G̃ contains only two paths between G1 and G2 but K3,3 is 3-connected, G̃ is still
K3,3-minor-free. This contradiction concludes the proof.

Proposition 2.1.2. Let G be a maximal K3,3-minor-free graph. Then, G can be
decomposed as a strict clique-sum G = G1 ⊕2 · · · ⊕2 Gk, where each Gi is either a
planar triangulation or a copy of K5.

Proof. Let G be a maximal K3,3-minor-free graph. By Lemma 2.1.1, G is 2-
connected, so we may consider its 3-connectivity decomposition. Whenever a
virtual edge ab was introduced, both parts of the Tutte split contain a path between
a and b. Furthermore, G contains a K3,3-minor if and only if one of the components
of its decomposition does. But then, if G would not contain an original edge
connecting a and b, we could introduce it without creating a K3,3-minor. Thus,
each virtual edge corresponds to an edge e ∈ E(G) by maximality of G, and G is
the strict 2-sum of cycles and 3-connected graphs. By maximality of G, the cycles
are triangles, a trivial form of a planar triangulations.

Let H be a 3-connected graph from this sum. If H is planar, then – by max-
imality – it is a triangulation. Otherwise, by Kuratowski’s Theorem, H contains
a K5-subdivision. Assume that H ̸= K5. If H contains K5 as a subgraph, then
it contains the graph shown in Figure 2.1((a)) as a minor, and thus a K3,3-minor,
which yields a contradiction.

Assume that H contains a proper K5-subdivision with Kuratowski nodes S =
{w1, . . . , w5} and let v ∈ V (H) \ S be a node of this subdivision. Since H is
3-connected, there are disjoint paths from v to three pairwise distinct Kuratowski
nodes, say w1, w2, w3. But then H contains the graph of Figure 2.1((b)) as a minor,
which itself contains a K3,3-minor. This concludes the proof.

Proposition 2.1.2 allows us to classify all facets of cut polytopes of maximal
K3,3-minor-free graphs:

Theorem 2.1.3. Let G be a maximal K3,3-minor-free graph. Then, all facets of
Cut□(G) are given by cycle inequalities for each induced cycle in G and switchings

20 CHAPTER 2. CUT POLYTOPES OF MINOR-FREE GRAPHS

of the facet-defining inequality∑︂
e∈E(K5)

xe ≤ 6 for each K5-subgraph. (2.1)

Proof. We know from Theorem 1.5.1 that the facets of the cut polytope of a 2-sum
of graphs are given by taking all facets of the cut polytopes of both graphs and
identifying common variables. Moreover, by Theorem 1.5.6 all facets of the cut
polytope pf a planar triangulation are given by cycle inequalities; the facets of
Cut□(K5) are given by metric inequalities and switchings of (2.1) [DL10, Chapter
30.6]. Since maximal K3,3-minor-free graphs are 2-sums of copies of K5 and planar
triangulations, this yields the claimed result.

We can use Theorem 2.1.3 to classify the facets of the cut polytope of any
K3,3-minor-free graph.

Corollary 2.1.4. Let G be a K3,3-minor-free graph. Then, G can be decomposed
as a (not necessarily strict) k-sum of planar graphs and/or copies of K5, with
k = 1, 2.

Let H be a maximal K3,3-minor-free graph containing G. Then, the facets of
Cut□(G) are obtained by projecting Cut□(H) onto {xe = 0 : e ∈ E(H) \ E(G)}.

Proof. The decomposition claim follows from Proposition 2.1.2. Alternatively, we
can obtain G from H by deleting edges. On the level of cut polytopes, the effect of
an edge deletion e ∈ E(H) corresponds to a projection onto {x ∈ RE : xe = 0}.

On the level of facets, a projection of a polytope to a coordinate hyperplane is
given by eliminating variables. This can be done by Fourier-Motzkin elimination
(see Theorem 1.2.2), which is made more precise in the following example.

Example 2.1.5. Consider the non-maximal K3,3-minor-free graph G shown in
Figure 2.2. It is obtained by taking the non-strict 2-sum of two copies of K5.
Let these copies of K5 be G1 = (V,E) and G2 = (W,F) with vertex sets V =
{v1, v2, v3, u1, u2} and W = {u1, u2, w1, w2, w3}.

Both G1 − u1u2 and G2 − u1u2 are planar and chordal. Thus, all facets of
their cut polytopes are given by metric inequalities, and those are also facets of
Cut□(G). All other facets of Cut□(G) are obtained by taking a pair of facets F1

of Cut□(G1) and F2 of Cut□(G2) and eliminating the variable xu1u2 by summing
the corresponding inequalities. In the following we focus on the latter class of
facets. Choosing one representative for each class of facet-defining inequalities of
G1 and G2 we get:

(1) one metric inequality of G1: xu1u2 + xu2v1 + xu1v1 ≤ 2,

2.1. K3,3-MINOR-FREE GRAPHS 21

w1

u2

u1

w3

w2

v1

v3

v2

Figure 2.2: The graph of Example 2.1.5

(2) one hypermetric inequality of G1:
∑︁

e∈E xe ≤ 6,

(3) one metric inequality of G2: −xu1u2 − xu2w1 + xu1w1 ≤ 0,

(4) one hypermetric inequality of G2:
∑︁

f∈F : u2 /∈F xf −
∑︁

f∈F : u2∈f xf ≤ 2.

Using Fourier-Motzkin elimination we have to sum each pair of inequalities
such that there is one facet of each graph:

xu2v1 + xu1v1 − xu2w1 + xu1w1 ≤ 2, (1+3)∑︂
f∈F : u2 /∈f

xf − xu2w1 − xu2w2 − xu2w3 + xu2v1 + xu1v1 ≤ 4, (1+4)

∑︂
e∈E: e̸=u1u2

xe − xu2w1 + xu1w1 ≤ 6, (2+3)∑︂
e∈E: e̸=u1u2

xe +
∑︂

f∈F : u2 /∈f

xf − xu2w1 − xu2w2 − xu2w3 ≤ 8. (2+4)

(1+3) is a cycle inequality. Switching (1+4) at δ({u2}) shows that this inequality
is equivalent to (2+3). These inequalities correspond to copies of K5 with one
subdivided edge contained in G. The support graph of facet (2+4) is G: This type
of inequality is neither facet-defining for complete graphs nor does it belong to one
of the mentioned classes of facet-defining inequalities in Chapter 1.4. ◀

As demonstrated in the above example, Fourier-Motzkin elimination yields
all facet-defining inequalities of a non-maximal K3,3-minor-free graph as sums of
cycle inequalities and hypermetric K5-inequalities. From Theorem 1.5.6 we can
thus deduce that the support graph of a facet-defining inequality is an edge, a
cycle or contains a K5-minor. Considering the sum of two facets F1 and F2 used
to eliminate the variable xe we observe the following: If F2 is a cycle inequality,

22 CHAPTER 2. CUT POLYTOPES OF MINOR-FREE GRAPHS

summing it to F1 acts on the support graph of F1 as subdividing e; the effect of
subdividing an edge in the support graph of a facet is described in Theorem 1.5.9
If F2 is a hypermetric K5-inequality, summing it to F1 acts on the support graph
of F1 as replacing e by K5 − e; all non-zero coefficients of the obtained inequality
are ±1. Although possible, it is tedious to determine the exact signs and thus the
constant term of the inequalities. However, we can concisely describe the facets’
support graphs. For this, recall that each cycle is a subdivision of a triangle.

Corollary 2.1.6. Let F be a facet of the cut polytope of a K3,3-minor-free graph
G. All its non-zero coefficients are ±1 and its support graph is an induced subgraph
of G that is either

• an edge that is not contained in a triangle, or

• obtained from a triangle or a K5 by repeatedly (possibly zero times) subdivid-
ing edges and/or replacing an edge e by K5 − e.

Algorithmic Consequences. Barahona [Bar83, Section 4] gave an O(|V |4) al-
gorithm for MaxCut on K5-minor-free graphs. We complement this result by
giving an algorithm for MaxCut on K3,3-minor-free graphs whose running time
is identical to that of planar MaxCut is given. Currently, the best known running
time for the latter is O(|V | 32 log |V |) [LP12, SWK90].

Our algorithm is based on the decomposition from Proposition 2.1.2. Consid-
ering only the case of two subgraphs, joined via a 2-sum, either their common
vertices are in the same partition side or not. A straight forward idea to compute
a maximum cut in this case would be to compute both cases for both subgraphs
and pick the best choice. However, the number of subgraphs occurring in a graphs
decomposition into 2-sums may be in Θ(|V (G)|). Thus, the described procedure
ad hoc yields exponential running time. Besides solving this issue, we discuss
an efficient, in particular even linear-time, procedure to find and utilize such a
decomposition of a given graph.

We use a data structure to efficiently consider the components of the 3-con-
nectivity decomposition of G. Recall that they are cycles S, edge bundles P , and
3-connected graphs R. The SPR-tree T = T (G) has a node for each element of S,
P , and R [dBT96, CH17]1. For a node v ∈ V (T), let Hv denote its corresponding
skeleton. Two nodes v, w ∈ V (T) are adjacent if and only if Hv and Hw share a
virtual edge. G can be reconstructed from T by taking the non-strict 2-sum of
components whenever their corresponding nodes are adjacent in T . Following this
interpretation, P -nodes containing a non-virtual edge represent strict 2-sums of

1The data structure is also known as SPQR-tree. However, the originally proposed nodes of
type Q (as well as the tree’s orientation) have often turned out to be superfluous.

2.1. K3,3-MINOR-FREE GRAPHS 23

their adjacent components of the decomposition. T has only linear size and can
be computed in O(|E(G)|) time [HT73, Lemma 15].

Theorem 2.1.7. The MaxCut problem on K3,3-minor-free graphs can be solved
in the same time complexity as MaxCut on planar graphs.

Proof. Let G = (V,E) be a K3,3-minor-free graph with edge weights ce, e ∈ E.
Let p(n) ∈ Ω(n) be the best known running time for MaxCut on planar graphs
with n nodes. For A,B ⊆ E we denote by βG(A,B) the maximum weight over
cuts δ ⊆ E(G) with A ⊆ δ and B ∩ δ = ∅. If G is not 2-connected, we apply the
algorithm to its 2-connected components (which can be identified in linear time).
Assume in the following that G is 2-connected.

We want to insert “original” edges of weight 0 into G between split pairs cor-
responding to Tutte splits. This will allow us to only consider strict 2-sums. To
this end compute the SPR-tree T = T (G). For any P -node v ∈ V (T) whose Hv

contains only virtual edges, introduce a new original edge of weight 0 into Hv, and
therefore also into G. For any adjacent non-P -nodes v, w ∈ V (T), let ab be the
virtual edge shared between their components. We introduce a new original edge
ab into G. This yields a new P -node u subdividing the edge vw in T . The edge
bundle Hu contains the new original edge together with two virtual edges, one
shared with Hv, the other with Hw. By this construction, for every virtual edge
there is an original edge with the same end nodes. Throughout the following, we
always consider the weight of a virtual edge ab to be identical to the weight of the
original edge ab. We continue to denote the resulting graph and tree by G and T ,
respectively.

Let v be a leaf in T and ab be the virtual edge contained in H = Hv. Note
that v is either an S- or an R-node and thus, H is either a copy of K5 or planar.
We compute β+ = βH({ab}, ∅) and β− = βH(∅, {ab}). If H = K5, this requires
only constant time. Thus the needed work is bounded by O(p(|(V (H)|)). Let
γ = β+ − β− be the gain/loss by having ab in the cut, respectively. Removing v
from T and therefore all edges of Hv from G yields a graph G′. T (G′) is obtained
from T − v by removing the potential P -node-leaf (and considering the “dangling”
virtual edge as original, retaining its current cost). Setting the cost of the original
edge ab to γ (after the computation of β+ and β−) yields that the maximum cut
on G is exactly β−+ ξ, where ξ is the maximum cut in G′ (after updating the edge
weight).

In this way, we can iteratively compute a maximum cut on G by eliminating
all nodes of its SPR-tree. The SPR-tree of G can be built in O(|E|) time. Let
H1, . . . , Hk be the components of G corresponding to R- and S-nodes in T (G),
k ≤ |V |. By planarity (or constant size of K5), we have |E(Hi)| ∈ O(|V (Hi|)), and
hence |E| ∈ O(|V |). For each i ∈ [k], we require only O(p(|V (Hi)|)) time for the

24 CHAPTER 2. CUT POLYTOPES OF MINOR-FREE GRAPHS

computations on Hi. Since p(|V |) ∈ Ω(|V |) we have
∑︁k

i=1 p(|V (Hi)|) ∈ O(p(|V |)).
The claim follows.

2.2 Simple and Simplicial Cut Polytopes

In this section, we completely characterize graphs whose cut polytopes are simple
or simplicial.

In [Gan13], it was claimed that Cut□(G) is simple if and only if G contains no
C4-minor. Unfortunately, the given proof has some gaps. For example, [Gan13,
Proposition 3.2.4.] claims that a 0-1-polytope is simple if and only if it is smooth.
The proof mistakenly assumes that Cut□(G) is always the polytope corresponding
to the cut-variety in the sense of toric geometry. It is then used that a toric variety
is smooth if and only if the corresponding polytope is, see [CLS11, Theorem 2.4.3].
However, the cut polytope Cut□(K3) is simple but not smooth, since the edges
(1, 1, 0), (1, 0, 1) and (0, 1, 1) do not form a basis of Z3. Contrarily the cut variety
of K3 is smooth, see [SS08, Corollary 2.4].

Nevertheless, in the following we show that the claimed characterization of
graphs whose cut polytopes are simple is true. Our proof only requires basic tools
from graph theory and discrete geometry.

Definition 2.2.1. An ear in a graph G is a maximal path whose internal nodes
have degree 2 in G. An ear decomposition of a 2-connected graph G is a decom-
position G =

⋃︁n
i=0Gi such that G0 is a cycle and Gk is an ear of

⋃︁k
i=0 Gi for all

1 ≤ k ≤ n.

A graph is 2-connected if and only if it admits an ear decomposition, see, e.g.,
[Die18, Proposition 3.1.2]. Utilizing this, we can characterize C4-minor-free graphs
in terms of decompositions. This is not new, as it is stated (without a proof) in
[Die90]. We include a short proof for the convenience of the reader.

Lemma 2.2.2. Let G be a connected graph. Then, the following are equivalent:

(i) G is C4-minor-free;

(ii) G = G1 ⊕1 · · · ⊕1 Gk with Gi = K2 or Gi = K3 for each i ∈ [k].

Proof. Since K2 and K3 are C4-minor-free and 1-sums create cut-nodes, it is easy
to see that (ii) implies (i). To show the reverse direction, let G be a C4-minor-
free graph. Considering its 2-connected components gives a decomposition G =
G1 ⊕1 · · · ⊕1 Gk, where Gi = K2 or Gi is 2-connected.

It is left to show that the only 2-connected C4-minor-free graph is K3. Assume
that G is a 2-connected C4-minor-free graph and consider its ear-decomposition
G = G0 ∪ · · · ∪Gk. Since G is C4-minor-free, G0 is a copy of K3. Attaching an ear
to two of its nodes would yield a C4-minor. Hence G = K3.

2.2. SIMPLE AND SIMPLICIAL CUT POLYTOPES 25

Given this characterization, we are able to show that C4-minor-free graphs are
exactly those graphs whose cut polytopes are simple.

Theorem 2.2.3. The following are equivalent:

(i) Cut□(G) is simple;

(ii) Cut□(G) is the product of (0,1)-simplices arising as the cut polytopes of the
2-connected components of G, which then necessarily have to be K2 or K3.

(iii) G is C4-minor-free.

Observe that the equivalence of (i) and (ii) can be seen as the cut version of
the structure of simple (0,1)-polytopes according to [KW00]: A (0,1)-polytope is
simple if and only if it is the product of (0,1)-simplices. However, it is not a priori
clear that the latter simplices are cut polytopes; even if they are, it is unclear
how the corresponding graphs are related to G. We hence need to explicitly prove
Theorem 2.2.3.

Proof. Note that a product of polytopes is simple if and only if each of the poly-
topes is simple. If G is not connected, then Cut□(G) is the product of the cut poly-
topes of the connected components of G. If G is connected but not 2-connected,
it can be decomposed as G = G1 ⊕1 ...⊕1 Gk such that Gi is either 2-connected or
a copy of K2. Recall that Cut□(K2) and Cut□(K3) are simplices.

For the equivalence of (i) and (ii), it remains to show that the cut polytope
of a 2-connected graph G is not simple if G ̸= K3. Then, each edge e ∈ E(G) is
contained in a chordless cycle Ce. By Theorem 1.5.6 the inequalities

xe −
∑︂

f∈E(Ce)\{e}

xf ≤ 0 (2.2)

define |E(G)| many different facets of Cut□(G) that contain the origin.
If G = Cn, n ≥ 4, no edge is contained in a triangle and xe ≥ 0 defines a facet

of Cut□(G) for all e ∈ E. Hence, 0 is contained in at least 2|E(G)| many different
facets and as dim(Cut□(G)) = |E(G)|, the cut polytope is not simple. Similarly,
if G ̸= Cn, then there has to exist a chord e in some cycle. In particular, e lies in
two chordless cycles. Thus, the origin is contained in at least |E| + 1 facets and
hence Cut□(G) is not simple. Part (iii) is equivalent to (ii) by Lemma 2.2.2.

Next we study graphs whose cut polytopes are simplicial. It was shown in
[DL10] that the cut polytope of Kn is not simplicial for n ≥ 5. We generalize
this result by giving a complete characterization of graphs with simplicial cut
polytopes.

26 CHAPTER 2. CUT POLYTOPES OF MINOR-FREE GRAPHS

Table 2.1: All graphs on n ≤ 4 non-isolated nodes (cf. Theorem 2.2.4)

Graph G

Cut□(G) simplicial? ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Theorem 2.2.4. Let G be a graph with no isolated nodes. Then, the following are
equivalent:

(i) Cut□(G) is simplicial;

(ii) G is one of the following graphs:

K2, K2 ·∪K2, K2 ⊕1 K2, K3, K4, C4.

Proof. Recall that if H is obtained from G by edge contraction, Cut□(H) is a face
of Cut□(G). Hence, if Cut□(H) is not a simplex, Cut□(G) is not simplicial.

First consider the graphs in Table 2.1. Recall that Cut□(K2) is simplicial
and 1-dimensional. By (1.1) and (1.2), this yields that Cut□(K2 ·∪K2) and
Cut□(K2⊕1K2) are simplicial. Cut□(K3) is a 3-simplex. It is straight-forward to
verify that Cut□(K4) is affine isomorphic to the 6-dimensional cyclic polytope on
8 vertices and Cut□(C4) is affinely isomorphic to a cross-polytope, both of which
are simplicial. The remaining graphs are all contractible to a path of length 3 and
thus, their cut polytopes are not simplicial.

If G is a connected graph on at least 5 vertices, G is contractible to a connected
graph on 4 vertices. None of those yield a simplex. If G is disconnected but not
K2 ·∪K2, then G is contractible to the disjoint union of copies of K2. Since the
cut polytope of the latter is a hypercube, Cut□(G) is not simplicial.

2.3 Open Problems

We have determined the linear description of cut polytopes of K3,3-minor-free
graphs and classified all graphs with a simple or simplicial cut polytope.

Throughout this chapter one can see that besides graph minors, the decompo-
sition of graphs into clique-sums of specific graphs is a useful tool to understand
cut polytopes. This motivates several questions discussed in the following.

Open Problem 2.3.1. Can one give the linear description of cut polytopes of
H-minor-free graphs, for single-crossing graphs H ̸= K5, K3,3?

By Theorem 1.5.1 for k ≤ 3 the linear description of a strict k-sum of two
graphs is given by taking all facet-defining inequalities of both graphs and identi-
fying common variables. This can be traced back to the fact that in these cases

2.3. OPEN PROBLEMS 27

Cut□(Kk) is a simplex. Although this does not hold for k ≥ 4, the cut polytope
of K4 is a cyclic polytope and as such well understood. Therefore, the following
question arises:

Open Problem 2.3.2. Can one give a linear description of the 4-sum of two
graphs in terms of their linear descriptions?

While we give a linear description of cut polytopes of K3,3-minor-free graphs
in Chapter 2.1, there are further graphs that fall under the same facet regime
(interestingly, even K3,3 itself). We thus ask:

Open Problem 2.3.3. Can one characterize all graphs whose cut polytopes are
described by the inequalities from Chapter 2.1?

28 CHAPTER 2. CUT POLYTOPES OF MINOR-FREE GRAPHS

Chapter 3

Maximum Cut Parameterized by
Crossing Number

This chapter is based on [CDJ+20].

A graph is 1-planar if it allows a drawing where each edge is involved in at
most one crossing. A 1-plane graph is such a graph, together with an embed-
ding realizing this property. The MaxCut problem on 1-plane graphs with k
edge crossings has recently been shown to be fixed-parameter tractable (FPT) with
parameter k [DKM18]. More precisely, it was shown that such instances can be
solved in O(3k · p(n)) time, where p(n) is the running time of a polynomial-time
MaxCut algorithm on planar graph with n nodes, e.g., [LP12, SWK90]. There
are no restrictions on the edge weights. In this chapter we improve these in sev-
eral ways: Firstly, we drop the requirement of 1-planarity, i.e., we consider graphs
that can be drawn with at most k crossings (even if multiple such crossings lie
on the same edge). We therefore handle the case of the well-established notion of
the graph’s crossing number. Secondly, we reduce the runtime dependency on k
from 3k to 2k. Finally, unlike the previous result, our approach can be extended
to an FPT algorithm which does not even require a crossing-realizing drawing as
an input; however, this increases the running time and requires a deep algorithm
from the literature as a black box [Gro04, KR07]. Interestingly, we achieve these
results by a simpler approach (compared to [DKM18]). Comparing our algorithm
with [GLV01], we have no restrictions on the edge weights. Even in the restricted
scenario, our algorithm is faster for graphs whose crossing number is at most twice
its genus. Furthermore, we require only easily-implementable data structures and
subalgorithms (if we are given a crossing-realizing drawing), compared to advanced
methods from algebra.

29

30 CHAPTER 3. MAXCUT PARAMETERIZED BY CROSSING NUMBER

Organization of this chapter. In Chapter 3.1 we provide some background
on the crossing number of a graph. In Chapter 3.2, we present our new algorithm
and prove its correctness and running time. The general idea of this algorithm is
to recursively get rid of each crossing, each time resulting in two new subinstances.
We end up with a set of up to 2k planar graphs, each of which can be solved using
a known polynomial-time MaxCut algorithm for planar graphs. The maximum
over all these subinstances then yields a maximum cut in the original instance.

Finally in Chapter 3.3, we consider parameterizing the problem by the minor
crossing number (see below for details). This measure is always at most the graph’s
crossing number. While the exponential dependency on the respective parameter
is identical, the running time only slightly increases in its polynomial part.

Independent work. Kobayashi et al.[KKMT19b] independently and simulta-
neously obtained another fixed-parameter tractable algorithm for MaxCut pa-
rameterized by crossing number achieving the same running time. However, while
we can always stay in the realm of maximum cuts when solving subinstances,
they have to consider maximum weighted b-factor problems. Their preprint was
uploaded to arXiv shortly after ours [CDJ+19, KKMT19a].

3.1 Preliminaries

Recall that a graph is planar if it admits a drawing without any crossings. It is
well-known that planarity can be tested in linear time [HT73]. For non-planar
graphs it is natural to ask for a drawing with as few crossings as possible. The
smallest such number is the crossing number cr(G) of G. Not only is it NP-hard
to compute cr(G) [GJ83], but even the so called realizability problem turns out
to be NP-hard [Kra91]: Given a graph G and a set X of edge pairs, is there a
drawing D of G such that X contains an edge pair if and only if the pair’s two
edge curves cross in D? The key problem in testing realizability is that it is hard
to figure out whether there exist orderings of the crossings along the respective
edges that allow the above properties.

Therefore, sometimes more restricted crossing variants are considered. For
example, 1-planar graphs admit drawings where every edge is involved in at most
one crossing. Not all graphs can be drawn in such a way, since 1-planar graphs can
have at most 4|V | − 8 edges; also, the 1-planar number of crossings is in general
larger than cr(G) [PT97, CKMV19].

For a general drawing (not necessarily 1-plane), we typically encode its crossings
as a crossing configuration X . Therein, we not only store the pairs of edges that
cross, but for each edge also the order of the crossings as they occur along its
curve. The feasibility of a crossing configuration can be tested in time linear in

3.2. ALGORITHM 31

|V |+ |X | by replacing crossings with dummy nodes of degree 4, testing planarity,
and checking the cyclic order around dummy nodes.1 Although we will not require
this fact in the following, this also allows us to efficiently deduce a drawing that
respects X . It is well understood that we can restrict ourselves to good drawings
when considering the (traditional) crossing number of graphs: adjacent edges never
cross and no edge pair crosses more than once.

3.2 Algorithm

Our main idea for computing the maximum cut in an embedded weighted graph
is to eliminate its crossings one by one. In the end, we use a MaxCut algorithm
for planar graphs. We first introduce a slight variant of MaxCut:

Definition 3.2.1 (Partially-Fixed Maximum Cut, PF-MaxCut). Given an edge
weighted graph G = (V,E, c) and a set of fixed edges F ⊆ E, find a cut of maximum
value that contains all elements of F .

A cut is feasible if it contains F . A PF-MaxCut instance is infeasible if it
does not allow a feasible cut. It is easy to see that an instance is infeasible if and
only if F contains a cycle of odd length. We denote a maximum objective value
by MaxCutpf(G,F), and let MaxCutpf(G,F) = −∞ for infeasible instances.

Observe that (as for MaxCut) we do not need to consider a given crossing
configuration X as part of the problem description (see Corollary 3.2.7). However,
since having X allows for simplifications and a better running time, we will for
now assume that we are given the graph together with a crossing configuration
X .2 We will explain later how to remove this assumption in Corollary 3.2.7.

Given any edge vw with weight cvw in a PF-MaxCut instance, we define the
operation to bisubdivide vw at v as follows: Subdivide vw twice, i.e., replace vw by
a path of length 3 with two new degree-2 nodes. We denote the new node incident
to v or w by v or w, respectively. We consider the notation · an operand.3

The edges vv and vw have weight 0, ww retains the weight cvw. Furthermore,
we add vv, vw to F , and if vw ∈ F , we replace it in F by ww. Clearly, both vv, vw

1In general, a specified edge pair may not really cross but merely “touch”; this is trivial to
detect after testing planarity by checking the cyclic order of the edges around the dummy node.
Given such a “flawed” configuration, we trivially obtain one with less crossings by removing such
crossing pairs from X

2As noted above, we may assume that no such X ever specifies “touching points”; we can
reduce such configurations whenever our algorithm retrieves a new crossing configuration.

3Observe that per recursion step, we will bisubdivide at most one edge per incident node
(recall that adjacent edges never cross in good drawings). Thus, the above simple notation
is unambiguous. In the graphs of the subproblems, see below, we may assume the nodes to
be named afresh, and thus we may again perform bisubdivisions without creating notational
ambiguity.

32 CHAPTER 3. MAXCUT PARAMETERIZED BY CROSSING NUMBER

v

x

w

y

(a) A crossing in G.

v

x

w

y

x

y

v w

(b) The same crossing in G′ with the cross-
ing edges bisubdivided at v resp. x.

Figure 3.1: The situation at a crossing between vw and xy in G. In G′, the two
edges of the crossing are bisubdivided at v and x, respectively, and the zig-zag
edges are added to the set of fixed edges F ′. As an example, the node coloring
at v, v, w gives a partition of these nodes that is forced by the respective newly
added edges in F ′. (Dashed and dotted edges show examples of other edges in G,
resp. G′.)

will be in any feasible cut; node w will always lie in the same partition set as v,
and v in the other (cf. Figure 3.1(b)). Most importantly this gives:

Lemma 3.2.2. The feasible cuts in an original PF-MaxCut instance ⟨G,F ⟩ are
in 1-to-1 correspondence to feasible cuts of equal value in a bisubdivided instance
⟨G′, F ′⟩.

Proof. Let vw be the edge in G that is bisubdivided at v to obtain ⟨G′, F ′⟩. By
construction, we know that both edges vv, vw have cost 0 and are in F ′, and
thus in any F ′-feasible cut. Consequently, in any F ′-feasible cut, v and w will lie
in a common partition set. Let S ′ ⊂ V (G′) be a node subset that induces some
feasible (with respect to F ′) cut in G′. Then, the node set S = S ′ \ {v, w} induces
a feasible (with respect to F) cut in G. Cut δ(S) contains edge vw if and only
if δ(S ′) contains ww. Since both these edges have identical cost, the total costs of
both cuts are equal.

Inversely, let S ⊂ V (G) be a node subset that induces some feasible (with
respect to F) cut in G. Then, consider the cut in G′ induced by S ′ = S ∪ {s},
where s = w if v ∈ S, and s = v otherwise. Both fixed edges vv, vw are in δ(S ′)
and the cut is thus feasible. Again, δ(S ′) contains edge ww if and only if δ(S)
contains vw, and both cut values are thus equal.

When we identify two nodes a, b in a graph with one another, they become
a common entity that is incident to all of their former neighbors. We will only

3.2. ALGORITHM 33

identify nodes that are neither adjacent nor share neighbors.
When identifying nodes in G of some PF-MaxCut instance ⟨G,F ⟩, the set F

is retained, subject to replacing the edges formerly incident to a or b with their
new counterparts.

We are now ready to describe our algorithm. We are given a MaxCut in-
stance G = (V,E, c), together with some crossing configuration X with k cross-
ings. Let F = ∅ be the set of fixed edges and consider ⟨G,F ⟩ as a PF-MaxCut
instance. From ⟨G,F,X⟩, we pick a crossed edge vw, and derive two new triplets
Ti = ⟨Gi, Fi,Xi⟩, for i ∈ {v, w}. Both derived crossing configurations Xi attain at
most k − 1 crossings and we can call our algorithm recursively on Tv and Tw. As
a base case, the derived graphs become planar and (after a preprocessing to deal
with the fixed edges) we apply an efficient MaxCut algorithm for planar graphs.
The solutions of ⟨Gi, Fi⟩, for i ∈ {v, w}, yield a solution of ⟨G,F ⟩. Observe, how-
ever, that ⟨Gi, Fi⟩ may become infeasible.

Let us describe this recursion step formally (cf. also Figures 3.1 and 3.2). We
define the crossing split operation that, given a triplet ⟨G,F,X⟩, yields the two
triplets Tv and Tw: Let ⟨G = (V,E, c), F ⟩ be a PF-MaxCut instance and X a
crossing configuration of G. Consider a crossing χ ∈ X with crossing edges vw and
xy. For j ∈ {v, w, x, y}, let Yj be the ordered sets of crossings in X between j and χ
(cf. the dotted edges in Figure 3.1: e.g., the crossings between the two dotted edges
and ww in Figure 3.1(b) are in Yw as they are between χ and w in Figure 3.1(a)).
Let the intermediate instance ⟨G′, F ′⟩ be obtained from ⟨G,F ⟩ by bisubdividing vw
at v and bisubdividing xy at x. For i ∈ {v, w}, let ⟨Gi, Fi⟩ be the PF-MaxCut
instance obtained from ⟨G′, F ′⟩ by identifying x with i (see Figures 3.2(c) and
3.2(d)). Intuitively, the two graphs obtained by the identifications represent the
two possibilities whether x is on the same side of the cut as v or not. We obtain
a corresponding crossing configuration Xi from X by removing χ and placing the
crossings Yj (retaining their order) on the edge jj, for all j ∈ {v, w, x, y}. The
triplets Tv = ⟨Gv, Fv,Xv⟩ and Tw = ⟨Gw, Fw,Xw⟩ are the results of the crossing
split operation with respect to ⟨χ, vw, xy⟩.

Lemma 3.2.3. Let ⟨G = (V,E, c), F ⟩ be a PF-MaxCut instance and X a cross-
ing configuration of G with k crossings. Let χ ∈ X be any crossing with some
crossing edges vw and xy, and consider the crossing split operation with respect
to ⟨χ, vw, xy⟩. For i ∈ {v, w}, let ⟨Gi, Fi,Xi⟩ be the resulting triplets. Then, we
have:

1. for i ∈ {v, w}, Xi is a feasible crossing configuration for Gi with at most
k − 1 crossings; and

2. MaxCutpf(G,F) = maxi∈{v,w}{ MaxCutpf(Gi, Fi) }.

34 CHAPTER 3. MAXCUT PARAMETERIZED BY CROSSING NUMBER

Proof. Consider any drawing D of G realizing X . By routing the new paths
(vv, vw,ww resp. xx, xy, yy) along the curves of their original edges (vw resp. xy)
we obtain a drawing D′ of G′ from D. Thereby, for j ∈ {v, w, x, y}, we place the
new nodes j in a close neighborhood of χ on the curve segment between j and χ,
so that xy is only crossed by vw and vice versa. Note that the number of crossings
in D′ is equal to that of D, since all crossings in Yj in D are transferred to the edge
jj in D′, for all j ∈ {v, w, x, y}, and the original crossing χ between xy and vw in
D has a counterpart χ′ in D′ between the edges vw and xy. Since the edges vw
and xy are crossing free except for χ′, we can follow (in a close neighborhood) the
curves of vw from any of its end points up to χ′, and onwards from there along
the curve of vw to any of its end points. Since these routes are crossings-free,
we call them free routes. When we now identify x with v, we can locally redraw
our drawing such that χ′ vanishes and no other crossings arise, see Figure 3.2(c).
Observe that x has precisely two neighbors: y and x. The identification is thus
such that we may remove x and insert edges yv and xv instead. The former can
trivially be drawn without any crossings along the free route between y and v.
The curve for the latter edge is the concatenation of the former curve of xx and
the free route between x and v. The number of crossings along the edge xx (with
now x = v) does thus not change. We can perform the analogous redrawing when
identifying x with w, see Figure 3.2(d). This establishes claim (1).

Two nodes v and x can either be on the same side of a cut, or they are on
opposite sides. Therefore, we create two new subproblems in which v and x are
in the same partition set or not, respectively. In Gv (where we identify x with v),
we have a path of two edges between v and x (namely vv and vx), both of which
are in Fv. Thus, v and x have to be in the same partition set, see Figure 3.2(c).
Conversely, in Gw (where we identify x with w), we have a path of three edges
between v and x (namely vv, vw, and wx), all of which are in Fw. Thus, v and
x have to be in different partition sets, see Figure 3.2(d). We can see that the
respective constructions do not induce any further restrictions on the set of cuts.
In particular, both derived instances still allow any partition choice between w and
x, between w and y, and between x and y. Overall, every feasible cut in ⟨G′, F ′⟩
can be realized either in ⟨Gv, Fv⟩ or in ⟨Gw, Fw⟩.

If we know the maximum cut in instance ⟨Gv, Fv⟩ and the maximum cut in
instance ⟨Gw, Fw⟩, we can pick the larger of these two cuts and transfer it back to
⟨G′, F ′⟩. By applying Lemma 3.2.2 twice (once for the bisubdivision of vw at v
and once for the bisubdivision of xy at x), the maximum cut in ⟨G′, F ′⟩ induces a
maximum cut in ⟨G,F ⟩ of the same value. Claim (2) follows.

If we are in a base case – the considered graph is planar – we can use an efficient
MaxCut algorithm for planar graphs:

3.2. ALGORITHM 35

v

x

w

y

x

y

v w

(a) Induced partition in G′ with x and v on
the same side of the partition.

v

x

w

y

x

y

v w

(b) Induced partition in G′ with x and v on
different sides of the partition.

v

x

w

y

y

v w

(c) In Gv, x is identified with v.

v

x

w

y

y

v w

(d) In Gw, x is identified with w.

Figure 3.2: An illustration of the two cases where v and x are either on the same
side of the partition (a/c) or on opposite sides (b/d). In the two graphs Gv and
Gw, the crossing was removed while retaining the partition property. The node
coloring gives a partition of the nodes that is induced by the newly added edges
in F ′, resp. Fv or Fw. (Dashed and dotted edges show examples of other edges in
G′, resp. Gv or Gw.)

Lemma 3.2.4. Consider a PF-MaxCut instance ⟨G = (V,E, c), F ⟩ with a pla-
nar graph G. Let p(|V |) be a polynomial upper bound on the running time of a
MaxCut algorithm on the planar graph G. We can compute an optimal solution
to ⟨G,F ⟩ – or decide that the instance is infeasible – in O(p(|V |)).

Proof. We transform the PF-MaxCut instance into a traditional MaxCut in-
stance by attaching a large weight to the edges in F . Namely, we add M to the
weight of each edge f ∈ F , where M = 2 ·

∑︁
e∈E |ce|. The omission of a single

edge of F from the solution cut (even if picking all other edges of positive weight)
will already result in a worse objective value than picking all of F and all edges
of negative weight. The instance is infeasible if and only if the computed cut does

36 CHAPTER 3. MAXCUT PARAMETERIZED BY CROSSING NUMBER

not contain all of F ; this can also be deduced purely by checking whether the
objective value is at least M · |F |+

∑︁
e∈E:ce<0 ce.

We proved our lemma above for a general case (by adding M to the weight
of each edge in F), but in fact we only require a slightly weaker version, since
in our algorithm cf = 0 for all f ∈ F . Thus it suffices to set cf = M instead
of adding M to cf . Using any of the currently fastest MaxCut algorithms for
planar graphs [LP12, SWK90] leads to O(|V |3/2 log |V |) time in the above lemma.
We could speed-up infeasibility detection by checking whether F contains a cycle
of odd length prior to the transformation; while this only requires O(|V |) time via
depth-first search, the overall asymptotic runtime for the lemma’s claim does of
course not improve.

Theorem 3.2.5. Let G = (V,E, c) be an edge-weighted graph and X a crossing
configuration of G with k crossings. Let p(n) be a polynomial upper bound on the
running time of a MaxCut algorithm on planar graphs with n nodes. We can
compute a maximum cut in G in O(2k · p(|V |+ k)) time.

Proof. As described above, we solve the instance by considering the PF-MaxCut
instance ⟨G,F = ∅⟩ together with X . Thus the triplet ⟨G,F,X⟩ forms the initial
input of our recursive algorithm R.

Algorithm R proceeds as follows on a given triplet: If the triplet’s graph is
planar, we solve ⟨G,F ⟩ via Lemma 3.2.4. Otherwise, we use Lemma 3.2.3 to
obtain two new input triples Tv, Tw, for each of which we call R recursively. Their
returned solutions (i.p., their solution values) induce the optimum solution for the
current input triplet. However, while the number of crossings decreases by (at
least) one per recursion step, the graph’s size increases by three nodes.

The runtime complexity follows from the fact that we consider two choices per
crossing in the given X , and thus construct 2k graphs. For each such graph, which
has |V |+ 3k nodes, we run the planar MaxCut algorithm.

Above, we trivially have k ∈ O(|V |4) and thus |V |+ k ∈ O(poly(|V |)).

Corollary 3.2.6. The above algorithm is an FPT algorithm with parameter k,
provided that a crossing configuration X with k crossings is part of the input.
Moreover, the attained running time is polynomial for any k ∈ O(log |V |). Using
the currently fastest MaxCut algorithm for planar graphs [LP12, SWK90], our
algorithm yields a running time of O(2k · (|V |+ k)3/2 log(|V |+ k)).

Quite sophisticated results by Grohe [Gro04] and Karabayashi and Reed [KR07]
show that the problem to compute the crossing number of a graph is in FPT (even
in linear time) with respect to its natural parameterization: Given a graph G and
a number k ∈ N, we can answer the question “cr(G) ≤ k ?” in time O(f(k) · n).

3.3. MINOR CROSSING NUMBER 37

In case of a yes-instance, we obtain a corresponding crossing configuration X as a
witness. The computable function f(k) is purely dependent on k. However, the
dependency f(k) is double exponential, and the algorithm far from being practical.
Still, these results formally allow us to get rid of the requirement that X is part
of the input:

Corollary 3.2.7. Given an edge-weighted undirected graph G. Computing a max-
imum cut in G is FPT with parameter cr(G).

3.3 Minor Crossing Number

We say G is a minor of H, denoted by G ⪯ H, if G can be obtained from H by
deletion and contraction of edges. The minor crossing number of G is given by
mcr(G) = min{cr(H) : G ⪯ H}. A realization of mcr(G) is a pair (H,X) with
G ⪯ H and X being a crossing configuration of H with mcr(G) crossings. It is
easy to see that for graphs G′ of maximum degree 3 we have cr(G′) = mcr(G′).
Similarly, any graph G allows a realizing graph H (cr(H) = mcr(G)) of maximum
degree 3 where vertices of G are replaced by disjoint cubic trees.

By definition we always have mcr(G) ≤ cr(G); as such mcr(G) can be a stronger
FPT-parameter. Also, in contrast to crossing number, the minor crossing number
is monotone with respect to graph minors, i.e., the family {G : mcr(G) ≤ k} is
minor closed. Thus, by [RS95], we can (theoretically) check whether mcr(G) ≤ k
in O(|V (G)|3) time for fixed k ∈ N.

Given a connected graph G with mcr(G) = k, we can obtain a graph H from
G realizing mcr(G) in polynomial time as follows: Choose a node v of degree at
least 4. Try different pairs of neighbors w1, w2 ∈ N(v) until finding the first with
mcr(G̃) ≤ k, where G̃ is obtained from G by splitting v into two nodes v1 and
v2 with N(v1) = {v2, w1, w2}, N(v2) = (N(v) ∪ {v1}) \ {w1, w2}4. We call the
edge v1v2 a split edge. Iterating this for each high degree node, yields a graph H of
maximum degree 3 realizing mcr(G) = cr(H). Note that H has at most O(|E(G)|)
nodes.

Let M = −3 ·
∑︁

e∈E(G) |ce|. Attaching the weight M to each split edge, we can
make sure that these edges are not in any maximum cut of H. Clearly, the cuts
in H not containing any split edges are in one-to-one correspondence with cuts in
G. Using Theorem 3.2.5, we obtain an algorithm computing a maximum cut on
G parameterized by the mcr(G). Similarly to Corollary 3.2.7 we do not require
an explicit realization as part of the input (using the above construction method
for H).

4Observe that in general this splitting operation may increase mcr; we search for a split (which
has to exists) for which it does not increase. Since the split is an inverse minor operation, mcr
can never decrease.

38 CHAPTER 3. MAXCUT PARAMETERIZED BY CROSSING NUMBER

v

v1

v2

v3 v4

v5 v6

Figure 3.3: Visualization of the split operation to obtain an mcr-realization. Left:
part of a graph G with cr(G) > mcr(G). Right: part of G̃ after splitting v five
times. Bold green lines denote split edges.

Corollary 3.3.1. (i) Let G = (V,E, c) be an edge-weighted undirected graph with
mcr(G) = k, (H,X) a realization of mcr(G), and p(n) be a polynomial upper bound
on the running time of a MaxCut algorithm on planar graphs with n nodes. We
can compute a maximum cut in G in O(2k · p(|E(G)|+ k)) time.

(ii) Given an edge-weighted undirected graph G, computing a maximum cut in
G is FPT with parameter mcr(G).

3.4 Open Problems

Given a graph together with a feasible crossing configuration with k crossings, we
previously only knew that MaxCut is polynomial time solvable if k is constant
and the graph is 1-planar, i.e., each edge is involved in at most one crossing. The
runtime dependency on k has been to the order of 3k [DKM18].

Herein, we improved on this in several ways: Firstly, we decreased the depen-
dency on k to the order of 2k. Secondly, we extended the applicability to any graph
with (at most) k crossings: our parameter becomes the true crossing number of
the graph, without any 1-planarity restriction. This shows that MaxCut is in
FPT with respect to the graph’s crossing number. Moreover, we achieve these
improvements by introducing simpler ideas than those proposed for the former
result, yielding an overall surprisingly simple algorithm. Compared to the result
of Kobayashi et al.[KKMT19b], we are able to stay within the realm of MaxCut.
Finally, our result naturally carries over to the minor crossing number.

The skewness of a graph is the minimum number of edges to remove such
that the graph becomes planar. The genus of a graph is the minimum oriented
genus of a surface onto which the graph can be embedded without crossings. In

3.4. OPEN PROBLEMS 39

FPT research, there are many algorithmic approaches that consider graphs with
bounded genus g, see, e.g. [BFL+16, CKP+07, EFF04, FLRS11]. However, the
obtained FPT algorithms are typically parameterized by the objective value z, or
by the combined parameter (z, g). There are much fewer results that obtain FPT
algorithms parameterized purely with g. Notable examples are the graph genus
problem itself [Moh99] (where z and g coincide by definition), and the graph
isomorphism problem [Kaw15] (which generalizes the linear-time algorithm for
the problem on planar graphs). There are even fewer parameterized results with
respect to skewness; the probably best known example is that maximum flow
can be solved in the running time of planar graphs, if the graph’s skewness is
fixed [HW07]. Our above algorithm seems to be the first time that the crossing
number has been proposed as an efficient non-trivial FPT parameter for any widely
known problem.

Besides the weight-restricted case of [GLV01] (briefly described in the intro-
duction), it is unclear whether MaxCut could be FPT with respect to either
skewness or genus. We deem this an interesting question for further research.

40 CHAPTER 3. MAXCUT PARAMETERIZED BY CROSSING NUMBER

Chapter 4

On the Bond Polytope

This chapter is based on [CJN20].

The (also NP-complete) maximum bond problem (MaxBond) is obtained from
MaxCut by adding a natural connectivity requirement for both sides of the cut.
Note that both problem variants can be seen as the “inverse” of the (polynomial-
time solvable) minimum cut problem, where connectivity of the partition sides
arises naturally.

Formally, considering a graph G = (V,E) a cut δ(S) ⊆ E is a bond, if G[S]
and G[V \ S] are connected. Given edge weights ce, MaxBond is the problem of
finding a node subset S ⊆ V that maximizes

∑︁
e∈δ(S) ce under the restriction that

δ(S) is a bond.
This problem is known under a variety of names including maximum minimal

cut [EHKK19], largest bond [DLP+19], connected max cut [Cha20], and maximum
connected sides cut problem [Cha17]. To avoid confusion with the maximum one-
sided connected cut problem [DEH+20, EHKK19, GHK+18, HKM+15, HKM+20]
we stick to the naming maximum bond. The research on MaxBond is driven
by applications like image segmentation [VKR08], forest planning [CCG+13], and
computing market splittings [GKL+19].

MaxBond is known to be NP-complete [HV91], even when restricted to 3-
connected planar graphs [HV91] or bipartite planar graphs [DLP+19, DEH+20,
EHKK19]. Conversely, MaxBond is solvable in linear time on series-parallel
graphs [Cha17]. Moreover there is an extensive study of the parameterized com-
plexity of MaxBond [DLP+19, DEH+20, EHKK19]. On the other hand, it is
known that there is no constant factor approximation (if P ̸= NP) [DLP+19,
DEH+20].

Besides the mentioned algorithmic results there is only little knowledge on
the maximum bonds in general graphs: Ding, Dziobiak and Wu proved that the
maximum bond in any simple 3-connected graph G with |V (G)| = n has size at

41

42 CHAPTER 4. ON THE BOND POLYTOPE

least 2
17

√
log n and conjectured that the maximum bond in such a graph has size

Ω(nlog3 2) [DDW16]. This conjecture was verified by Flynn for several graph classes
including planar graphs [Fly17] but remains open in general.

In this chapter we consider MaxBond from a polyhedral viewpoint. Approach-
ing MaxBond by linear programming yields the bond polytope which is closely
related to the cut polytope: The bond polytope Bond(G) of G is defined as the
convex hull of all incidence vectors of bonds, i.e.,

Bond(G) = conv({xδ : δ is a bond in G}) ⊆ RE.

We start the structural study of bond polytopes.

Organization of this chapter. After introducing the bond polytope as the
main object of this chapter, we discuss the relation of cut- and bond polytopes in
Chapter 4.1. This includes the observation that several fundamental properties of
cut polytopes do not carry over to bond polytopes.

In Chapter 4.2 we study how graph modifications (such as node splitting and
edge contraction) effect bond polytopes and their facets.

In Chapter 4.3 we present an efficient (linear time) reduction of MaxBond
on arbitrary graphs to MaxBond on 3-connected graphs. This algorithm can
be used as an argument, why one can focus on investigating bond polytopes of
3-connected graphs.

Next, we turn our attention to edge- and cycle inequalities in bond polytopes, as
they are known to be highly important in cut polytopes. In Chapter 4.4 we present
non-interleaved cycle inequalities, a class of facet-defining inequalities arising from
a special class of cycles. After this, we discuss a generalization of such inequalities
as well as edge inequalities in Chapter 4.5.

We close this chapter by considering (K5−e)-minor-free graphs in Chapter 4.6.
We present a linear description of all bond polytopes of planar 3-connected such
graphs. Combined with our reduction strategy from Chapter 4.3, we can comple-
ment this with a linear-time algorithm for such graphs, improving (and fixing, see
below) the current quadratic-time algorithm.

A note on computing maximum bonds in (K5−e)-minor-free graphs.
While the main focus of our work herein is to better understand the bond polytope
and its facets, our results have direct algorithmic consequences—among others,
on graphs with forbidden (K5 − e)-minor. Recently, an algorithm was proposed
to solve MaxBond on such graphs in quadratic time [Cha20]. The key idea is
to consider the graph’s decomposition via 2-sums, and solving each component in
quadratic time. However, the proposed algorithm’s description is quite rough (e.g.,
it does not discuss how to efficiently obtain the 2-sum decomposition to start with)

4.1. FIRST PROPERTIES AND COMPARISON TO CUT□(G) 43

and contains a severe flaw, leading to an exponential instead of a quadratic overall
running time: In [Cha20] only the case of two subgraphs, joined via a 2-sum, is
discussed (either their common vertices are in the same partition side or not). One
can hence compute both cases for both subgraphs and find the best choice. It is
never discussed how to proceed in the case of more than two components. In fact,
chaining this algorithm would yield an exponential running time of the order of
Ω(2c) for c components; (K5 − e)-minor-free graphs can have c ∈ Θ(n).

We resolve all these issues by giving an algorithm for the considered graph class
that only requires linear running time.

4.1 First Properties and Comparison to Cut□(G)

We start this section by introducing the bond polytope. Afterwards, we start
the study of bond polytopes by investigating their relation to cut polytopes. In
particular, we discuss whether some fundamental results on cut polytopes carry
over to bond polytopes.

We first observe that since by definition Bond(G) ⊆ Cut□(G) for any graph
G, every facet-defining inequality of Cut□(G) is valid for Bond(G). In [BM86] it
was shown that 1-dimensional faces of Cut□(G) can be characterized by bonds.

Proposition 4.1.1. [BM86, Theorem 4.1] Let G = (V,E) be a connected graph
and δ, γ ⊆ E be cuts. Then, xδ and xγ are the vertices of a 1-dimensional face of
Cut□(G) if and only if their symmetric difference δ△γ is a bond.

As an almost immediate consequence we get an easy criterion for a vertex of
Cut□(G) being the incidence vector of a bond.

Theorem 4.1.2. Let G = (V,E) be a connected graph. Then, the following hold:

(i) The vertices of Bond(G) are 0 and its neighbors in Cut□(G). In particular,
cone(Cut□(G)) = cone(Bond(G)).

(ii) dimBond(G) = |E|.

(iii) A homogeneous inequality aTx ≤ 0 is facet-defining for Bond(G) if and only
if it is facet-defining for Cut□(G).

Proof. Statement (i) follows directly from Proposition 4.1.1 and the fact that ∅ is a
bond. Now, (iii) is implied by (i) and (ii) follows from (i) since dimCut□(G) = |E|.

Given a graph G, an edge e ∈ E(G), and a set S ⊆ V (G), the incidence
vector of δG−e(S) is obtained from the incidence vector of δG(S) by removing the

44 CHAPTER 4. ON THE BOND POLYTOPE

G

e

G+ e

Figure 4.1: Graphs from Example 4.1.5. Marked edges in G+e are those contained
in the bond.

coordinate corresponding to e. As a consequence Cut□(G− e) is the projection of
Cut□(G) onto the hyperplane {xe = 0}. The next example shows that this does
not carry over to bond polytopes.

Example 4.1.3. For any e = vw ∈ E(K4) the cut δK4({v, w}) is a bond in K4.
However, δK4−e({v, w}) is a cut but no bond in K4−e. In particular, Bond(K4−e)
is not the projection of Bond(K4). ◀

Considering a graph G and some facet-defining inequality aTx ≤ b of Cut□(G)
it is known that aTx ≤ b is a facet of Cut□(supp(a)). This is not true in general
for bond polytopes as shown in the following example.

Example 4.1.4. Considering C6 ⊆ K3,3, the inequality
∑︁

e∈E(C6)
xe ≤ 4 is not

even tight for Bond(C6) but facet-defining for Bond(K3,3). Indeed, this example
generalizes to C2n ⊆ Vn for arbitrary n ≥ 3 (see Chapter 4.5 for the definition of
the Wagner graph Vn). ◀

Conversely, it is well-known that if H ⊆ G is a subgraph, the 0-lifting, i.e.,
the lifting by taking the induced inequality in RE(G), of each valid inequality of
Cut□(H) is valid for Cut□(G). Again, this also does not carry over to bond
polytopes.

Example 4.1.5. Consider the graphs in Figure 4.1 and denote the outer (blue)
cycle by C. Then,

∑︁
e∈E(C) xe ≤ 2 defines a facet of Bond(G), but this inequality

is not even valid for Bond(G+ e), as the (red) square nodes induce a bond δ with
|δ ∩ E(C)| > 2. ◀

In contrast to this, contracting an edge e corresponds to intersecting the bond
polytope with the hyperplane {xe = 0} as it is the case for cut polytopes.

Observation 4.1.6. Let G be a graph and e ∈ E(G). Then, Bond(G/e) =
Bond(G) ∩ {xe = 0}.

4.1. FIRST PROPERTIES AND COMPARISON TO CUT□(G) 45

The most prominent symmetries of cut polytopes are given by graph automor-
phisms and switchings (see Lemma 1.5.2). While graph automorphisms clearly
give rise to symmetries of bond polytopes, switching does not in general:

Observation 4.1.7. Let G = (V,E) be a graph, W ⊆ V (G), and aTx ≤ b be
facet-defining for Bond(G). We consider the following situations:

(i) If b = 0 and δ(W) is a bond satisfying aTxδ(W) = 0, switching aTx ≤ b at W
gives a facet of Bond(G).

(ii) If b = 0 and δ(W) is a bond with aTxδ < 0, the inequality obtained by
switching aTx ≤ 0 at W is not facet-defining for Bond(G) in general.

(iii) If b ̸= 0, switching aTx ≤ b at a node set W does not define a facet of
Bond(G) in general. It might not even be valid for Bond(G) (even if δ(W)
is a bond).

Proof. In statement (i) we consider the switching of a homogeneous facet of
Cut□(G) at a solution of itself. This switching yields a homogeneous facet of
Cut□(G) and thus a facet of Bond(G).

Statement (ii) and (iii) can be shown via examples; we consider certain facets
of Bond(Cn). The facet description of Bond(Cn) is discussed in Theorem 4.4.8.
For statement (ii) consider the facet-defining inequality

xe −
∑︂

f∈E(Cn)
f ̸=e

xf ≤ 0.

for some e ∈ E(Cn). Switching this at {v} for some v ∈ V (Cn) that is not incident
to e we obtain the inequality

xe +
∑︂

f∈δ({v})

xf −
∑︂

f∈E(Cn)\δ({v})
f ̸=e

xf ≤ 2.

It follows directly from Theorem 4.4.8 that the latter does not define a facet.
For statement (iii) consider a cycle Cn with n ≥ 4 and the facet-defining in-

equality
∑︁

e∈E(C) xe ≤ 2 for Bond(Cn). Switching at an arbitrary node v ∈ V (Cn)
gives the inequality ∑︂

e∈E(Cn)
v/∈e

xe −
∑︂

e∈E(Cn)
v∈e

xe ≤ 0.

But this is violated by xδ({w}) for each w ∈ V (Cn) that is not adjacent to v.

46 CHAPTER 4. ON THE BOND POLYTOPE

4.2 Constructing Facets from Facets

In Chapter 1.4 we recapitulated the extensive study considering the effect of graph
operations (such as node splitting, edge subdivisions, edge contraction, and dele-
tion of edges) on cut polytopes and their facet-defining inequalities. Motivated
by this, we start an investigation of the effect of such graph operations on bond
polytopes and their facets.

Theorem 4.2.1 (Node splitting). Let G = (V,E) be a connected graph, v ∈ V ,
and aTx ≤ b be facet-defining for Bond(G). Obtain G = (V ,E) as follows: replace
v by two adjacent nodes v1 and v2 and distribute the edges incident to v arbitrarily
among v1 and v2. Set φ : E \ {v1v2} → E by

φ(e) =

{︄
e, if v1, v2 /∈ e,

vw, if e = viw (i = 1, 2).

Let ω be the value of a maximum bond in G−v1v2 separating v1 and v2 with respect
to the edge weights given by aφ(e). Now, set a by

ae =

{︄
aφ(e), if e ̸= v1v2,

b− ω, if e = v1v2.

Then, aTx ≤ b defines a facet of Bond(G).

Proof. First, we show that aTx ≤ b is a valid inequality for Bond(G). Each bond
in G not containing v1v2 corresponds to a bond in G. Hence, it is easy to see that
all such bonds satisfy the inequality under consideration. Now, let δ ⊆ E be a
bond with v1v2 ∈ δ. Then

aTxδ = av1v2x
δ
v1v2

+
∑︂
e∈E

e̸=v1v2

aex
δ
e = (b− ω)xδ

v1v2
+
∑︂
e∈E

aex
φ(δ)
e ≤ (b− ω) + ω = b.

It remains to show that aTx ≤ b is indeed facet-defining. Let m = |E|. Since
aTx ≤ b defines a facet of Bond(G), there exist W1, . . . ,Wm ⊆ V with v /∈ Wi

such that xδG(Wi) satisfies aTx = b for each i ∈ [m] and xδG(W1), . . . , xδG(Wm) are
affinely independent. It is easy to see that δi = δG(Wi) ⊆ E is a bond (in G) with
v1v2 /∈ δi satisfying aTx = b.

Now let W0 ⊆ V such that δG−v1v2
(W0) is a bond in G − v1v2 separating

v1 and v2 with
∑︁

e∈δG−v1v2
(W0)

ae = ω. Hence, for δ0 = δG(W0) ⊆ E we have

aTxδ0 = ω + av1v2 = ω + b− ω = b. Since v1v2 ∈ δ0 and v1v2 /∈ δi for 1 ≤ i ≤ m, it
is easy to see that xδ0 , xδ1 , . . . , xδm are affinely independent.

4.2. CONSTRUCTING FACETS FROM FACETS 47

Theorem 4.2.2 (Replacing a node by a triangle). Let G = (V,E) be a connected
graph, v ∈ V , and aTx ≤ b be facet-defining for Bond(G). Obtain G = (V ,E)
from G by replacing v by a triangle on vertices {v1, v2, v3} and distributing the
edges incident to v arbitrarily among v1, v2, and v3.

Set φ : E \ {v1v2, v1v3, v2v3} → E by

φ(e) =

{︄
e, if v1, v2, v3 /∈ e,

vw, if e = viw (i ∈ [3]).

For i = 1, 2, 3, let Si ⊆ V such that Si ∩ {v1, v2, v3} = {vi} and δG(Si) is a
maximum bond with respect to edge weight 0 attached to vjvk (j, k ∈ [3]) and aφ(e)
for each other edge e. Denote by ωi the weight of δG(Si) with respect to these
weights. Define a ∈ RE by

ae =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aφ(e), if e ̸= vivj (i, j ∈ [3]),
1
2
(b− ω1 − ω2 + ω3), if e = v1v2,

1
2
(b− ω1 + ω2 − ω3), if e = v1v3,

1
2
(b+ ω1 − ω2 − ω3), if e = v2v3.

Then, aTx ≤ b defines a facet of Bond(G).

Proof. The proof of this theorem is analogous to the one of Theorem 4.2.1. We
only have to utilize that xδG(S1), xδG(S2), xδG(S3) all satisfy aTx = b and are affinely
independent to all bond-vectors xδG(S) with S ⊆ V .

Lemma 4.2.3. Let G = (V,E) be a connected graph, e ∈ E, and aTx ≤ b be
facet-defining for Bond(G). Assume that {aTx ≤ b} ̸= {−xe ≤ 0} and ae ̸= 0.
Then, there exists some bond δ such that e ∈ δ and aTxδ = b.

Proof. Assume there is no such δ and consider the inequality aTx − λxe ≤ b for
some λ > 0. Validity follows since aTx−λxe ≤ aTx for each x ∈ [0, 1]|E|. Moreover,
by assumption each bond satisfying aTx = b satisfies aTx− λxe = b. Hence, both
inequalities describe the same face of Bond(G) contradicting aTx ≤ b being facet-
defining.

Theorem 4.2.4 (Subdividing an edge). Let G = (V,E) be a connected graph
and aTx ≤ b be facet-defining for Bond(G). Let e = vw ∈ E with ae ≤ b

2
and

{aTx ≤ b} ≠ {−xe ≤ 0}.
Obtain G = (V ,E) by splitting e into e1 = vv and e2 = vw (for a new node v).

For f ∈ E set

af =

{︄
af , if f ∈ E,

ae, if f ∈ {e1, e2}.

Then, aTx ≤ b is facet-defining for Bond(G).

48 CHAPTER 4. ON THE BOND POLYTOPE

Proof. For each cut δ ⊆ E in G we have |δ ∩ {e1, e2}| ≤ 1 or δ = δG(v). Hence, it
is easy to see that aTx ≤ b is valid for Bond(G).

Since aTx ≤ b is facet-defining for Bond(G) there exist U1, . . . , Um ⊆ V
(m = |E|) such that each δG(Ui) is a bond in G satisfying aTxδ(Ui) = b. We
may assume v ∈ Ui for all i ∈ [m]. Setting U i = Ui ∪ {v} it is easy to see that
δi = δG(U i) is a bond satisfying aTxδi = b. Note that e1 /∈ δi for each i ∈ [m]. By
Lemma 4.2.3 there exists U0 ⊆ V such that v ∈ U0, w /∈ U0, and aTxδG(U0) = b. We
conclude that e1 ∈ δG(U0) and thus, xδG(U0), xδ1 , . . . , xδm are affinely independent.
Hence, aTx ≤ b is facet-defining for Bond(G).

Iteratively applying this theorem yields the following corollary:

Corollary 4.2.5 (Replacing an edge by a path). Let G = (V,E) be a connected
graph and aTx ≤ b be facet-defining for Bond(G). Let e = vw ∈ E and assume
that ae ≤ b

2
and {aTx ≤ b} ≠ {−xe ≤ 0}.

Obtain G = (V ,E) by subdividing e into edges e1, . . . , ek for arbitrary k ∈ N,
k ≥ 2. For f ∈ E set

af =

{︄
af , if f ∈ E,

ae, if f ∈ {e1, . . . , ek}.

Then, aTx ≤ b is facet-defining for Bond(G).

Next, we consider the inverse, i.e., the replacement of an induced path by an
edge. To this end, we start by investigating coefficients of facet-defining inequalities
on edges contained in induced paths.

Lemma 4.2.6. Let G = (V,E) be a connected graph, P ⊆ G be an induced
path, aTx ≤ b be facet-defining for Bond(G), and E be the set of all bonds δ
in G satisfying the equality aTxδ = b. Assume that E(P) ∩ supp(a) ̸= ∅ and
{aTx ≤ b} ≠ {−xe ≤ 0} for each e ∈ E(P). Then:

(i) If |δ ∩ E(P)| ≤ 1 for all δ ∈ E, we have ae = af for all e, f ∈ E(P).

(ii) If there exists some δ∗ ∈ E with |δ∗ ∩ E(P)| = 2, we have either ae = af
for all e, f ∈ E(P) or there is a unique e∗ ∈ E(P) such that ae∗ > ae and
ae = af for all e, f ∈ E(P) \ {e∗}.

In particular, we have ae ̸= 0 for some e ∈ E(G) \ E(P) or maxe∈E(P) ae > 0.

Proof. By [Zie00, Theorem 5] we may assume a ∈ ZE and since 0 ∈ Bond(G)
we have b ∈ Z≥0. Let M = maxe∈E(P){ae} and e∗ ∈ E(P) with ae∗ = M . Set

4.2. CONSTRUCTING FACETS FROM FACETS 49

N = maxe∈E(P)\{e∗}{ae} and define c ∈ RE by

ce =

⎧⎪⎨⎪⎩
ae, if e /∈ E(P),

M, if e = e∗,

N, else.

Note that we might have M = N . Let δ be an arbitrary bond in G. If δ∩E(P) = ∅,
we have aTxδ = cTxδ ≤ b. If |δ ∩ E(P)| = {f} for some f ∈ E(P), we consider
the bond δ′ = (δ \ {f}) ∪ {e∗} and obtain cTxδ = aTxδ′ ≤ b. If |δ ∩E(P)| = 2, we
consider the bond δ′ = (δ\(δ∩E(P)))∪{e∗, f ∗} for some f ∗ ∈ E(P) with af∗ = N
and obtain cTxδ = aTxδ′ ≤ b. Hence, cTx ≤ b is valid for Bond(G). Since aTx ≤ b
can be obtained from cTx ≤ b by adding homogeneous edge inequalities, we have
either c = a or c = 0. The latter case implies that aTx ≤ b is a homogeneous edge
inequality contradicting the assumption.

Thus, in the following we can assume that a = c. Then, statement (ii) follows
from the previous discussion. To prove statement (i) assume, that |δ ∩E(P)| ≤ 1
for all δ ∈ E and assume that m < M . Defining d ∈ RE by

de =

⎧⎪⎨⎪⎩
ae, if e /∈ E(P),

M, if e = e∗,

m+ 1, else,

we show that aTx ≤ b cannot be facet-defining for Bond(G). Similar as above,
we have dTxδ ≤ b for all bonds δ with |δ ∩ E(P)| ≤ 1.

Since P is an induced path, a bond in G contains at most 2 edges from P .
Hence, it remains to prove validity for all bonds picking 2 edges from P . To
this end, let δ be such a bond. By assumption we have aTxδ < b and thus,
since both values are integers it follows that b − 1 ≥ aTxδ = M + N . Hence,
dTxδ = M +N + 1 ≤ b. Since d = 0 would imply that aTx ≤ b is a homogeneous
edge inequality, dTx ≤ b defines a proper face of Bond(G). Thus, dTx ≤ b
dominates aTx ≤ b contradicting the assumption that the latter inequality is
facet-defining.

The “in particular”-part holds since otherwise aTx ≤ b is dominated by homo-
geneous edge inequalities.

Example 4.2.7. Indeed, all cases of the previous lemma can occur. We may
see this considering facet-defining inequalities of Bond(Cn), which are formally
discussed later in Theorem 4.4.8. Let e ∈ E(Cn), and consider the facet-defining

50 CHAPTER 4. ON THE BOND POLYTOPE

inequalities ∑︂
e∈E(Cn)

xe ≤ 2 and (4.1)

xe −
∑︂

f∈E(Cn)
f ̸=e

xf ≤ 0. (4.2)

An example for statement (i) is given by inequality (4.2) and an arbitrary induced
path P not containing e. For the first case of statement (ii) consider inequal-
ity (4.1) and an arbitrary induced path P ⊆ Cn; for the second case consider
inequality (4.2) and an induced path P ⊆ Cn with e ∈ E(P). ◀

Given the previous lemma, we are now prepared to investigate, how replacing
a path by an edge effects facet-defining inequalities of bond polytopes.

Theorem 4.2.8 (Replacing a path by an edge). Let G = (V,E) be a connected
graph, aTx ≤ b be facet-defining for Bond(G), and P be an induced path in G.
Denote by E the set of all bonds δ in G satisfying the equality aTxδ = b. Assume
that {aTx ≤ b} ≠ {−xe ≤ 0} for each e ∈ E(P) and either there exist e, f ∈ E(P)
with ae ̸= af or there exists no bond δ ∈ E with |δ ∩ E(P)| = 2.

Let G = (V ,E) be obtained from G by replacing P by a single edge p. Set
M = maxe∈E(P){ae} and define a ∈ RE by

ae =

{︄
ae, if e ∈ E,

M, if e=p.

Then, aTx ≤ b defines a facet of Bond(G).

Proof. Let π : RE → RE be the projection given by

π(x)e =

{︄
xe, if e ̸= p,∑︁

e∈E(P) xe, if e = p.

If there is no δ∗ ∈ E with |δ∗ ∩ E(P)| = 2, it is straight forward to see that for
each bond δ ∈ E we have π(xδ) ∈ Bond(G) and aTπ(xδ) = b. Thus,

dim
(︁
{aTx = b} ∩ Bond(G)}

)︁
≥ dim

(︁
{aTx = b} ∩ Bond(G)

)︁
− (|E(P)| − 1)

= |E| − 1− (|E(P)| − 1) = |E| − 1.

Since aTx ≤ b was facet-defining, we have a ̸= 0. Moreover, since Bond(G) has
dimension |E|, we have {aTx = b} ∩ Bond(G) ̸= Bond(G) yielding that aTx ≤ b
is facet-defining.

4.3. REDUCTION TO 3-CONNECTIVITY 51

Now, assume there exists a bond δ∗ ∈ E with |δ∗ ∩ E(P)| = 2 and edges
e, f ∈ E(P) with ae ̸= af . By Lemma 4.2.6, there exists a unique edge e∗ ∈ E(P)
with ae∗ > af for all f ∈ E(P)\{e∗} and we have ae = af for all e, f ∈ E(P)\{e∗}.
Note that for each bond δ ∈ E with δ ∩ E(P) ̸= ∅ we have e∗ ∈ δ. Thus, there
are exactly |E(P)| − 1 such bonds with |δ ∩ E(P)| = 2. Since δ ∩ E(P) = {e∗}
for all bonds with |δ ∩ E(P)| = 1, applying π on all bonds δ with aTxδ = b and
|δ ∩E(P)| ≤ 1 yields a

(︁
|E| − 1

)︁
-dimensional face of Bond(G). Thus, aTx ≤ b is

facet-defining for Bond(G).

We close this section by a discussion of a bond polytope version of [BM86,
Lemma 2.5]:

Lemma 4.2.9. Let G = (V,E) be a connected graph and aTx ≤ b be a valid
inequality for Bond(G). Moreover, let pq ∈ E and let S ⊊ V \ {p, q}.

If δ(S), δ(S ∪ {p}), δ(S ∪ {q}), and δ(S ∪ {p, q}) are bonds satisfying aTx = b,
then apq = 0.

Proof. One can re-use the proof of [BM86, Lemma 2.5] by simply replacing “cut”
with “bond”.

The cut version [BM86, Lemma 2.5] of the above lemma turns out to be a
powerful tool when applied to cut versions of the other above lemmata and the-
orems in this section: It allows the addition of further edges to the graph while
retaining the facet-defining properties of the inequalities under consideration. In
the context of bond polytopes, however, there often may not exist a set S yielding
the required bonds (in contrast to cuts). Nonetheless, although not as versatile as
its cut version, the lemma will still be crucial in later proofs.

4.3 Reduction to 3-connectivity

We show that MaxBond can be reduced in linear time to 3-connected graphs.
While a (similar) reduction was already proposed in [Cha20], it contained a gap,
leading to an exponential running time. Both our reduction and the one in [Cha20]
is based on the following observation. For completeness we give a full proof.

Observation 4.3.1 (Bonds over clique sums). Let G = G1⊕kG2 with k ∈ [2] and
δG ⊆ E(G) be a bond. Let δi = δG ∩ E(Gi) for i ∈ [2].

(i) If k = 1, then δi = δG and δ3−i = ∅ for either i = 1 or 2.

(ii) If k = 2, let e be the unique edge in E(G1) ∩ E(G2). Either e ∈ δ(G) and
each δi is a bond in Gi or e /∈ δG and δG = δi for either i = 1 or 2.

52 CHAPTER 4. ON THE BOND POLYTOPE

Proof. We prove statement (ii). It is then straight forward to verify statement (i).
Let V (G1) ∩ V (G2) = {v1, v2}, e = v1v2, and S ⊆ V (G) such that δG = δG(S).
Setting Si = S∩V (Gi) and δi = δGi

(Si) for i = 1, 2 we have δG = δ1∪δ2. Clearly, δ1
(resp. δ2) is a bond in G1 (resp. G2) and we have v1v2 ∈ δG if and only if v1v2 ∈ δ1
and v1v2 ∈ δ2. It only remains to show that v1v2 /∈ δG implies δ1 = ∅ or δ2 = ∅. If
v1v2 /∈ δ, we may assume v1, v2 ∈ S. Since G − v1v2 = (G1 − v1v2) ·∪ (G2 − v1v2)
there cannot be w1, w2 ∈ V (G) \ S with wi ∈ V (Gi) because G − S would be
disconnected. Thus, V (Gi) ⊆ S and δG is a bond in G3−i for either i = 1 or 2.

In order to use this observation algorithmically, utilize the 3-connectivity de-
composition of a graph.

Recall from Chapter 2.1 that each (not necessarily simple) graph G = (V,E)
admits a unique 3-connectivity decomposition into components, the so-called skele-
tons, which can be partition into the following sets: a set S of cycles, a set P of
edge bundles (two nodes joined by at least 3 edges), and a set R of simple 3-
connected graphs. Again, we use SPR-trees as a data structure considering this
decomposition.

Theorem 4.3.2. MaxBond on arbitrary graphs can be solved in the same time
complexity as on (simple) 3-connected graphs.

Proof. Let G be an arbitrary graph and ce denote the edge weight of e ∈ E(G). We
denote by ω(G) the weight of a maximum bond in G. Moreover, let p(m) ∈ Ω(m)
be the running time of MaxBond on 3-connected graphs with m edges.

If G is not 2-connected, we can find a decomposition G = G1 ⊕1 · · · ⊕1 Gk

into 2-connected graphs G1, . . . , Gk in linear time with simple depth-first search.
We can consider these components individually since ω(G) = maxi∈[k] ω(Gi) (see
Observation 4.3.1). Thus we may assume G to be 2-connected in the following.

For an edge e ∈ E(G), we can compute a maximum bond not containing e
(resp. containing e) in the same time as ω(G) by contracting e (resp. setting its
weight to a large enough value, e.g., 2

∑︁
f∈E(G)\{e} |cf |).

First, we compute the SPR-tree T = T (G) of G, attach weight 0 to each virtual
edge and root T at an arbitrary node ϱ ∈ V (T). Our algorithm will iteratively
prune leaves in T .

Let α be a leaf of T , β be its parent, and denote by e the common virtual edge
in Hα and Hβ. We compute the value ω+

α of a maximum bond in Hα containing e
and the value ω−

α of a maximum bond not containing e. Then, we set the weight
of e in Hβ to ω+

α , consider e as an original (no longer virtual) edge in Hβ, remove
α from T , and proceed with the next leaf until only ϱ remains. In the latter case,
we compute ωϱ as the maximum bond in the skeleton Hϱ (where all virtual edges
are already transformed into original edges with some weight computed in the
previous steps).

4.4. NON-INTERLEAVED CYCLE INEQUALITIES 53

Consider the above setting when considering a leaf α, and let δ∗ be a maximum
bond in G. In case of δ∗ ⊆ E(Hα) \ {e}, we have ω(G) = ω−

α . Otherwise, let G′

be the graph obtained from T after the removal of α (in particular, e is considered
an original edge in G′ of weight ω+

α). Then, we have:

ω(G) =
∑︂
f∈δ∗

cf =
∑︂

f∈δ∗∩E(G′)
f ̸=e

cf +
∑︂

f∈δ∗∩E(Hα)
f ̸=e

cf

=
∑︂

f∈δ∗∩E(G′)
f ̸=e

cf +

{︄
ω+
α , if e ∈ δ∗

0, if e /∈ δ∗

= ω(G′).

Overall, we have ω(G) = max{ω−
α , ω(G

′)}. Iterating our pruning strategy, we
obtain

ω(G) = max

{︃
ωϱ, max

α∈V (T (G))\ϱ
{ω−

α }
}︃
.

Observe that T (G) is the original SPR-tree and the ω-values are the maximum
bonds as computed by the algorithm.

Note that computing MaxBond on P - and S-nodes can trivially be done
in linear time: a maximum bond in P -nodes either picks all edges or no edge; a
maximum bond in S-nodes picks either two edges of heaviest weight or none, if the
sum of any two edge weights is negative. By [HT73, Lemma 15], the SPR-tree can
be built in linear time and the computations in a skeleton on m′ edges can be done
in time O(p(m′)). We attain an overall running time of O

(︂∑︁
α∈V (T) p(|E(Hα)|)

)︂
≤

O(p(|E(G)|)).

Although not necessary in the above proof, we may mention that the bond
polytope corresponding to a P -node is essentially that of a single edge; the bond
polytope corresponding to an S-node, i.e., of a simple cycle, is discussed in Theo-
rem 4.4.8 below.

4.4 Non-Interleaved Cycle Inequalities

We will now start the investigation of inequalities associated to cycles. To this end,
we introduce non-interleaved cycles and show that they give rise to facet-defining
inequalities for bond polytopes of 3-connected graphs. We close this section by
discussing this inequalities for 2-connected graphs.

Definition 4.4.1. Let G be a graph and C ⊆ G be a cycle. C is interleaved, if
there are (not necessarily neighboring) nodes v1, v2, v3, v4 ∈ V (C) occurring along

54 CHAPTER 4. ON THE BOND POLYTOPE

C in this order such that there are node-disjoint paths in G−E(C) connecting v1
with v3 and v2 with v4 respectively. Otherwise, C is non-interleaved.

Given an interleaved cycle C we call two paths P , Q witnessing the inter-
leavedness of C interleaving (with respect to C). Two such paths can be found
in polynomial time if they exist [RS95]. The following lemma introduces valid
inequalities for bond polytopes, which we call non-interleaved cycle inequalities.

Lemma 4.4.2. Let G be a connected graph and C ⊆ G be a cycle. The inequality∑︁
e∈E(C) xe ≤ 2 is valid for Bond(G) if and only if C is non-interleaved.

Proof. First assume C is interleaved with interleaving paths P and Q. Set

S = V (P) ∪ {v ∈ V (G) : v is disconnected from Q in G \ P}.

Then, δ(S) is a bond with |δ(S) ∩E(C)| = 4. Hence,
∑︁

e∈E(C) xe ≤ 2 is not valid.
On the other hand, if

∑︁
e∈E(C) xe ≤ 2 is violated there exists a bond δ(S ′) with

|δ(S ′) ∩ C| > 2. Since there always has to be an even number of cut edges on a
cycle, we must have |δ(S ′)∩C| ≥ 4. Let P1, . . . , Pℓ be the components of C−δ(S ′)
listed in their order of appearance along C. We may assume Pi ⊆ G[S ′] for odd i.
Then, there needs to exist a path Q1 ⊆ G[S ′] connecting P1 and P3 and a path
Q2 ⊆ G − S ′ connecting P2 and P4. Clearly, Q1 and Q2 are interleaving with
respect to C.

Lemma 4.4.3. Let G be 3-connected and C ⊆ G be a non-interleaved cycle. Then
C is an induced cycle.

Proof. Let G be 3-connected and assume there is a non-interleaved cycle C with
a chord e. Let C1 and C2 be the cycles such that E(C1) ∩ E(C2) = {e} and
C = C1△C2. There is at least one node in C1 \C2 and at least one node in C2 \C1.
Furthermore, since G is 3-connected there exists a path P with P ∩ E(C) = ∅
connecting these two nodes. But then P and e are interleaving paths with respect
to C.

The following graph-theoretic lemma is the crucial ingredient for the facet
theorem shown thereafter.

Lemma 4.4.4. Let G = (V,E) be 3-connected, C ⊆ G be a cycle, and f = pq ∈
E \ E(C). Then, there exists an S ⊆ V such that δ(S), δ(S ∪ {p}), δ(S ∪ {q}),
and δ(S ∪ {p, q}) are bonds each containing two edges of C.

Proof. We consider two cases depending on whether pq is adjacent to C or not.
Case 1: |{p, q}∩V (C)| = 1. We may assume p ∈ V (C) and q /∈ V (C). Since G

is 3-connected, there exist internally node-disjoint paths P and Q with f /∈ P, Q

4.4. NON-INTERLEAVED CYCLE INEQUALITIES 55

connecting p and q. We may assume |E(P)∩E(C)| ≥ 1, since p is not a cut-node.
Now, set

S+ = V (P) ∪ {v ∈ V : v is disconnected from C \ P in G \ P}

and S = S+ \ {p, q}. In the following, we show that the cuts δ(S), δ(S ∪ {p}),
δ(S ∪ {q}), and δ(S+) are indeed bonds. To this end it suffices to prove that G[S]
and G−S+ are both connected, and p and q are adjacent to both of these graphs.

By construction, G − S+ is connected, and the nodes p and q are adjacent to
G[S]. Moreover, p is incident to two edges in C and only one of these is contained
in G[S+]. Thus, p is adjacent to G − S+. Furthermore, the path Q connects q
and C, yielding that q is adjacent to G − S+. For each node v ∈ S there are
three disjoint paths P ′

1, P ′
2, and P ′

3 connecting v and C. Since v ∈ S we have
V (P ′

i) ∩ V (P) ̸= ∅ for each i ∈ [3]. Since at most two of these paths contain p or
q, there is a path connecting v with some node in V (P) \ {p, q}. Hence, G[S] is
connected.

Case 2: p, q /∈ V (C). We prove that there are paths P1, P2 connecting p with C,
and Q1, Q2 connecting q with C such that the paths of the triplets (P1, P2, Q1)
and (P1, Q1, Q2) are pairwise disjoint within their triplet. Then, we may assume
(possibly after exchanging indices) that there is a path R ⊆ C connecting P1

and Q1 such that R∩P2 = ∅ and R∩Q2 = ∅. Then, setting S ′ = V (R)∪ V (P1)∪
V (Q1) it is straight forward to verify that

S+ = S ′ ∪ {v ∈ V (G) : v is disconnected from C \R in G− S ′}

and S = S+ \ {p, q} yield the claimed bonds (cf. Figure 4.2).
We start by proving the existence of a triplet (P1, P2, Q) of disjoint paths

P1, P2 connecting p with C and Q connecting q with C. For a path P and nodes
v, w ∈ V (P) we denote by P [v:w] the subpath of P from v to w. Since G is
3-connected, by Menger’s theorem, there exist three disjoint (except of p) paths
P1, P2, P3 connecting p with C. If one of them, say P3, contains q we are done by
choosing Q = P3 \ (P3[p:q]− q). Otherwise, since G is 3-connected, there exists a
path Q0 connecting q and C. If Q0 is not the claimed path Q, it intersects at least
one of the Pi. We may assume that the first such intersection is between Q0 and
P3 and is at a node x. Then, we set Q = Q0[q:x] ∪ P3[x:c]. By construction, Q is
disjoint from P1 and P2.

Now, we construct Q1 and Q2 given the disjoint triplet of paths (P1, P2, Q)
such that P1 = (p, p11 . . . , c1), P2 = (p, p21 . . . , c2), and Q = (q, q1 . . . , c). We may
assume that c1, c2, c ∈ V (C) are pairwise distinct (cf. Figure 4.3(a)). Since G is
3-connected, there exists a path Q′ connecting q and C such that p, q1 /∈ Q′. If Q′

is disjoint from P1, P2 and Q we can set Q1 = Q and Q2 = Q′. So, assume Q′ is not
disjoint from P1, P2, Q. Let x denote the first node along Q′ (starting at q) such

56 CHAPTER 4. ON THE BOND POLYTOPE

C
R

p q

P2
P1

Q2
Q1

C
R

p q

P1 Q1

P2 Q2

Figure 4.2: The set S (red) in the second case of the proof of Lemma 4.4.4

C

cc1
c2

p q

P2P1

Q

(a)

C

p q

x

x

x
Q′

Q′
Q′

(b)

C

p q

Q′

x

a

y

y

y

Q′′

Q′′

Q′′

(c)

Figure 4.3: Visualization of obtaining the necessary paths in the second case of
the proof of Lemma 4.4.4

that x ∈ P1, x ∈ P2, or x ∈ Q (cf. Figure 4.3(b)). If x ∈ Pi, i ∈ [2], we set Q1 = Q
and Q2 = Q′[q:x] ∪ Pi[x:c2]. Now, assume x ∈ Q. Since G is 3-connected, there
exists a path Q′′ connecting a node a ∈ V (Q[q:x]) \ {q, x} with C such that the
two neighbors of a in Q are not contained in Q′′. If Q′′ is disjoint from P1, P2, Q,
we set Q1 = Q[q:a] ∪ Q′′ and Q2 = Q′[q:x] ∪ Q[x:c]. So, assume Q′′ intersects
P1, P2 or Q and denote by y the first such intersection along Q′′ starting in a
(cf. Figure 4.3(c)). We may assume p /∈ V (Q′′) because if there was no such path,
G − {x, p} would be disconnected. Moreover, we may assume y /∈ V (Q) because
otherwise G − {y, p} would be disconnected. Thus (after possibly renaming), we
may assume y ∈ P2[p

2
1:c2]. We have the claimed paths Q1 = Q′[q:x] ∪ Q[x:c] and

Q2 = Q[q:a] ∪Q′′[a:y] ∪ P1[y:c1].

4.4. NON-INTERLEAVED CYCLE INEQUALITIES 57

Theorem 4.4.5. Let G = (V,E) be 3-connected and C ⊆ G be a non-interleaved
cycle. Then,

∑︁
e∈E(C) xe ≤ 2 defines a facet of Bond(G).

Proof. Since by Lemma 4.4.2,
∑︁

e∈E(C) xe ≤ 2 is valid for Bond(G), there is
a facet-defining inequality aTx ≤ b such that Bond(G) ∩ {

∑︁
e∈E(C) xe = 2} ⊆

Bond(G) ∩ {aTx = b}. We show equality of these two faces by proving that
ae = af for all e, f ∈ E(C) and af = 0 for each f /∈ E(C).

Let f = pq ∈ E(G) \ E(C). By Lemma 4.4.4 there is a set S ⊆ V such
that δ(S), δ(S ∪ {p}), δ(S ∪ {q}), and δ(S ∪ {p, q}) are bonds, each satisfying∑︁

e∈E(C) xe = 2 and thus, aTx = b. Hence, Lemma 4.2.9 yields apq = 0. Note that
for each v ∈ V (C) and vw ∈ E(C) the bond vectors xδ({v}) and xδ({v,w}) satisfy∑︁

e∈E(C) xe = 2 and thus, aTx = b. Considering a 3-path on nodes v1, . . . , v4
labeled in order of their appearance along C, we have

0 = aTxδ(v2) − aTxδ(v3) = (av1v2 + av2v3)− (av2v3 − av3v4) = av1v2 − av3v4 ,

0 = aTxδ({v2,v3}) − aTxδ(v3) = (av1v2 + av3v4)− (av2v3 − av3v4) = av1v2 − av2v3 .

Thus, we have av1v2 = av2v3 = av3v4 yielding ae = af for all e, f ∈ E(C).

We close this section by discussing non-interleaved cycle inequalities in 2-
connected graphs. Even though validity of the non-interleaved cycle inequalities
is maintained when only assuming 2-connectivity, such inequalities are not facet-
defining in general for bond polytopes of non-3-connected graphs.

Example 4.4.6. Let G be the graph shown in Figure 4.4. Computing the facet
description of Bond(G), e.g., using the software package Normaliz [BIR+], we see
the following:

• Consider the cycle induced by v1, v2, v3, v4. The non-interleaved cycle in-
equality associated to this cycle is not facet-defining for Bond(G).

• Consider the cycle induced by v1, v2, v3, v7, v6, v5. The non-interleaved cycle
inequality associated to this cycle is facet-defining for Bond(G). ◀

However, we can give a necessary condition for a non-interleaved cycle in a
2-connected graph giving rise to a facet-defining inequality. To do this, we call
a non-interleaved cycle C maximal non-interleaved if there is no non-interleaved
cycle C ′ with |E(C) \ E(C ′)| = 1.

Theorem 4.4.7. Let G be a connected graph and C ⊆ E(G) be a cycle. If∑︁
e∈E(C) xe ≤ 2 defines a facet of Bond(G), C is maximal non-interleaved.

58 CHAPTER 4. ON THE BOND POLYTOPE

v1 v2

v3v4

v5 v6

v7v8

Figure 4.4: Graph from Example 4.4.6

Proof. Assume C is not maximal. Let C ′ be non-interleaved with C \ C ′ = {f}.
Then,

∑︁
e∈E(C) xe ≤ 2 is the sum of the inequalities xf −

∑︁
e∈E(C)′\C xe ≤ 0 and∑︁

e∈E(C′) xe ≤ 2. By [BM86, Theorem 3.3] the first of the two inequality is valid for
Cut□(G) and thus for Bond(G) and by Lemma 4.4.2 the second inequality is valid
for Bond(G). Hence,

∑︁
e∈E(C) xe ≤ 2 cannot be facet-defining for Bond(G).

There is a class of simple non-3-connected graphs such that the non-interleaved
cycle inequalities are not only facet-defining but together with the homogeneous
(cut polytope) facets suffice to fully describe their bond polytopes:

Theorem 4.4.8. For each n ≥ 3, Bond(Cn) is completely defined by the following
facet-defining inequalities

−xe ≤ 0 for each e ∈ E(Cn),

xe −
∑︂

f∈E(Cn)\{e}

xf ≤ 0 for each e ∈ E(Cn),∑︂
e∈E(Cn)

xe ≤ 2.

Proof. By Theorem 1.5.6, the homogeneous inequalities above are the homoge-
neous facets of Cut□(Cn). Thus, by Theorem 4.1.2 these are exactly the homo-
geneous facets of Bond(Cn). Let δ ⊆ E(Cn) be a cut. Then, δ is a bond if and
only if δ = ∅ or |δ| = 2. Thus, the inequality

∑︁
e∈E(Cn)

xe ≤ 2 defines a facet of
Bond(Cn).

Moreover, since the facet {
∑︁

e∈E(Cn)
xe = 2}∩Bond(Cn) contains all incidence

vectors of non-empty bonds, each other facet has to be homogeneous. Thus, the
claim follows immediately.

4.5 Edge- and Interleaved Cycle Inequalities

Finally, we discuss edge inequalities and a natural generalization of non-interleaved
cycle inequalities. To tackle the latter, we consider the intersection of bonds and

4.5. EDGE- AND INTERLEAVED CYCLE INEQUALITIES 59

interleaved cycles in a given graph.

Lemma 4.5.1. Let G be a graph, C ⊆ G be a cycle and k ∈ N. Then, the
inequality

∑︁
e∈E(C) xe ≤ 2k is valid for Bond(G) if and only if G does not contain

a minor H of the following form: H = T ·∪ T ′ where T and T ′ are disjoint trees,
each on k + 1 nodes that correspond to nodes in C alternating around C. If k is
chosen minimally, the inequality is tight.

Proof. Let T ⊆ G be a subgraph whose contraction gives T ⊆ H. By adding
to T any components not connected to C in G \ T , δ = δG(T) becomes a bond
with |δ ∩ E(C)| = 2(k + 1). Conversely, if there is a bond δ = δ(S) ⊆ E(G) with
|δ ∩ E(C)| = ℓ > 2k, ℓ even, this gives ℓ ≥ 2(k + 1) components in C \ δ. Since δ
is a bond, both G[S] and G − S contain trees as minors whose nodes correspond
to these components.

Now, let k be minimal such that
∑︁

e∈E(C) xe ≤ 2k is valid for Bond(G). Then
there exists some bond δ in G such that 2(k− 1) < |δ ∩E(C)| ≤ 2k. Tightness of
the inequality follows since the number of cut edges in a cycle is always even.

Indeed, such inequalities are facet-defining for some graphs. One class of such
graphs are generalized Wagner graphs Vn (n ∈ 2N) also known as circulants
Cn(1,

n
2
): Vn is obtained from the cycle Cn on nodes [n] by adding the edges

{i, i+ n
2
} for 1 ≤ i ≤ n

2
. We call Cn the outer cycle of Vn.

Theorem 4.5.2. Let n ≥ 6 and C be the outer cycle of Vn. Then, the inequality∑︁
e∈E(C) xe ≤ 4 defines a facet of Bond(Vn).

Proof. By Lemma 4.5.1, the inequality
∑︁

e∈E(C) xe ≤ 4 is valid for Bond(Vn).
Thus, there is a facet-defining inequality aTx ≤ b of Bond(Vn) dominating it. We
show {aTx = b} = {

∑︁
e∈E(C) xe = 4} by proving af = 0 for each f /∈ E(C) and

ae = af for each e, f ∈ E(C).
First, we show that apq = 0 for each pq /∈ E(C). For this, let v be a neighbor of

p and w be a neighbor of q such that vw ∈ E(Vn)\E(C) and set S = {v, w}. Then,
δ(S), δ(S ∪{p}), δ(S ∪{q}), and δ(S ∪{p, q}) are bonds satisfying

∑︁
e∈E(C) xe = 4

and thus, aTx = b. Hence, Lemma 4.2.9 yields apq = 0.
It remains to show that ae = af for all e, f ∈ E(C). It suffices to prove this

for two incident edges e, f ∈ E(C). Let {w} = e ∩ f , e = vw and u ∈ V (Vn) the
unique node with uv ∈ E(Vn) \ E(C). Then, δ({u, v}) and δ({u, v, w}) are bonds
satisfying

∑︁
e∈E(C) xe = 4 and thus, aTx = b. Since only edges in C have non-zero

coefficients, it follows that 0 = aTxδ({u,v}) − aTxδ({u,v,w}) = af − ae.

On the other hand:

60 CHAPTER 4. ON THE BOND POLYTOPE

Example 4.5.3. Consider K5 and a 5-cycle C ⊆ K5. Then, the inequality∑︁
e∈E(C) xe ≤ 4 is valid and tight but not facet-defining. ◀

Open Problem 4.5.1. Characterize interleaved cycles that induce facets.

We close this section by discussing inequalities associated to edges. By defini-
tion, the inequality xe ≤ 1 is always valid for Bond(G). In the following, we show
that although this inequality is not facet-defining in general, there is an infinite
class of graphs where it is.

Lemma 4.5.4. Let G = (V,E) be a connected graph and e ∈ E. If e is contained
in a non-interleaved cycle, xe ≤ 1 is not facet-defining for Bond(G).

Proof. Let C ⊆ G be a non-interleaved cycle and e ∈ E(G). By Lemma 4.4.2 and
[BM86, Theorem 3.3], the inequalities∑︂

f∈E(C)

xf ≤ 2 and xe −
∑︂

f∈E(C)
f ̸=e

xf ≤ 0

are valid for Bond(G). Summing these two inequalities, we obtain 2xe ≤ 2.

Theorem 4.5.5. For any n ≥ 6 and any e ∈ E(Vn) the inequality xe ≤ 1 is
facet-defining for Bond(Vn).

Proof. We use the same strategy as in the proof of Theorem 4.5.2. Let e ∈ E(Vn).
Since xe ≤ 1 is valid for Bond(Vn) there exists a facet-defining inequality aTx ≤ b
dominating it. We show {aTx = b} = {xe = 1} by proving af = 0 for each
f ∈ E(Vn) \ {e}.

First assume f ∩ e = ∅. Labeling the vertices along the outer cycle by [n], up
to isomorphism it suffices to consider the following four cases (cf. Figure 4.5): If
e = {1, n} and f = {i, i+ 1} for 2 ≤ i ≤ n

2
, we set S+ = [n

2
+ 1]; if e = {1, n} and

f = {i, n
2
+ i} for 2 ≤ i ≤ n

2
− 1, we set S+ = [i] ∪ ([n

2
+ i] \ [n

2
]); if e = {n

2
, n} and

f = {i, i + 1} for 1 ≤ i ≤ n
2
− 2 we set S+ = [i + 1] ∪ ([n] \ [n

2
+ i]); if e = {n

2
, n}

and f = {i, n
2
+ i} for 1 ≤ i ≤ n

2
− 1 we set S+ = [i] ∪ ([n] \ [n

2
+ i − 1]). It is

straight forward to verify that for each of these sets, S+, S+ \ {i}, S+ \ {j}, and
S+ \{i, j} (where j is the other end node of f) induce bonds satisfying xe = 1 and
thus aTx = b. Hence, Lemma 4.2.9 yields af = 0.

It remains to show that each edge incident to e has coefficient 0. Depending
on whether e is contained in the outer cycle or not, we are in one of the situations
sketched in Figure 4.6. In both cases, considering the notation as in the figure,

4.5. EDGE- AND INTERLEAVED CYCLE INEQUALITIES 61

v

v

i+ 1
v

i

v
1

v

n

v v

v
n
2 + 1

f

e

v

v

i

v
1

v

n

v

n
2 + i

v
n
2 + 1

e
f

v

v

n
2

v
i+ 1

v

i

v

n

v
n
2 + i+ 1

f
e

v

n
2

vi

v

n

v
n
2 + i

e

f

Figure 4.5: A visualization of the set S+ from the proof of Theorem 4.5.5. The
subgraph G[S+] is highlighted.

all bond-vectors in the inequalities below satisfy the equalities xe = 1 and thus
aTx = b. Since ah = 0 for each edge h ∈ E(Vn) \ {e, f1, f2, f3, f4}, we have

b = aTxδ({v}) = ae + af1 + af3 , b = aTxδ(w) = ae + af2 + af4 ,

b = aTxδ({v,w1}) = ae + af3 , b = aTxδ({w,w2}) = ae + af4 ,

b = aTxδ({v,w3}) = ae + af1 , b = aTxδ({w,w4}) = ae + af2 .

Hence, we have af1 = aTxδ({v}) − aTxδ({v,w1}) = b − b = 0 and analogously af2 =
af3 = af4 = 0.

Given this result and noticing that each cycle in Vn is interleaved gives rise to
the following question:

Open Problem 4.5.2. Let G be a 3-connected graph. Does xe ≤ 1 define a facet
of Bond(G) for each e that is not contained in a non-interleaved cycle?

62 CHAPTER 4. ON THE BOND POLYTOPE

v w

w1

w2 w3

w4

e

f1

f2f3

f4
v w3

w1

f3

f1

ww2

w4

f2
f4

e

Figure 4.6: Sketches of Vn with notations from the proof of Theorem 4.5.5

Figure 4.7: Prism

4.6 (K5 − e)-Minor-Free Graphs

The focus of this section lies on (K5 − e)-minor-free graphs. We prove a linear
description of bond polytopes for planar 3-connected such graphs. Moreover, we
present a linear-time algorithm for MaxBond on arbitrary (K5 − e)-minor-free
graphs. We start with a characterization of these graphs.

The wheel graph Wn on n-nodes is obtained from the cycle Cn by adding a new
node c adjacent to each node of Cn. We call c the center node of Wn and Cn ⊆ Wn

the rim. Moreover, we denote the graph shown in Figure 4.7 by Prism.

Proposition 4.6.1. [Wag60] Each maximal (K5 − e)-minor-free graph G can be
decomposed as G = G1 ⊕2 · · · ⊕2 Gℓ where each Gi is isomorphic to a wheel graph,
Prism, K3, or K3,3.

As a consequence , it follows that each 3-connected (K5 − e)-minor-free graph
is a wheel graph, Prism, K3, or K3,3. We provide a complete facet description for
all planar such graphs (i.e., all but K3,3).

Theorem 4.6.2. Let G ̸= K3,3 be a 3-connected (K5 − e)-minor-free graph. Then

4.6. (K5 − e)-MINOR-FREE GRAPHS 63

Bond(G) is completely determined by the following facet-defining inequalities:

xe ≥ 0 for each edge e that is not contained in a triangle,

xe −
∑︂

f∈E(C)\{e}

xf ≤ 0 for each induced cycle C and e ∈ E(C),

∑︂
e∈E(C)

xe ≤ 2 for each non-interleaved cycle C.

Proof. Since Cut□(K3) = Bond(K3) the claim follows directly for K3. The de-
scription of Bond(Prism) can be checked by computation. Thus, it remains to
prove that Bond(Wn) is completely defined by the inequalities

xe − xf − xg ≤ 0 for each triangle {e, f, g} in Wn,

xe −
∑︂

f∈R\{e}

xf ≤ 0 for each e ∈ R,

xe + xf + xg ≤ 2 for each triangle {e, f, g} in Wn,∑︂
e∈R

xe ≤ 2,

where R ⊆ E(Wn) denotes the set of rim edges of Wn.
By [BM86, Corollary 3.10], the homogeneous inequalities above are the homo-

geneous facets of Cut□(Wn) and Theorem 4.1.2 implies that these are precisely
the homogeneous facets of Bond(Wn).

Let c denote the center node of Wn and δ ⊆ E be a cut. Then, δ is a bond if
and only if δ = ∅, δ = δ(c) or |δ ∩R| = 2.

Let P denote the polytope given by the above inequalities. Clearly we have
Bond(Wn) ⊆ P . We prove equality of the two polytopes by showing that each
vertex of Q is the incidence vector of some bond.

Note that by [BM86, Corollary 3.10], P = Cut□(Wn) ∩ {
∑︁

e∈R xe ≤ 2} and
the vertices of Cut□(Wn) contained in {

∑︁
e∈R xe ≤ 2} are exactly the incidence

vectors of bonds. Now assume, P has an additional vertex. Then, this is given
as relint(F) ∩ {

∑︁
e∈R xe = 2} where F is a 1-dimensional face of Cut□(Wn).

Such a face has to contain one of x∅ and xδ(c). But by Proposition 4.1.1, in
Cut□(Wn) these are only adjacent to incidence vectors of bonds which yields a
contradiction.

Given the previous results, it seems natural to ask, whether the bond polytope
of 3-connected planar graphs is completely described by inequalities associated
to cycles and edges. Unfortunately the answer to this question is negative, since
already Bond(K5 − e) has a facet that does not belong to the mentioned class.

64 CHAPTER 4. ON THE BOND POLYTOPE

1

2

37

9

84

5

6

Figure 4.8: K5 − e on the edge set E = {1, . . . 9}. Red edges are those of the
support graph of the inequality from Example 4.6.3.

Example 4.6.3. Consider K5 − e with the edge labeling as in Figure 4.8. The
inequality x1 + x2 + x4 +x5 + x7 − x8 −x9 ≤ 2 defines a facet of Bond(K5 − e). ◀

We close this section by presenting a linear-time algorithm for MaxBond on
(K5−e)-minor-free graphs. For details on tree-width and parameterized algorithms
see, e.g., [DF13].

Proposition 4.6.4. [DLP+19, DEH+20] Given a nice tree decomposition of G
with width k, MaxBond can be solved on G in time 2O(k log(k)) × |V (G)|.

Theorem 4.6.5. Given a (K5 − e)-minor-free graph G = (V,E) with |V | = n,
MaxBond can be solved on G in time O(n).

Proof. By Proposition 4.6.1 and the fact that Prism, K3, K3,3 are of constant size,
and |E(Wn)| = 2(|V (Wn)| − 1), we have |E(G)| ∈ O(n). Using Theorem 4.3.2,
we can restrict ourselves to 3-connected (K5 − e)-minor-free graphs by only O(n)
additive effort. By Proposition 4.6.1 these graphs are wheel graphs, Prism, K3,
and K3,3.

Since we can solve MaxBond in constant time on Prism, K3, and K3,3, it
only remains to prove that MaxBond can be solved in time O(n) on wheel
graphs. Denoting the center of Wn by c and the rim nodes by v1, . . . , vn, it
is straight forward to verify that a nice tree decomposition of Wn with width
3 is given by the bags {c}, {cv1}, {cv1v2}, {cv1v2v3}, {cv1v3}, {cv1v3v4}, {cv1v4},
{cv1v4v5}, . . . , {cv1vn−1}, {cv1vn−1vn}. Using this tree decomposition, Proposi-
tion 4.6.4 yields the claim.

Note that although the above algorithm has asymptotically linear runtime, the
runtime is dependent on large constants. Since the presented tree decomposition
for wheel graphs is in fact even a path decomposition and wheel graphs are of

4.7. OPEN PROBLEMS 65

special simple structure for this measure, it should certainly be possible to improve
on the constant quite a bit. Although this might yield a more practical algorithm,
this would be out of scope for this work.

4.7 Open Problems

We have introduced bond polytopes and investigated the relation of these to cut
polytopes. Then, we have studied the effect of graph-operations on facets of bond
polytopes. We have presented a reduction of MaxBond to 3-connected graphs.
Moreover, we have started an investigation of cycle- and edge inequalities for bond
polytopes and derived a family of facet-defining inequalities for bond polytopes.
Finally, we have presented a linear-time algorithm for MaxBond on (K5 − e)-
minor-free graphs as well as a linear description for all 3-connected planar such
graphs.

Recall the open problems from Chapter 4.5:

Open Problem 4.5.1. Characterize interleaved cycles that induce facets.

Open Problem 4.5.2. Let G be a 3-connected graph. Does xe ≤ 1 define a facet
of Bond(G) for each e that is not contained in a non-interleaved cycle?

On the algorithmical side, we have seen the importance of clique sums. Consid-
ering cut polytopes, for k ≤ 3 we can derive a linear description of Cut□(G1⊕kG2)
given linear descriptions of Cut□(G1) and Cut□(G2). While we have seen how
to handle 1- and 2-sums in algorithms for MaxBond, we could not mirror this
into the world of bond polytopes. As a result this would for example yield a lin-
ear description for arbitrary (K5 − e)-minor-free graphs. Therefore, the following
question arises:

Open Problem 4.7.1. Given a graph G = G1 ⊕k G2 and linear descriptions of
Bond(G1) and Bond(G2). Can we derive a linear description of Bond(G), at
least for k = 1, 2?

As a first step, one may investigate how facets of Bond(G1) and Bond(G2)
can be combined to obtain facets of Bond(G).

66 CHAPTER 4. ON THE BOND POLYTOPE

Chapter 5

On the Dominant of the Multicut
Polytope

This chapter is based on [CJN21].

A prominent generalization of the minimum s-t-cut problem is the minimum
multicut problem MinMultiCut: Given a graph G and a set S ⊆

(︁
V (G)
2

)︁
of

terminal pairs, a multicut is an edge set δ ⊆ E(G) such that for each pair {s, t} ∈ S
there is no s-t-path in G−δ. When the terminal set is in doubt, we may call δ an S-
multicut. Given non-negative edge weights ce, MinMultiCut asks for a multicut
δ minimizing

∑︁
e∈δ ce. A node v ∈ V (G) is called a terminal if there exists some

w ∈ V (G) such that {v, w} ∈ S. A multicut is minimal if it is minimal with
respect to inclusion, it is a minimum multicut if it has minimal total weight (with
respect to given edge weights).

If |S| is fixed, MinMultiCut is solvable in polynomial time for |S| = 1, 2
[YKCP83] but NP-complete for |S| ≥ 3 [DJP+94]. It remains NP-complete
even when the input graph is restricted to trees of height 1, i.e., stars [GVY06].
Approximation algorithms for MinMultiCut have been intensively studied, see
e.g. [GNS06, GVY06].

We define the multicut polytope of G as the convex hull of all incidence vectors
of multicuts, i.e.,

MultC□(G,S) = conv
(︁{︁

xδ : δ is an multicut in G with respect to S
}︁)︁

and the multicut dominant of G as

MultC(G,S) = MultC□(G,S) + RE(G)
≥0 .

Since minimizing a non-negative objective function on MultC□(G,S) and
MultC(G,S) yields the same result, the latter is the relevant polyhedron for
the considered optimization problem.

67

68 CHAPTER 5. ON THE MULTICUT DOMINANT

Contrary to the cut polytope, there is only little knowledge on the multicut
polytope and its dominant.

For |S| = 1, the multicut dominant was studied in [SW10]. Besides a charac-
terization of vertices and adjacencies in the polyhedron, it was shown that in this
case MultC(G, {{s, t}}) is completely described by edge- and path inequalities
(see Proposition 5.1.11 for details). Moreover, it was shown that each of these
inequalities defines a facet.

Clearly this generalizes to a relaxation of MultC(G,S) for |S| ≥ 2 by having
path inequalities for each pair {s, t} ∈ S. In [GNS06] it was shown that when the
input graph is a tree and for each {s, t} ∈ S one of both nodes is a descendant of
the other this relaxation coincides with MultC(G,S). Nevertheless, this does not
hold in general. Already for G = K1,3 with S = {{v, w} : v, w are leaves in G} the
polyhedron defined by all edge- and path inequalities admits a fractional vertex
by setting all edge variables to 0.5.

Organization of this chapter. We start in Chapter 5.1 by investigating basic
properties of MultC(G,S). Moreover, we present results on liftings and projec-
tions of these polyhedra. The lifting results for the multicut dominant are stronger
than those known for cut polytopes in the sense that lifting of inequalities does not
only preserve validity of the inequalities but also preserves being facet-defining.
This results in a characterization of facet-defining edge- and path inequalities.
Then, we investigate the effect of graph operations such as node splittings and
edge subdivisions on the multicut dominant and its facets in Chapter 5.2. In
Chapter 5.3 we investigate facets supported on stars. In Chapter 5.4 we generalize
these facet-defining inequalities to facets on trees. Both classes can be separated
in polynomial time when the input graph is a tree. Finally, in Chapter 5.5 we
introduce facet-defining inequalities supported on cycles.

Related Cut-Generalizations. There are multiple way to generalize cuts to
different problems under the same (or similar) name in literature.

In [DGL91, DGL92] multiple polytopes associated to cut problems are studied.
There, the k-cuts are called multicuts as well; we give give their to distinguish
those from our notion of multicuts: Given a graph G = (V,E) and a partition
V = S1 ·∪ . . . ·∪ Sk a k-cut in G is the set of all edges between a node in Si and a
node in Sj for some 1 ≤ i < j ≤ k.

Using this notion of multicuts, in [HLA17, LA20] the lifted multicut problem
was studied: Given a graph G′, a subgraph G ⊆ G′, and a multicut δ ⊆ E(G), the
lifted multicut problem asks for a minimum multicut in δ ⊆ E(G′) with δ∩E(G) =
δ. The polytope associated to this problem is called lifted multicut polytope. In
[LA20], the lifted multicut polytope for G being a tree or a path was studied.

5.1. BASIC PROPERTIES 69

5.1 Basic Properties

We start by investigating basic properties of the multicut dominant and its facet-
defining inequalities. Afterwards, we study the effect of edge additions, deletions,
and contractions on the multicut dominant. In particular, this leads to a classifi-
cation of all facet-defining path- and edge inequalities.

The following observation is a direct consequence of the construction of the
multicut dominant:

Observation 5.1.1. Let G = (V,E) be a graph and S ⊆
(︁
V
2

)︁
be a set of terminal

pairs.

• The vertices of MultC(G,S) are precisely the incidence vectors of the (in-
clusion wise) minimal multicuts in G.

• We have dimMultC(G,S) = |E|.

• Let aTx ≥ b be facet-defining for MultC(G,S). Since MultC(G,S) is
the Minkowski sum of a polytope and RE

≥0, each inner normal of a facet of
MultC(G,S) is contained in RE

≥0, i.e. we have ae ≥ 0 for each e ∈ E.

• Let W ⊇ V , G = (W,E), and S ⊆
(︁
W
2

)︁
be a set of terminal pairs such that

S = S ∩
(︁
V
2

)︁
. Then, we have MultC(G,S) = MultC(G,S).

We can consider the support graph of facet-defining inequalities:

Lemma 5.1.2. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

aTx ≥ b be facet-defining for MultC(G,S), and f ∈ E. Assume that af ̸= 0
and {aTx ≥ b} ≠ {xf ≥ 0}. Then, there exists some multicut δ with f ∈ δ and
aTxδ = b.

Proof. Assume there is no such δ and let λ > 0. The inequality aTx + λxf ≥ b is
valid for MultC(G,S). By assumption, each multicut δ satisfying aTx = b satisfies
aTx + λxf = b. Hence, both inequalities define the same face of MultC(G,S)
contradicting the assumption that aTx ≥ b is facet-defining.

Theorem 5.1.3. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

and aTx ≥ b be facet-defining for MultC(G,S) such that {aTx ≥ b} ̸= {xe′ ≥ 0}
for all e′ ∈ E(G). Then, each edge e ∈ E(supp(a)) lies on an s-t-path in supp(a)
for some {s, t} ∈ S. In particular, each leaf of supp(a) is a terminal.

Proof. Assume there is some e ∈ supp(a) such that e does not lie on any s-t-path.
By Lemma 5.1.2 there is some multicut δ with e ∈ δ and aTxδ = b. Since e is not
contained in any s-t-path for any {s, t} ∈ S, also δ \ {e} is a multicut. But, since
e ∈ supp(a), we have ae > 0 and thus, aTxδ\{e} < aTxδ = b contradicting aTx ≥ b
being valid for MultC(G,S).

70 CHAPTER 5. ON THE MULTICUT DOMINANT

Next, we investigate coefficients of facet-defining inequalities of the multicut
dominant along induced paths, i.e., paths in G in which each internal node has
degree 2 in G.

Theorem 5.1.4. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

and aTx ≥ b be facet-defining for MultC(G,S) with {aTx ≥ b} ≠ {xe′ ≥ 0} for
all e′ ∈ E. Furthermore let P ⊆ G be an induced path such that no internal node
of P is a terminal. Then, ae = af for all e, f ∈ P .

Proof. Assuming the contrary, let M = mine∈E(P) ae, e ∈ E(G) with ae = M , and
define c ∈ RE by

ce =

{︄
ae, for e /∈ E(P),

M, for e ∈ E(P).

First, we show that cTx ≥ b is valid for MultC(G,S). Let δ be a multicut in
G. Since P is induced and contains no terminals as inner vertices, also δ′ =
(δ \ P) ∪ {e} is a multicut in G. Clearly, we have cTxδ ≥ cTxδ′ = aTxδ′ ≥ b.

Since aTx ≥ b is a sum of cTx ≥ b and edge inequalities xe ≥ 0, this contradicts
the assumption that aTx ≥ b is facet-defining.

We want to point out that both assumptions on the path in the previous the-
orem are necessary. Theorem 5.4.1 will provide facet-defining inequalities having
non-induced paths with different coefficients in the support graph. The facets
in Theorem 5.5.3 contain induced paths with internal terminals in their support
graphs and have different coefficients attached to edges in such paths.

Next, we give a complete characterization of the boundedness of facets via their
support graph.

Theorem 5.1.5. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

and aTx ≥ b be facet-defining for MultC(G,S). Then, the facet {aTx = b} ∩
MultC(G,S) is bounded if and only if supp(a) = G.

Proof. Since MultC(G,S) = MultC□(G,S) +RE
≥0, each ray in MultC(G,S) is

of the form {y + λz : λ ∈ R≥0} with y ∈ MultC(G,S) and z ∈ RE
≥0 \ {0}.

If there is some edge e ∈ E \E(supp(a)), we have aTx = aT(x+ x{e}) yielding
that {aTx = b} ∩ MultC(G,S) is unbounded.

Now assume that supp(a) = G and there is a ray {y+λz : λ ∈ R≥0} ⊆ {aTx =
b} ∩MultC(G,S). Then, we have 0 = b− b = aT (y + λz)− aTy = λaTz for each
λ ∈ R≥0. Thus, we have aT z = 0 and since ae > 0 for all e ∈ E this contradicts
z ∈ RE

≥0 \ {0}.

The graph G/e is obtained from G by contracting the edge e = vw, i.e., the
nodes v and w are identified, the arising self-loop is deleted and parallel edges are

5.1. BASIC PROPERTIES 71

merged. Considering the contraction of an edge e, there is a one-to-one correspon-
dence between multicuts in G/e and multicuts δ in G with e /∈ δ. This, directly
yields the following observation:

Observation 5.1.6. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

and e = vw ∈ E such that {v, w} /∈ S. Then, MultC(G/e, S) = MultC(G,S) ∩
{xe = 0}.

Next, we consider the deletion and addition of edges.

Theorem 5.1.7. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

H ⊆ G, and S ′ = S ∩
(︁
V (H)

2

)︁
. Then, the following hold:

(i) For e ∈ E, MultC(G− e, S) = π(MultC(G,S)) where π : RE → RE\{e} is
the orthogonal projection.

(ii) If
∑︁

e∈E(H) aexe ≥ b is a valid inequality for MultC(H,S ′), it is also valid
for MultC(G,S).

(iii) If aTx ≥ b is facet-defining for MultC(G,S) and supp(a) ⊆ H, the inequal-
ity

∑︁
e∈E(H) aexe ≥ b is facet-defining for MultC(H,S ′).

(iv) If aTx ≥ b is facet-defining for MultC(H,S ′), then
∑︁

e∈E(H) aex ≥ b is
facet-defining for MultC(G,S).

Proof. We start by proving (i). Then, (ii) and (iii) follow immediately. Observe
that for each multicut δ in G the set δ \ {e} is a multicut in G− e. On the other
hand, if δ′ is a multicut in G − e, then δ′ ∪ {e} is a multicut in G. This directly
yields MultC(G− e, S) = π(MultC(G,S)).

Now, we prove statement (iv). If W ̸= V , we consider the graph H = (V, F).
Since S ′-multicuts in H and S-multicuts in H coincide, we have MultC(H,S ′) =
MultC(H,S). Thus, we may assume W = V . We prove the statement for the
case H∗ = (V,E \ {e∗}) for some e∗ ∈ E. Then, the claim follows by adding edges
in E \ F one by one to H.

For each multicut δ in H∗, the set δ = δ ∪ {e∗} is a multicut in G. Thus,
xδ, xδ + x{e∗} ∈ MultC(G,S). Since aTx ≥ b is facet-defining for MultC(G,S),
lifting all multicuts satisfying aTx = b in this fashion into the two hyperplanes
{xe∗ = 1} and {xe∗ = 2} yields that the inequality

∑︁
e∈E\{e∗} aexe ≥ b defines a

face of dimension at least |E| of MultC(G,S). Since a ̸= 0, this yields that the
inequality is facet-defining.

Note that the facet-defining inequalities of the multicut dominant can be split
into two sets: those that are also facet-defining for the multicut polytope and those
that are not.

72 CHAPTER 5. ON THE MULTICUT DOMINANT

Definition 5.1.8 (shared facets). Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set

of terminal pairs. Given a facet-defining inequality aTx ≥ b of MultC(G,S), the
defined facet is shared if aTx ≥ b is also facet-defining for MultC□(G,S).

Clearly, each facet-defining inequality aTx ≥ b of MultC(G,S) with supp(a) =
G is shared by Theorem 5.1.5. Moreover, considering the proof of Theorem 5.1.7,
one can see that shared facets remain shared under removal of edges. Unfor-
tunately, as we also see in that proof this does not hold for lifting in general.
However, with some additional restrictions we can lift facet-defining inequalities
while making sure that the property of being shared is preserved.

Lemma 5.1.9. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
be a set of terminal pairs,

aTx ≥ b define a shared facet of MultC(G,S), v, w ∈ V such that e∗ = vw /∈ E,
and G = (V,E ∪ {e∗}). Assume there is a multicut δ∗ in G such that e∗ /∈ δ∗ and∑︁

e∈E aex
δ
e = b. Then

∑︁
e∈E aexe ≥ b defines a shared facet of MultC(G,S).

Proof. It follows directly from Theorem 5.1.7 (iv) that the inequality is facet-
defining. Thus, it is only left to show that that the defined facet is indeed shared,
i.e., that there are |E| affinely independent incidence vectors of multicuts contained
in this facet.

To this end, let m = |E|. Since aTx ≥ b is facet-defining for MultC(G,S),
there are multicuts δ1, . . . , δm in G such that aTxδi = b for each i ∈ [m] and
xδ1 , . . . , xδm are affinely independent. Now let δi = δi∪{e∗}. Then, δi is a multicut
in G with

∑︁
e∈E aex

δi
e = b. Since xδ1 , . . . , xδm are affinely independent and all

contained in the hyperplane {xe∗ = 1}, the vectors xδ∗ , xδ1 , . . . , xδm are affinely
independent and satisfy

∑︁
e∈E aexe = b.

Theorem 5.1.10. Let G = (V,E) be a graph, S ⊆
(︁
V (G)
2

)︁
, H = (W,F) be an

induced subgraph of G, and S ′ = S ∩
(︁
W
2

)︁
. Assume that for each vw ∈ E \ F we

have {v, w} /∈ S and there is no {s, t} ∈ S with s ∈ W and t adjacent to W .
Furthermore let aTx ≥ b define a shared facet MultC(H,S ′). Then,

∑︁
e∈F aexe ≥

b defines a shared facet of MultC(G,S).

Proof. Let G′ = (V, F). Clearly, each S ′-multicut in H is an S-multicut in G′ and
we thus have MultC(H,S ′) = MultC(G′, S).

In the following we add the edges in E \ F one by one to G′ and utilize
Lemma 5.1.9 to lift the facet-defining inequality under consideration. To this
end we construct for each each e ∈ E \ F an S-multicut δe ⊆ E in G such that
e /∈ δe and

∑︁
f∈E afx

δe = b. Since this multicut induces an according multicut in
each step, this yields the claim.

Now, let e = vw ∈ E \ F , δ ⊆ F be an S-multicut in H (and thus in G′) with
aTxδ = b, and δe = (δ∪(E\F))\{e}. Since H is induced and there is no {s, t} ∈ S

5.1. BASIC PROPERTIES 73

with s ∈ W and t adjacent to W , for each {s, t} ∈ S there is no s-t-path in

G− δe = (V \ (W ∪ {v, w}), ∅) ·∪ ((H − δ) ∪ ({v, w}, {e})) .

Thus, δe is an S-multicut in G. Furthermore, we have
∑︁

f∈F afx
δe
f = b.

Finally, we investigate edge- and path inequalities for the multicut dominant.
To this end, we recall the facet description for the s-t-cut dominant:

Proposition 5.1.11. [SW10, Section 2] Let G = (V,E) and s, t ∈ V . Then, the
s-t-cut dominant MultC(G, {{s, t}}) is completely defined by the inequalities

xe ≥

{︄
1, if e = st,
0, otherwise.

for all e ∈ E ,∑︂
e∈E(P)

xe ≥ 1, for all s-t-paths P.

In particular, each of these inequalities defines a facet of MultC(G, {{s, t}}).

Together with Theorem 5.1.7 (iv) this yields the following:

Corollary 5.1.12. Let G = (V,E), S be a set of terminal pairs and {s, t} ∈ S.
Then, the following hold:

(i) for each vw ∈ E the inequality

xvw ≥

{︄
1, if {v, w} ∈ S,

0, otherwise

is facet-defining for MultC(G,S).

(ii) For each s-t-path P ⊆ G such that there does not exist {s′, t′} ∈ S with
s′, t′ ∈ V (P) and {s, t} ≠ {s′, t′}, the inequality

∑︁
e∈E(P) xe ≥ 1 is facet-

defining for MultC(G,S)

Let aTx ≥ b be facet-defining for some MultC(G,S). In general, this inequal-
ity is not facet-defining for MultC(G,S ′) with S ′ ⊃ S.

Observation 5.1.13. Consider a path P = ([n], {{i, i + 1} : 1 ≤ i < n}),
S ′ = {(1, n)}, and S = {{1, n}, {i, j}} for some {i, j} ∈

(︁
[n]
2

)︁
\ {{1, n}}. Then∑︁

e∈E(P) ≥ 1 is facet-defining for MultC(P, S ′) but not for MultC(P, S). More-
over, this carries over to arbitrary G with P ⊆ G.

74 CHAPTER 5. ON THE MULTICUT DOMINANT

We close the discussion of path- and edge inequalities by investigating the
relation of the polyhedron defined by these inequalities and the multicut dominant:

Lemma 5.1.14. Let G = (V,G) be a graph and S ⊆
(︁
V
2

)︁
be a set of terminal

pairs. Let P be the polyhedron defined by the inequalities

xvw ≥

{︄
1, if {v, w} ∈ S,
0, else

for all vw ∈ E,∑︂
e∈E(P)

xe ≥ 1 for all s-t-paths P with {s, t} ∈ S.

Then, the integer points in P are precisely those in MultC(G,S), i.e., P ∩ Zn =
MultC(G,S) ∩ Zn.

Proof. Since each S-multicut in G is an s-t-cut in G for all {s, t} ∈ S, Proposi-
tion 5.1.11 yields MultC(G,S) ⊆ P . Now, let x ∈ P ∩ZE and define x′ ∈ {0, 1}E
by setting x′

e = 1 if xe ̸= 0 and x′
e = 0 otherwise. Since x ∈ P we have

x ∈ MultC(G, {s, t}) and thus, x′ ∈ MultC(G, {s, t}) for all {s, t} ∈ S. Hence,
x′ is incidence vector of some S-multicut in G, i.e. x′ ∈ MultC(G,S) and thus,
x ∈ MultC(G,S).

5.2 Constructing Facets from Facets

In [BM86] an extensive study on the effect of graph operations such as node split-
tings and edge subdivisions on the max-cut polytope and its facet-defining inequal-
ities has been conducted. Motivated by this, we investigate the same questions for
the multicut dominant. Note that in the results from [BM86] it is always men-
tioned that certain edges might be added to the newly obtained graph by attaching
coefficient 0 to them. Since for MultC(G,S) arbitrary edges can be added by at-
taching weight 0 (see Theorems 5.1.7 (iv) and 5.1.10), we do not mention this
explicitly in each result.

In Observation 5.1.6 we have already seen the effect of edge contractions on
the multicut dominant. Now, we investigate the inverse operation:

Theorem 5.2.1 (Node splitting). Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
, aTx ≥ b

be facet-defining for MultC(G,S), and v ∈ supp(a) be a node.
Obtain G = (V ,E) as follows: replace v by two adjacent nodes v1 and v2 and

distribute the edges incident to v arbitrarily among v1 and v2. Furthermore, obtain
S from S by replacing each pair {v, t} ∈ S independently by a (not necessarily
strict) subset of {{v1, t}, {v2, t}}.

5.2. CONSTRUCTING FACETS FROM FACETS 75

Define φ : E \ {v1v2} → E by

φ(e) =

{︄
e, if v1, v2 /∈ e,

vw, if e = viw (i = 1, 2).

Let ω be the value of a minimum S-multicut in G− v1v2 when considering aφ(e′),
e′ ∈ E \ {v1v2}, as edge weights. Define a ∈ RE by

ae =

{︄
b− ω, if e = v1v2,
aφ(e), otherwise.

Then, aTx ≥ b defines a facet of MultC(G,S).
In particular, if aTx ≥ b defines a shared facet of MultC(G,S), so does the

inequality aTx ≥ b for MultC(G,S).

Proof. If aTx ≥ b does not define a shared facet, utilizing Theorem 5.1.7 (iii) we
remove edges e ∈ E with coefficient ae = 0 from G and add them back after
splitting by applying Theorem 5.1.7 (iv). Since each facet-defining inequality is
shared if its support graph is all G, we may assume that aTx ≥ b defines a shared
facet. In this case we prove the “in particular” part.

First, we show b − ω ≥ 0. Note that there is a one-to-one correspondence
between S-multicuts in G not containing v1v2 and S-multicut in G. Thus, since
aTx ≥ b is facet-defining for MultC(G,S), there is some S-multicut δ in G with∑︁

e∈E\{v1v2} aφ(e)x
δ
e = b. Since δ is also an S-multicut in G−v1v2, this yields ω ≤ b.

Next, we prove validity. Let δ be an S-multicut in G. If v1v2 /∈ δ, φ(δ) is a
multicut in G; thus, aTxδ = aTxφ(δ) ≥ b. Otherwise, δ \ {v1v2} is an S-multicut in
G− v1v2. Hence,

aTxδ = (b− ω)xv1v2 +
∑︂
e∈E

e̸=v1v2

aexe ≥ (b− ω) + ω = b.

It remains to show that aTx ≥ b is indeed facet-defining. Since aTx ≥ b is facet-
defining for MultC(G,S) there are S-multicuts δ1, . . . , δm (m = |E|) in G such
that xδ1 , . . . , xδm are affinely independent and aTxδi = b for each 1 ≤ i ≤ m. Set
δi = φ−1(δi). Since φ is bijective, each δi is well-defined, an S-multicut in G, and
we have aTxδi = b. Moreover, for an S-multicut δ in G−v1v2 with

∑︁
e∈δ ae = ω let

δ = δ ∪ {v1v2}; we have aTxδ = b. Since xδ, xδ1 , . . . , xδm are affinely independent
aTx ≥ b defines a shared facet.

The previous theorem can be utilized to construct new classes of facet-defining
inequalities from known facets, as illustrated in the following example.

76 CHAPTER 5. ON THE MULTICUT DOMINANT

s t u

(a) G

s

s1

t u

(b) G1

s

s1 s2

t u

(c) G2

s

s1 s2

t

t1 t2

u

u2u1

(d) G

Figure 5.1: The graphs from Example 5.2.2 in black. Dashed blue connections
represent the terminal pairs.

Example 5.2.2. Consider the graph G shown in Figure 5.1(a) with terminal pairs
S = {{s, t}, {s, u}, {t, u}}. We will later see in Theorem 5.3.3 that

∑︁
e∈E(G) xe ≥ 2

is facet-defining for MultC(G,S).
Consider the graph G1 obtained from G by splitting s into s and s1 (cf. Fig-

ure 5.1(b)) and a new set of terminal pairs S1 = {{s1, t}, {s, u}, {t, u}}. Then
Theorem 5.2.1 yields that

∑︁
e∈E(G1)

xe ≥ 2 defines a facet of MultC(G1, S1).
Now, we obtain G2 from G1 by a splitting of s into s and s2 (cf. Figure 5.1(c))and
setting S2 = {{s1, t}, {s2, u}, {t, u}}; Theorem 5.2.1 yields that

∑︁
e∈E(G2)

xe ≥ 2

is facet-defining for MultC(G2, S2). Splitting t and u in the same fashion, we
obtain the graph G shown in Figure 5.1(d) with S = {{s1, t1}, {s2, u1}, {t2, u2}}.
By Theorem 5.2.1,

∑︁
e∈E(G) xe ≥ 2 is facet-defining for MultC(G,S). ◀

Theorem 5.2.3 (Edge subdivision). Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
, aTx ≥ b

be facet-defining for MultC(G,S), and f ∈ E. Obtain G = (V ,E) from G by
subdividing f into f1, f2. Then,

af (xf1 + xf2) +
∑︂

e∈E\{f}

aexe ≥ b (5.1)

is facet-defining for MultC(G,S).

5.2. CONSTRUCTING FACETS FROM FACETS 77

In particular, if aTx ≥ b defines a shared facet of MultC(G,S), so does (5.1)
for MultC(G,S).

Proof. Validity of the inequality is straight-forward to verify. Let m = |E|. As in
the proof of Theorem 5.2.1 we may assume that aTx ≥ b defines a shared facet
and prove the “in particular” statement for this case.

Since aTx ≥ b defines a shared facet of MultC(G,S), there exist multicuts
δ1, . . . , δm in G such that xδ1 , . . . , xδm are affinely independent and aTxδi = b for
all i ∈ [m]. Now set for each i ∈ [m]

δi =

{︄
δi, if f /∈ δi,

(δi \ {f}) ∪ {f1}, otherwise.

By Lemma 5.1.2 we may without loss of generality assume f ∈ δ1 and set δ =
(δ1 \ {f}) ∪ {f2}. Then, δ, δ1, . . . , δm are multicuts in G. Since xδ1 , . . . , xδm are
affinely independent and xδ

f2
= 1 whereas xδ1

f1
= · · · = xδm

f2
= 0, the vectors

xδ, xδ1 , . . . , xδm are affinely independent. Moreover, they all satisfy (5.1) with
equality. Hence, inequality (5.1) defines a shared facet of MultC(G,S).

Iteratively applying Theorem 5.2.3 we obtain the following corollary:

Corollary 5.2.4 (Replacing an edge by a path). Let G = (V,E) be a graph,
S ⊆

(︁
V
2

)︁
, aTx ≥ b be facet-defining for MultC(G,S), and f ∈ E. Obtain G =

(V ,E) by replacing f by a path P . Then,

af
∑︂

e∈E(P)

xe +
∑︂

e∈E\E(P)

aexe ≥ b (5.2)

is facet-defining for MultC(G,S).
In particular, if aTx ≥ b defines a shared facet of MultC(G,S), so does (5.2)

for MultC(G,S).

If we replace an edge uv ∈ E(G) in a graph G by any connected graph H,
Theorem 5.1.7 (iv) yields a facet for each facet-defining inequality of MultC(G,S)
and any uv-path in H. Next, we want to study the inverse operation, i.e., the
replacement of certain subgraphs by an edge.

Theorem 5.2.5 (Replacing a connected graph by an edge). Let G = (V,E) be a
graph and S ⊆

(︁
V
2

)︁
. Let H ⊆ G be a connected subgraph of G such that H shares

precisely two vertices s, t with the rest of G, i.e., no edge in E(G)\E(H) is incident
to any node in V (H) \ {s, t}. Assume there is no terminal in V (H) \ {s, t}. Let
aTx ≥ b be facet-defining for MultC(G,S) and let ω be the weight of a minimum

78 CHAPTER 5. ON THE MULTICUT DOMINANT

s-t-cut δst in H with respect to edge weights given by a. Obtain G = (V ,E) from
G by replacing H by the edge st and define a ∈ RE by

ae =

{︄
ae, if e ̸= st,

ω, if e = st.

Then, aTx ≥ b is facet-defining for MultC(G,S).

Proof. By Theorem 5.1.7 (iii) and (iv), we may remove all edges in G with coef-
ficient 0, and add such edges in E(G) \ E(H) back after the replacement of H.
Hence, we may assume that G = supp(a) and ω ̸= 0. We start by proving validity
of the claimed inequality. Let δ be a multicut in G. If st /∈ δ, then δ is also a
multicut in G and thus aTxδ = aTxδ ≥ b. If st ∈ δ, the set (δ \ {st}) ∪ δst is an
S-multicut in G and we have aTxδ = aTx(δ\{st}) ≥ b.

Now, let π : RE → RE be the projection given by

π(x)e =

{︄
xe, if e ̸= st,
1
ω

∑︁
e∈E(H) xe, if e = st.

Clearly, we have aTπ(xδ) = b for each S-multicut δ in G with aTxδ = b. Thus,

dim({aTx = b} ∩ MultC(G,S))

≥ dim({aTx = b} ∩ MultC(G,S))− (|E(H)| − 1) = |E|.

Moreover, since aTx ≥ b is facet-defining we have a ̸= 0 and thus, a ̸= 0. Hence,
aTx ≥ b is facet-defining for MultC(G,S).

Corollary 5.2.4 and Theorem 5.2.5 naturally give rise to the following conjec-
ture:

Conjecture 5.2.6. Let G = (V,E) be a graph, S ⊆
(︁
V
2

)︁
, and G be obtained from

G by replacing an edge by a connected graph. Then, any facet-defining inequal-
ity of MultC(G,S) is either an edge inequality, or obtained from facet-defining
inequalities of MultC(G,S) by applying Corollary 5.2.4.

5.3 Star Inequalities

In this section we investigate the multicut dominant of K1,n with respect to spe-
cific sets of terminal pairs. For K1,3 with leaves W and S =

(︁
W
2

)︁
, it is known

that edge- and path inequalities do not suffice to give a complete description of
MultC(K1,3, S) [GVY06, Section 1]. Since S can be viewed as a triangle on the
leaves, there are two natural generalizations of this instance to K1,n: The terminal

5.3. STAR INEQUALITIES 79

r

v1 v2 vn

e1 e2 en

(a)

r

v1 v2 vn

e1 e2 en

(b)

Figure 5.2: The graphs from Theorems 5.3.1 and 5.3.3 in black. Dashed blue
connections represent the terminal pairs.

pairs may form a cycle on the leaves or the terminal pairs may form a complete
graph on the leaves. We discuss facets based on both generalizations.

Through this section we consider a star K1,n=({r, v0, . . . , vn−1}, {0, . . . , n− 1})
with i = rvi for 0 ≤ i < n.

Theorem 5.3.1. Let n ≥ 3 be odd, consider K1,n, and let S = {{vi, v(i+1) mod n} :

0 ≤ i < n} (cf. Figure 5.2(a)). Then, the circular n-star inequality
∑︁n−1

i=0 xi ≥ ⌈n
2
⌉

defines a shared facet of MultC(K1,n, S).

Proof. It is straight-forward to verify validity of the inequality. We now prove that
it is indeed facet-defining. For 0 ≤ k < n set δnk = {(k + 2i) mod n : 0 ≤ i ≤ ⌊n

2
⌋}.

Then, the δnk are pairwise distinct multicuts in K1,n as each such set contains
precisely two consecutive (but different) edges of K1,n. Clearly, it holds

∑︁n−1
j=1 x

δnk
j =

⌈n
2
⌉. We show by induction that xδn0 , . . . , xδnn−1 are affinely independent. Clearly,

this is true for n = 3.

For 2 ≤ i < n we have π(xδnk) = xδn−2
k−2 where π : Rn → Rn−2 is the orthogonal

projection (x0, . . . , xn−1) ↦→ (x2, . . . , xn−1). Thus, by induction we know that
xδn2 , . . . , xδnn−1 are affinely independent. Let λ0, . . . , λn−1 ∈ R≥0 with

∑︁n−1
k=0 λk = 0

and 0 =
∑︁n−1

k=0 λkx
δnk . Comparing the coefficients of the first three entries of this

80 CHAPTER 5. ON THE MULTICUT DOMINANT

affine combination, we obtain

λ0+

⌊n/2⌋∑︂
k=1

λ2k−1 = 0

λ1+

⌊n/2⌋∑︂
k=1

λ2k = 0

λ0 + λ2+

⌊n/2⌋∑︂
k=2

λ2k−1 = 0

Subtracting the first from the third inequality we obtain λ2−λ1 = 0 and summing
the first and second inequality we obtain 0 = λ1+

∑︁n−1
i=0 λi = λ1. Thus, λ1 = λ2 =0.

Since xδn3 , . . . , xδnn are affinely independent, we conclude λ1 = · · · = λn = 0.
The defined facet is shared since the inequality is minimally supported on K1,n.

Note that considering even n in the scenario of the previous theorem, the cor-
responding inequality

∑︁
e∈E(K1,n)

xe ≥ n
2

would be dominated by path inequalities
and thus not be facet-defining. However, the inequalities from the previous the-
orem together with edge- and path inequalities suffice to completely describe the
multicut dominant for arbitrary n.

Corollary 5.3.2. Let n ≥ 3, consider K1,n, and let S = {{vi, v(i+1) mod n} : 0 ≤
i < n}. Then, the MultC(K1,n, S) is completely described by the inequalities

xe ≥ 0 for all e ∈ E,

xi + x(i+1) mod n ≥ 1 for 0 ≤ i < n,∑︂
e∈E

xe ≥
⌈︂n
2

⌉︂
,

where the last inequality can be omitted if and only if n is odd.

Proof. A matrix A is totally unimodular if each square submatrix has determinant
−1, 0, or 1. It is well-known that if A is totally unimodular, and b ∈ Zm, all
vertices of the polyhedron {x ∈ Rd : Ax ≥ b} are integral.

Let P = {Ax ≥ b} be the polyhedron defined by the claimed inequalities. In
the following we prove that each vertex of P is integral yielding P = MultC(G,S).

First assume n is even. We show that A is totally unimodular by using a
characterization due to [HT16, Appendix]: Let A be an (m× n)-matrix such that
every entry of A equals −1, 0, or 1. The,n A is totally unimodular if the columns
of A can be partitioned into two disjoint sets B and C such that

5.3. STAR INEQUALITIES 81

• every row of A contains at most two non-zero entries;

• if two non-zero entries in the same row have the same sign, the column of
one is in B and the other in C; and

• if two non-zero entries in the same row have opposite signs, either both
columns are in B or both columns are in C.

By partitioning the columns of A based on the parity of their index, the previous
characterization yields that A is totally unimodular. Thus, all vertices of P are
integral.

Now, assume n is odd. Let v ∈ P be a vertex. We call the above path
inequalities 2-path inequalities due to the length of their support. Note that the
only point in RE satisfying all 2-path inequalities with equality is (1

2
, . . . , 1

2
), which

is not contained in P . Thus, there is a 2-path inequality that is not satisfied
by v with equality. By symmetry we may assume that this 2-path inequality is
xn + x1 ≥ 1. Let A′ and b′ be obtained from A and b, respectively, by deleting
the row corresponding to this inequality. Then, v is a vertex of the polyhedron
{A′x ≥ b′}. We prove v ∈ ZE(K1,n) by showing that A′ is totally unimodular. To
this end, we use a characterization from [FG65, Section 8]: Let A be an (m× n)-
matrix such that every entry of A equals 0 or 1. Then, A is totally unimodular if
its columns can be permuted such that for every row the 1s appear consecutively.

A′ is (up to permutation of rows) of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0

0 1 1
.

... 0
0 · · · 0 1 1
1 0 · · · · · · 0

0 1
.

...

... 0
0 · · · · · · 0 1
1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and thus, totally unimodular.

We now turn our attention to the second mentioned class of instances. cf. Fig-
ure 5.2(b).

Theorem 5.3.3. Let n ∈ N, consider K1,n and let S = {{vi, vj} : 0 ≤ i < j < n}.
Then, the complete n-star inequality

∑︁
e∈E(K1,n)

xe ≥ n− 1 defines a shared facet
of MultC(K1,n, S).

82 CHAPTER 5. ON THE MULTICUT DOMINANT

Proof. It is straight-forward to verify that the inequality is valid for MultC(G,S).
Moreover, the vertices of MultC(K1,n, S) are xE\{i} for all 0 ≤ i < n. These
are affinely independent. Since all of these vectors satisfy

∑︁n−1
i=0 xi = n − 1, the

inequality is facet-defining.
The defined facet is shared since the inequality is minimally supported on

K1,n.

Together with Theorem 5.1.7 (iv) this theorem gives a facet-defining inequal-
ity for MultC(K1,n, S) with S = {{s, t} : s, t are leafs} corresponding to each
K1,k ⊆ K1,n with the induced sets of terminals. Thus, the previous theorem gives
a large number of facet-defining inequalities for MultC(K1,n, S). Motivated by
this we generalize these inequalities further in Chapter 5.4 by considering more
general trees instead of stars.

By [GVY06] the minimum multicut problem is NP-hard on trees (in fact al-
ready on stars). Motivated by this, we present a polynomial-time separation algo-
rithm for generalizations of circular- and complete n-star inequalities for the mul-
ticut dominants when the input graph is restricted to a tree. We call the inequal-
ities obtained from these facet-defining inequalities by applying Corollary 5.2.4
subdivided circular n-star inequalities and subdivided complete n-star inequalities,
respectively. By Theorem 5.1.7 (iv) they yield facet-defining inequalities for each
graph containing the according subdivision of K1,n with respective sets of terminal
pairs.

Corollary 5.3.4. Let k ∈ N be fixed. Given an input graph G that is a tree
and a set S ⊆

(︁
V (G)
2

)︁
of terminals, we can enumerate all facet-defining subdivided

circular k-stars and subdivided complete k-stars inequalities for MultC(G,S) in
polynomial time.
In particular, these inequalities can thus be separated in polynomial time.

Proof. We prove that all facet-defining subdivided complete k-star inequalities
can be enumerated in polynomial time. This can then be shown analogously
for subdivided circular k-star inequalities. Checking each enumerated inequality
individually yields a simple separation routine.

Let G = (V,E) be a tree with |V | = n. There are n ·
(︁
n−1
k

)︁
∈ O(nk+1) choices

for a root r ∈ V and nodes v1, . . . , vk ∈ V \ {r}. We check in linear time (in
|V |+ |S|) whether these nodes form the root and leaves of a K1,k subdivision in G
by searching for the unique r-vi-paths in G while checking whether these paths are
disjoint and no terminal pair containing a node different from v1, . . . , vk is induced.
Then, we can verify whether the leaves induce the necessary terminal pairs in S.
Hence, we obtain an overall runtime of O((|V |+ |S|)k+2)

Although enumerating all such inequalities might not be very practical, this
result should be considered as a proof of concept. We are convinced that there are

5.4. TREE INEQUALITIES 83

ρ

v1 v2 vn

e1 e2 en

s1,2 s1,3 s1,n

e1,2 e1,3 e1,n

t1,2 s2,3 s2,n

f1,2 e2,3 e2,n

t1,n t2,n tn−1,n

f1,n f2,n f3,n

Ln
1

Ln
2

Figure 5.3: The tree Tn. Edges in Ln
1 are green, edges in Ln

2 are red. Dashed blue
connections visualize Sn

more efficient separation routines for these inequalities using more sophisticated
algorithmic approaches. However, this discussion would be out of scope for this
work.

5.4 Tree Inequalities

As we saw in Example 5.2.2, the star inequalities can be generalized to facet-
defining inequalities on trees by applying node splits. In the following, we further
investigate these inequalities.

Throughout this section we consider the graph Tn, as showcased in Figure 5.3:
Tn is a rooted tree on n2 + 1 nodes: The root r has n children v1, . . . , vn and
there are leaves si,j, ti,j (1 ≤ i < j ≤ n) such that si,j is a child of vi and ti,j
is a child of vj. For i, j ∈ [n], we set ei = rvi, ei,j = visij, and fi,j = vjtij.
Moreover, we let Ln

1 = {e1, . . . , en} and Ln
2 = {ei,j, fi,j : 1 ≤ i < j ≤ n}. Finally,

let Sn = {{si,j, ti,j} : 1 ≤ i < j ≤ n}. Observe that |Ln
1 | = n and |Ln

2 | = 2
(︁
n
2

)︁
; G

thus has precisely n2 edges. The main goal of this section is to prove the following
theorem:

Theorem 5.4.1. For all n > k ≥ 2, the (n, k)-tree inequalities

(n− k)
∑︂
e∈Ln

1

xe +
∑︂
e∈Ln

2

xe ≥ k(n− k) +

(︃
n− k

2

)︃
(5.3)

define shared facets of MultC(Tn, Sn).

To prove this theorem we first prove two auxiliary lemmata.

84 CHAPTER 5. ON THE MULTICUT DOMINANT

Lemma 5.4.2. For n > k ≥ 2, inequality (5.3) is valid for MultC(Tn, Sn). In
particular, the solutions for which (5.3) is tight are precisely the minimal multi-
cuts δ in G with |δ ∩ Ln

1 | ∈ {k − 1, k}.

Proof. Let δ be a minimal multicut with |δ∩Ln
1 | = ℓ. Since there are

(︁
n−ℓ
2

)︁
terminal

pairs not separated by δ ∩ Ln
1 and the removal of an edge in Ln

2 separates at most
one of those pairs we have |δ ∩ Ln

2 | =
(︁
n−ℓ
2

)︁
. Thus,

(n− k)
∑︂
e∈Ln

1

xδ
e +

∑︂
e∈Ln

2

xδ
e −

(︃
k(n− k) +

(︃
n− k

2

)︃)︃

= ℓ(n− k) +

(︃
n− ℓ

2

)︃
− k(n− k)−

(︃
n− k

2

)︃
=

1

2
(k − ℓ− 1)(k − ℓ) ≥ 0.

Where the last inequality holds since k, ℓ ∈ N. The in particular part follows since
the above inequality is satisfied with equality if and only if ℓ ∈ {k − 1, k}.

The following lemma considers the case k = 2 of (5.3).

Lemma 5.4.3. For n ≥ 3 and k = 2, inequality (5.3) is facet-defining for
MultC(Tn, Sn).

Proof. For the reader’s ease, we rewrite the inequality under consideration as

(n− 2)
∑︂
e∈Ln

1

xe +
∑︂
e∈Ln

2

xe ≥ 2(n− 2) +

(︃
n− 2

2

)︃
(5.4)

Validity of (5.4) is shown in Lemma 5.4.2. It remains to verify that the inequality
is indeed facet-defining. To this end, we show by induction over n that there are
n2 Sn-multicuts with affinely independent incidence-vectors satisfying (5.4) with
equality. For n = 3, this follows from Example 5.2.2.

Now, let n ≥ 4. By induction there exist Sn−1-multicuts δ′1, . . . , δ′(n−1)2 in Tn−1

such that {xδ′i : 1 ≤ i ≤ (n − 1)2} is an affine independent set and all xδ′i satisfy
the equality ((n− 1)− 2)

∑︁
e∈Ln−1

1
x
δ′i
e +

∑︁
e∈Ln−1

2
x
δ′i
e = 2((n− 1)− 2) +

(︁
(n−1)−2

2

)︁
.

Let δi = δ′i ∪ {ej,n : j ∈ [n], ej /∈ δ′i} for 1 ≤ i ≤ (n− 1)2. Since xδ′1 , . . . , x
δ′
(n−1)2

are affinely independent and |E(Tn−1)| = (n−1)2, for each ℓ ∈ [n−1] there is some
iℓ ∈ [(n− 1)2] with eℓ /∈ δ′iℓ . Setting ˆ︁δℓ = δ′iℓ ∪{ej,n : j ∈ [n] \ {ℓ}, ej /∈ δ′iℓ}∪{fℓ,n}
for 1 ≤ ℓ < n the set

A =
{︂
xδi : 1 ≤ i ≤ (n− 1)2

}︂
∪
{︂
x
ˆ︁δℓ : 1 ≤ ℓ < n

}︂

5.4. TREE INEQUALITIES 85

is affinely independent and each x ∈ A, attains equality in (5.4). Now, for i ∈ [n−1]
let γi = {ei, en} ∪ {ea,b : a, b ̸= i, 1 ≤ a < b < n} and let γn = {en} ∪ {ea,b : 1 ≤
a < b < n}. Then, xγi attains equality in (5.4). We prove that A ∪ {xγ1 , . . . , xγn}
is affinely independent. Since |A ∪ {xγ1 , . . . , xγn}| = n2 this yields the claim.
Note that A ⊆ {xn = 0} and xγ1 /∈ {xn = 0}. Thus, A ∪ {xγ1} is affinely
independent. Now, assume that A ∪ {xγ1 , . . . , xγk} is affinely independent. Let
H =

{︂∑︁k
i=1 xi + (k − 1)xn +

∑︁k
i=1(xei,n + xfi,n) = k

}︂
. By construction, we have

A ∪ {xγ1 , . . . , xγk} ⊆ H and xγk+1 /∈ H.

Thus, A ∪ {xγ1 , . . . , xγk+1} is affinely independent and the claim follows by induc-
tion.

Given the previous two lemmata, we can now prove the main theorem of this
section. As a tool we use the following simple observation from linear algebra:

Observation 5.4.4. Let n > k ≥ 1 and let 1i ∈ Rn be the i-th unit-vector.
Then, there exist M1, . . . ,Mn ∈

(︁
[n]
k

)︁
such that

∑︁
i∈M1

1i, . . . ,
∑︁

i∈Mn
1i are linearly

independent.

Proof of Theorem 5.4.1. Validity of (5.3) is proven in Lemma 5.4.2. We know from
Lemma 5.4.3 that the claim holds for any pair (n, 2) with n ≥ 3. Using this as the
basis for our induction, it suffices to show that the claim for the pair (n+1, k+1)
follows from the truth of the statement for (n, k). Thus, for the induction step
assume that

(n− k)
∑︂
e∈Ln

1

xe +
∑︂
e∈Ln

2

xe ≥ k(n− k)

(︃
n− k

2

)︃
(5.5)

is facet-defining for MultC(Tn, Sn). We show that

((n+1)− (k+1))
∑︂

e∈Ln+1
1

xe +
∑︂

e∈Ln+1
2

xe ≥ (k+1)((n+1)− (k+1))

(︃
(n+ 1)− (k + 1)

2

)︃
(5.6)

is facet-defining for MultC(Tn+1, Sn+1).
Let n+1 ≥ 4 and k+1 ≥ 3. To prove the induction step, we construct (n+1)2

Sn+1-multicuts with affinely independent incidence vectors each choosing k or k+1
edges in Ln+1

1 . By Lemma 5.4.2 these incidence vectors satisfy (5.6).
Since by induction hypothesis (5.5) is facet-defining for MultC(Tn, Sn), there

exist Sn-multicuts δ′1, . . . , δ
′
n2 in Tn such that xδ′1 , . . . , xδ′

n2 are affinely indepen-
dent and attain equality. Thus, setting δi = δ′i ∪ {en+1} for 1 ≤ i ≤ n, the set
Xδ = {xδ1 , . . . , xδn} is affinely independent and satisfy (5.6) with equality.

86 CHAPTER 5. ON THE MULTICUT DOMINANT

By Observation 5.4.4 there exist A1, . . . , An ∈
(︁

[n]
n−k−1

)︁
such that the vectors∑︁

i∈A1
1i, . . . ,

∑︁
i∈An

1i are linearly independent. Thus, setting

γi = {ej : j ∈ [n] \ Ai} ∪ {ei,j : 1 ≤ j < k ≤ n, j, k ∈ Ai} ∪ {ej,n+1 : j ∈ Ai} and
γ′
i = {ej : j ∈ [n] \ Aj} ∪ {ei,j : 1 ≤ j < k ≤ n, j, k ∈ Ai} ∪ {fj,n+1 : j ∈ Ai}

for 1 ≤ i ≤ n the set Xγ = {xγ1 , . . . , xγn , xγ′
1 , . . . , xγ′

n} is linearly independent.
Since xδi

ej,n+1
= xδi

fj,n+1
= 0 for each 1 ≤ i ≤ n2 and 1 ≤ j ≤ n, the set Xδ ∪Xγ is

affinely independent.
Finally, we set δ = {ei : 1 ≤ i ≤ k} ∪ {ei,j : k + 1 ≤ i < j ≤ n + 1} and

H = {(n− k − 1)xen+1 +
∑︁

i∈[n] xei,n+1
+ xfi,n+1

= n− k − 1}. Since Xδ ∪Xγ ⊆ H
and xδ /∈ H, the set Xδ ∪Xγ ∪ {xδ} is affinely independent.

Since the inequality is supported on Tn, the facet is shared.

Motivated by the NP-hardness of MinMultiCut when the input graph is
restricted to a tree, we present a polynomial-time separation algorithm for gener-
alizations of (n, k)-tree inequalities for the multicut dominant in this case. We call
the inequalities obtained from these facet-defining inequalities by applying Corol-
lary 5.2.4 subdivided (n, k)-tree inequalities. By Theorem 5.1.7 (iv) these yield
facet-defining inequalities for each graph containing the according subdivision of
Tn with respective sets of terminal pairs. As before, we consider our separation
algorithm as a proof of concept and are convinced that there are more efficient
separation routines utilizing more sophisticated algorithmic approaches whose dis-
cussion would be out of scope for this work.

Corollary 5.4.5. Let ℓ ∈ N be fixed. Given an input graph G that is a tree and
a set S ⊆

(︁
V (G)
2

)︁
of terminal pairs, we can enumerate all facet-defining subdivided

(ℓ, k)-tree inequalities for MultC(G,S) in polynomial time.
In particular, these inequalities can thus be separated in polynomial time.

Proof. We prove that facet-defining subdivided (ℓ, k)-tree inequalities can be enu-
merated in polynomial time. Checking each enumerated inequality individually
yields a simple separation routine.

Let G = (V,E) be a tree with |V | = n. There are n ·
(︁
n−1
ℓ

)︁
·
(︁n−1−ℓ

2·(ℓ2)

)︁
∈

O(n2ℓ2+ℓ+1) choices for a root r ∈ V , nodes v1, . . . , vℓ ∈ V \ {r}, and nodes
si,j, ti,j ∈ V \ {r, v1, . . . , vℓ}, 1 ≤ i < j ≤ ℓ. We check in linear time (in |V | + |S|)
whether these nodes form the respective nodes of a Tn subdivision in G by searching
for the unique r-vi-, vi-si,j-, and vi-ti,j-paths (1 ≤ i < j ≤ ℓ) in G while checking
whether all these paths are disjoint and no terminal pair containing nodes which
are not in {si,j, ti,j : 1 ≤ i < j ≤ ℓ} is induced. If they do, we can verify whether
the leaves induce the necessary terminal pairs in S. Since ℓ is fixed, the number
of inequalities corresponding to this tree is constant. Hence, we obtain an overall
runtime of O((|V |+ |S|)2ℓ2+ℓ+2).

5.5. CYCLE INEQUALITIES 87

5.5 Cycle Inequalities

After the investigation of facets of the multicut dominant supported on stars and
trees, naturally the question arises whether there are also facet-defining inequali-
ties with 2-connected support. We provide a positive answer to this question by
introducing two classes of facet-defining inequalities supported on cycles. Through-
out this section we consider the cycle Cn = ({v0, . . . , vn−1}, {0, . . . , n − 1}) with
i = viv(i+1) mod n for 0 ≤ i < n.

First, we consider cycles with each non-edge being a terminal pair:

Theorem 5.5.1. Let n ≥ 5 be odd, consider Cn and the set of terminal pairs
S = {{v, w} : vw /∈ E(Cn)}. Then, the inequality∑︂

e∈E(Cn)

xe ≥
⌈︂n
2

⌉︂
defines a shared facet of MultC(Cn, S).

Proof. To prove validity of the inequality let δ be a multicut in Cn. Then, δ
intersects each 2-path of Cn. Since there are n 2-path and each edge is contained
in two such paths, we obtain 2 · |δ| ≥ n and thus, |δ| ≥

⌈︁
n
2

⌉︁
.

To show that the inequality is indeed facet-defining, consider the multicuts
δi = {(i+2k) mod n : 1 ≤ k < n

2
} for 1 ≤ i ≤ n. Clearly, we have

∑︁
e∈δi xe =

⌈︁
n
2

⌉︁
.

The affine independence of these incidence vectors was shown in the proof of
Theorem 5.3.1.

Since the inequality is minimally supported on Cn, the facet is shared.

Corollary 5.5.2. Let n ≥ 5, consider Cn and the set of terminal pairs S =
{{v, w} : vw /∈ E(Cn)}. Then, MultC(Cn, S) is completely described by the in-
equalities

xe ≥ 0 for all e ∈ E(Cn),

xuv + xvw ≥ 1 for all uv, vw ∈ E(Cn),∑︂
e∈E(Cn)

xe ≥
⌈︂n
2

⌉︂
,

where the last inequality can be omitted if and only if n is odd.

Proof. We can reuse the proof of Corollary 5.3.2 since the polyhedra coincide
despite arising from different instances.

Finally, we consider another, less dense set of terminal pairs over a cycle.
There, the graph and terminals form a Moebius ladder instead of a complete
graph, cf. Figure 5.4.

88 CHAPTER 5. ON THE MULTICUT DOMINANT

Theorem 5.5.3. Let n ≥ 5 be odd, consider C2n and the set of terminal pairs
S = {{vi, vi+n} : 1 ≤ i ≤ n}. Then, for β ∈ {1, 2} and β′ = 3− β, the inequalities

n−1∑︂
i=0

(βx2i−1 + β′x2i) ≥ 3

define shared facets of MultC(C2n, S).

Proof. We prove that the inequality
∑︁n

i=1(x2i−1 + 2x2i) ≥ 3 defines a shared facet
of MultC(C2n, S). Then, the claim follows for β = 2 by symmetry.

Validity follows from the fact that the only feasible multicuts with less than
three edges are δ = {i, i+ n} for 0 ≤ i < n.

It remains to prove that the inequality is indeed facet-defining. To this end
consider the multicuts

δi = {i, i+ n} for 0 ≤ 1 < n,

γi =
{︂
(2(i+ ℓ)) mod n : ℓ ∈

{︂
0, 1,

⌈︂n
2

⌉︂}︂}︂
for 0 ≤ 1 < n.

Clearly, the incidence vectors of each such multicuts satisfies the inequality under
consideration with equality. Hence, it remains to prove that these multicuts are
affinely independent. This is trivial for xδ1 , . . . , xδn . Moreover, since xγi

j = 0 for
each i and each odd j it suffices to prove that xγ1 , . . . , xγn are affinely independent.
To this end we consider the matrix A = (ai,j)0≤i,j≤n with entries ai,j = x

γj
2i and

show that A has full rank.
Assume A has rank less than n. Since A is a circulant matrix, [Fer57, Theo-

rem 9] together with detA = detAT yields

0 = detA =
n−1∏︂
j=0

(︂
1 + ζ(n−2)j + ζ

n−1
2

j
)︂

where ζ = exp(2iπ
n
). Then, we have 1 + ζ(n−2)j + ζ

n−1
2

j = 0 for some 0 ≤ j ≤ n.
Now, we have {ζ(n−2)j, ζ

n−1
2

j} = {exp(2iπ
3
), exp(4iπ

3
)}. Hence, we have ζ(n−2)j =

(ζ
n−1
2

j)2 = ζ(n−1)j and thus, j mod n = 0 contradicting 1 + ζ(n−2)j + ζ
n−1
2

j = 0.
Since the inequality minimally is supported on C2n, the defined facet is shared.

Theorem 5.5.3 does not have a natural variant for even n. However, we can
generalize its inequalities by node splittings in the following way:

5.5. CYCLE INEQUALITIES 89

ℓ =
⌈︁
n
2

⌉︁

ℓ = 1 ℓ = 0

Figure 5.4: The graph from Theorem 5.5.3 for n = 5. Dashed blue connections
visualize the set S, black edges are those with coefficient 1, and thick, red edges
are those with coefficient 2. We label the edges of a potential γi-cut

Theorem 5.5.4. Let n ≥ 5 be odd, N ≥ n, and 0 < ℓ1 < . . . ℓn−1 < ℓn = N .
Consider the cycle C2N and S2N = {{vi, vi+N} : 1 ≤ i ≤ N}. Then, for β ∈ {1, 2}
and β′ = 3− β,

ℓ1−1∑︂
i=0

(βxi + β′xi+N) +

ℓ2−1∑︂
i=ℓ1

(β′xi + βxi+N) + · · ·+
ℓn−1∑︂

i=ℓn−1

(βxi + β′xi+N) ≥ 3

define shared facets of MultC(C2N , S2N).

Proof. We prove by induction on N−n that the inequality is indeed facet-defining
for β = 1. Since the inequality is minimally supported on C2n, the defined facet is
then shared. The claim follows symmetrically for β = 2.

For N = n, the claim is given by Theorem 5.5.3. Now, let N > n. By induction
and symmetry we may assume that

ℓ1−1∑︂
i=0

(xi + 2xi+N) +

ℓ2−1∑︂
i=ℓ1

(2xi + xi+N) + · · ·+
ℓn−1∑︂

i=ℓn−1

(xi + 2xi+N) ≥ 3

is facet-defining for MultC(C2(N−1), S2(N−1)). We now construct the claimed facet-
defining inequality by using two node splits utilizing Theorem 5.2.1, cf. Figure 5.5.
First we obtain the graph G from C2(N−1) by splitting vN−1 into vN−1 and v′N−1

such that vN−1 is adjacent to vN and v′N−1 is adjacent to vN−2, and set S = S2(N−1)\
{{v0, vN−1}} ∪ {{v0vN−1}, {v0, v′N−1}}. A minimum S-multicut in G − vN−1v

′
N−1

with respect to the coefficient from the inequality under consideration has value
2 and is witnessed by {0, ℓ1 + N} as the former edge separates all terminal pairs

90 CHAPTER 5. ON THE MULTICUT DOMINANT

v1

v0
v2(N−1)−1

vN

vN−1

vN−2

(a) C2(N−1)

v1

v0

v2N−3

vN

vN−1 v′N−1

vN−2

0

(b) G

v1

v0v′0
v2N−3

vN

vN−1 v′N−1

vN−2

(c) C2N

Figure 5.5: Visualization of the node splitting in the proof of Theorem 5.5.4.
Dashed blue connections indicate terminal pairs. Edges obtained by node splitting
are colored red.

but {v0, vN−1}, which is separated by the latter edge. Hence, Theorem 5.2.1 yields
that

1 ·xvN−1v
′
N−1

+

ℓ1−1∑︂
i=0

(xi+2xi+N)+

ℓ2−1∑︂
i=ℓ1

(2xi+xi+N)+ · · ·+
ℓn−1∑︂

i=ℓn−1

(xi+2xi+N) ≥ 3 (5.7)

is facet-defining for MultC(G,S).
Now, we obtain C2N from G by splitting v0 into v0 and v′0 such that v0 is

adjacent to v1 and v′0 is adjacent to v2N−3. Within this split we obtain S2N =
S2(N−1) \{{v0, vN−1}}∪{{v0vN−1}, {v′0, v′N−1}}. Since a minimum S2N -multicut in
C2N − v0v

′
0 with respect to the coefficient from (5.7) is given by {vN−1v

′
N−1} and

has value 1, Theorem 5.2.1 yields that

2xv0v′0
+xvN−1v

′
N−1

+

ℓ1−1∑︂
i=0

(xi+2xi+N)+

ℓ2−1∑︂
i=ℓ1

(2xi+xi+N)+ · · ·+
ℓn−1∑︂

i=ℓn−1

(xi+2xi+N) ≥ 3

is facet-defining for MultC(C2N , S2N). After renaming, this is the claimed facet-
defining inequality.

Given the inequalities from Theorems 5.5.3 and 5.5.4, the question arises nat-
urally whether these, together with edge- and path inequalities, suffice to describe
the multicut dominant of C2n. We were able to verify this computationally using
normaliz [BIR+] for n ≤ 7 and end with the following conjecture:

Conjecture 5.5.5. Let n ≥ 3, consider C2n, and S = {{vi, vi+n} : 1 ≤ i ≤ n}.
Then, MultC(C2n, S) is completely defined by the edge inequalities, the path in-
equalities, and the inequalities from Theorems 5.5.3 and 5.5.4.

5.6. OPEN PROBLEMS 91

5.6 Open Problems

We introduced the multicut dominant and investigated its basic properties. More-
over, we studied the effect of graph operations on the multicut dominant and
its facets. We presented facet-defining inequalities supported on stars, trees, and
cycles.

Apart from Conjectures 5.2.6 and 5.5.5, there are open research questions re-
garding constraint separation algorithms that we have not tackled in this chapter:
Are there more efficient separation routines for subdivided star- and tree-equalities
on trees than those given in Corollaries 5.3.4 and 5.4.5? Can one give a polynomial
separation method for some class of the presented facet-defining inequalities of the
multicut dominant of arbitrary graphs?

It is known that MinMultiCut is solvable in polynomial time when restricted
to |S| ≤ 2. For |S| = 1, this is mirrored on the polyhedral side by the complete
description of the s-t-cut dominant. All our new facet-defining inequalities require
instances with at least 3 terminal pairs. This gives rise to the following conjecture:

Conjecture 5.6.1. Let G = (V,E) and S be a set of terminal pairs with |S| = 2.
Then, MultC(G,S) is completely described by the following inequalities:

xe ≥ 0, for all e ∈ E,∑︂
e∈(P)

xe ≥ 1, for each s-t-path P with {s, t} ∈ S.

92 CHAPTER 5. ON THE MULTICUT DOMINANT

Chapter 6

Conclusion

In this thesis we investigated different cut problems—namely the maximum cut
problem, the maximum bond problem, and the minimum multicut problem—as
well as their associated polyhedra. The chapters roughly fall into two categories:
While the introduction of a fixed parameter tractable algorithm for maximum
cut parameterized by the crossing number in Chapter 3 was purely algorithmic,
Chapter 2, 4, and 5 mainly focused on polyhedra. In the following, we highlight
main results from the latter three sections and state some related open problems.
For further open problems arising from each individual chapter, we point the reader
to Chapter 2.3, 3.4, 4.7, and 5.6.

In Chapter 2, we completely characterized graphs admitting a simple or sim-
plicial cut polytope. In this light it would be interesting to start an investigation
on the polyhedral structure of bond polytopes and multicut dominants as objects
of discrete geometry.

In Chapters 2 and 4, we introduced linear-time reductions to 3-connectivity
for the maximum cut problem and the maximum bond problem. Moreover, we
gave complete linear descriptions for cut polytopes of K3,3-minor-free graphs and
bond polytopes of 3-connected planar (K5 − e)-minor-free graphs. In contrast
to the NP-completeness of these problems on general graphs, we showed that the
maximum cut problem can be solved in polynomial time on K3,3-minor-free graphs
and that the maximum bond problem can be solved in linear time on (K5 − e)-
minor-free graphs. For the multicut problem, however, we cannot hope to find
polynomial-time algorithms or complete linear descriptions for some (reasonable)
classes of graphs obtained by excluding a specific minor, as this problem is already
NP-complete when the input graphs are restricted to stars.

While the investigation of basic properties of bond polytopes in Chapter 4
yielded mainly negative answers, the respective study of the multicut dominant in
Chapter 5 gave rise to nice lifting- and projection results. Regarding the effect of
graph operations on the bond polytope, the multicut dominant, and their respec-

93

94 CHAPTER 6. CONCLUSION

tive facet-defining inequalities, we were able to transfer many known results from
the study of cut polytopes and also work out important discrepancies.

Moreover, we presented new classes of facet-defining inequalities for the bond
polytope and the multicut dominant. While finding separation algorithms for the
inequalities for the bond polytope and cycle inequalities for the multicut dominant
remains an open problem, we showed that star- and tree inequalities for the multi-
cut dominant can in fact be separated in polynomial time when the input graph is a
tree. Utilizing our star- and tree inequalities and (maybe more efficient) separation
algorithms could yield powerful solvers for the minimum multicut problem.

Bibliography

[AI07] D. Avis and T. Ito. New classes of facets of the cut polytope and tightness of Imm22

Bell inequalities. Discrete Applied Mathematics, 155(13):1689–1699, 2007.

[Bar82] F. Barahona. On the computational complexity of Ising spin glass models. Journal
of Physics A: Mathematical and General, 15(10):3241–3253, 1982.

[Bar83] F. Barahona. The max-cut problem on graphs not contractible to K5. Operations
Research Letters, 2(3):107–111, 1983.

[BB97] R. Battiti and A.A. Bertossi. Differential greedy for the 0-1 equicut problem. In
Network Design: Connectivity and Facilities Location, Proceedings of a DIMACS
Workshop, Princetin, New Jersey, USA, April 28-30, 1997, volume 40 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 3–21.
DIMACS/AMS, 1997.

[BCN+21] D. Bokal, M. Chimani, A. Nover, J. Schierbaum, T. Stolzmann, M.H. Wagner, and
T. Wiedera. Properties of large 2-crossing-critical graphs. arXiv, abs/2112.04854,
2021.

[BCR97] L. Brunetta, M. Conforti, and G. Rinaldi. A branch-and-cut algorithm for the
equicut problem. Mathematical Programming, 77:243–263, 1997.

[BFL+16] H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D.M.
Thilikos. (Meta) Kernelization. Journal of the ACM, 63(5):44:1–44:69, 2016.

[BG09] W. Bruns and J. Gubeladze. Polytopes, rings, and K-theory. Springer Monographs
in Mathematics. Springer, Dordrecht, 2009.

[BGJR88] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of combi-
natorial optimization to statistical physics and circuit layout design. Operations
Research, 36(3):493–513, 1988.

[BGM85] F. Barahona, M. Grötschel, and A.R. Mahjoub. Facets of the bipartite subgraph
polytope. Mathematics of Operations Research, 10(2):340–358, 1985.

[BIR+] W. Bruns, B. Ichim, T. Römer, R. Sieg, and C. Söger. Normaliz. algorithms for
rational cones and affine monoids. https://normaliz.uos.de.

[BM86] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Program-
minging, 36(2):157–173, 1986.

[Bot93] R.A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of the 16th
Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval. Pittsburgh, PA, USA, June 27 - July 1, 1993, pages 116–
125. ACM, 1993.

95

https://normaliz.uos.de

96 BIBLIOGRAPHY

[CCG+13] R. Carvajal, M. Constantino, M. Goycoolea, J. Vielma, and A. Weintraub. Im-
posing connectivity constraints in forest planning models. Operations Research,
61:824–836, 2013.

[CDJ+19] M. Chimani, C. Dahn, M. Juhnke-Kubitzke, N.M. Kriege, P. Mutzel, and A. Nover.
Maximum cut parameterized by crossing number. arXiv, abs/1903.06061, 2019.

[CDJ+20] M. Chimani, C. Dahn, M. Juhnke-Kubitzke, N.M. Kriege, P. Mutzel, and A. Nover.
Maximum cut parameterized by crossing number. Journal Graph Algorithms and
Applications, 24(3):155–170, 2020.

[CH17] M. Chimani and P. Hliněný. A tighter insertion-based approximation of the crossing
number. Journal of Combinatorial Optimization, 33:1183–1225, 2017.

[Cha17] B. Chaourar. A linear time algorithm for a variant of the MAX CUT problem in
series parallel graphs. Advances in Operations Research, 2017:1267108:1–1267108:4,
2017.

[Cha20] B. Chaourar. Connected max cut is polynomial for graphs without the excluded
minor K5\e. Journal of Combinatorial Optimization, 40(4):869–875, 2020.

[CJN20] M. Chimani, M. Juhnke-Kubitzke, and A. Nover. On the bond polytope. arXiv,
abs/2012.06288, 2020.

[CJN21] M. Chimani, M. Juhnke-Kubitzke, and A. Nover. On the dominant of the multicut
polytope. arXiv, abs/2112.01095, 2021.

[CJNR22] M. Chimani, M. Juhnke-Kubitzke, A. Nover, and T. Römer. Cut polytopes of
minor-free graphs. Bulletin mathématique de la Société des Sciences Mathématiques
de Roumanie, (tba), 2022. (see https://arxiv.org/abs/1903.01817).

[CKMV19] M. Chimani, P. Kindermann, F. Montecchiani, and P. Valtr. Crossing numbers
of beyond-planar graphs. In Graph Drawing and Network Visualization - 27th
International Symposium, GD 2019, Prague, Czech Republic, September 17-20,
2019, Proceedings, pages 78–86, 2019.

[CKP+07] J. Chen, I.A. Kanj, L. Perkovic, E. Sedgwick, and G. Xia. Genus characterizes the
complexity of certain graph problems: Some tight results. Journal of Computer
and System Sciences, 73(6):892–907, 2007.

[CLS11] D.A. Cox, J.B. Little, and H.K. Schenck. Toric Varieties. Graduate studies in
mathematics. American Mathematical Society, 2011.

[CR01] T. Christof and G. Reinelt. Decomposition and parallelization techniques for enu-
merating the facets of combinatorial polytopes. International Journal of Compu-
tational Geometry & Applications, 11(04):423–437, 2001.

[dBT96] G. di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25:956–997, 1996.

[DDW16] G. Ding, S. Dziobiak, and H. Wu. Large Wk- or K3,t-minors in 3-connected graphs.
Journal of Graph Theory, 82(2):207–217, 2016.

[DEH+20] G. L. Duarte, H. Eto, T. Hanaka, Y. Kobayashi, Y. Kobayashi, D. Lokshtanov,
L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza. Computing the largest bond
and the maximum connected cut of a graph. arXiv, abs/2007.04513, 2020.

https://arxiv.org/abs/1903.01817

BIBLIOGRAPHY 97

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer London, 2013.

[DGL91] M. Deza, M. Grötschel, and M. Laurent. Complete descriptions of small multicut
polytopes. Applied Geometry and Discrete Mathematics, 4, 01 1991.

[DGL92] M. Deza, M. Grötschel, and M. Laurent. Clique-web facets for multicut polytopes.
Mathematics of Operations Research - MOR, 17:981–1000, 11 1992.

[Die90] R. Diestel. Graph Decompositions: A Study in Infinite Graph Theory. Oxford
science publications. Clarendon Press, 1990.

[Die18] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, fifth edition, 2018.

[DJP+94] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894, 08
1994.

[DKM18] C. Dahn, N.M. Kriege, and P. Mutzel. A fixed-parameter algorithm for the Max-
Cut problem on embedded 1-planar graphs. In Combinatorial Algorithms - 29th
International Workshop, IWOCA 2018, Singapore, July 16-19, 2018, Proceedings,
pages 141–152, 2018.

[DL92a] M. Deza and M. Laurent. Facets for the cut cone I. Mathematical Programming,
56:121–160, 1992.

[DL92b] M. Deza and M. Laurent. Facets for the cut cone II: clique-web inequalities. Math-
ematical Programming, 56:161–188, 1992.

[DL94a] M. Deza and M. Laurent. Applications of cut polyhedra I. Journal of Computational
and Applied Mathematics, 55(2):191–216, 1994.

[DL94b] M. Deza and M. Laurent. Applications of cut polyhedra II. Journal of Computa-
tional and Applied Mathematics, 55(2):217–247, 1994.

[DL10] M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms
and Combinatorics. Springer, Heidelberg, 2010.

[DLP+19] G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S.
Souza. Computing the largest bond of a graph. In Proc. of Intl Symposium on
Parameterized and Exact Computation, IPEC 2019, volume 148 of LIPIcs, pages
12:1–12:15, 2019.

[DS16] M. Deza and M.D. Sikirić. Enumeration of the facets of cut polytopes over some
highly symmetric graphs. International Transactions in Operational Research,
23(5):853–860, 2016.

[DSDJ+95] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact
ground states of Ising spin glasses: New experimental results with a branch-and-cut
algorithm. Journal of Statistical Physics, 80(1-2):487–496, 1995.

[dSL95] C.C. de Souza and M. Laurent. Some new classes of facets for the equicut polytope.
Discrete Applied Mathematics, 62(1-3):167–191, 1995.

[DT98] M. Dell’Amico and M. Trubian. Solution of large weighted equicut problems. Eu-
ropean Journal of Operational Research, 106(2-3):500–521, 1998.

98 BIBLIOGRAPHY

[EFF04] J.A. Ellis, H. Fan, and M.R. Fellows. The dominating set problem is fixed parameter
tractable for graphs of bounded genus. Journal of Algorithms, 52(2):152–168, 2004.

[EHKK19] H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi. Parameterized algorithms
for maximum cut with connectivity constraints. In Proc. of Intl Symposium on
Parameterized and Exact Computation, IPEC 2019, volume 148 of LIPIcs, pages
13:1–13:15, 2019.

[Eng11] A. Engström. Cut ideals of K4-minor free graphs are generated by quadrics. Michi-
gan Mathematical Journal, 60(3):705–714, 2011.

[Fer57] W. L. Ferrar. Algebra: A Text-book of Determinants, Matrices, and Algebraic
Forms. Oxford University Press, 1957.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[FG65] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15(3):835 – 855, 1965.

[FLRS11] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and
EPTAS. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pages 748–759, 2011.

[Fly17] M. Flynn. The largest bond in 3-connected graphs. Honors Theses. 695, University
of Mississippi, 2017. https://egrove.olemiss.edu/hon_thesis/695/.

[FMU92] J. Fonlupt, A.R. Mahjoub, and J.P. Uhry. Compositions in the bipartite subgraph
polytope. Discrete Mathematics, 105(1):73 – 91, 1992.

[Gan13] A. Ganguly. Properties of cut polytopes. University of Minnesota Digital Conser-
vancy, 2013.

[GHK+18] R. Gandhi, M. T. Hajiaghayi, G. Kortsarz, M. Purohit, and K. K. Sarpatwar.
On maximum leaf trees and connections to connected maximum cut problems.
Information Processing Letters, 129:31–34, 2018.

[GJ83] M.R. Garey and D.S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic Discrete Methods, 4(3):312–316, 1983.

[GKL+19] V. Grimm, T. Kleinert, F. Liers, M. Schmidt, and G. Zöttl. Optimal price zones
of electricity markets: a mixed-integer multilevel model and global solution ap-
proaches. Optimization Methods and Software, 34(2):406–436, 2019.

[GLV01] A. Galluccio, M. Loebl, and J. Vondrak. Optimization via enumeration: a new
algorithm for the max cut problem. Mathematical Programming, 90:273–290, 2001.

[GNS06] D. Golovin, V. Nagarajan, and M. Singh. Approximating the k -multicut problem.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 621–630.
ACM Press, 2006.

[GP81] M. Grötschel and W.R. Pulleyblank. Weakly bipartite graphs and the max-cut
problem. Operations Research Letters, 1(1):23–27, 1981.

[Gro04] Martin Grohe. Computing crossing numbers in quadratic time. Journal of Com-
puter and System Sciences, 68(2):285–302, 2004.

https://egrove.olemiss.edu/hon_thesis/695/

BIBLIOGRAPHY 99

[GVY06] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18:3–20, 2006.

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM, 42(6):1115–1145, 1995.

[Had75] F.O. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4(3):221–225, 1975.

[HKM+15] M. T. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit, and K. K. Sarpatwar.
Approximation algorithms for connected maximum cut and related problems. In
Proc. of European Symposium on Algorithms, ESA 2015, volume 9294 of LNCS,
pages 693–704. Springer, 2015.

[HKM+20] M. T. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit, and K. K. Sarpatwar.
Approximation algorithms for connected maximum cut and related problems. The-
oretical Computer Science, 814:74–85, 2020.

[HLA17] A. Hornáková, J. H. Lange, and B. Andres. Analysis and optimization of graph
decompositions by lifted multicuts. In Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 1539–1548.
PMLR, 2017.

[HT73] J. Hopcroft and R. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

[HT16] I. Heller and C. B. Tompkins. 14 . An Extension of a Theorem of Dantzig’s, pages
247–254. Princeton University Press, 2016.

[HV91] D. J. Haglin and S. M. Venkatesan. Approximation and intractability results for
the maximum cut problem and its variants. IEEE Transactions on Computers,
40(1):110–113, 1991.

[HW07] J.M. Hochstein and K. Weihe. Maximum s-t-flow with k crossings in O(k3n log n)
time. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
843–847, 2007.

[Kam12] M. Kamiński. MAX-CUT and containment relations in graphs. Theoretical Com-
puter Science, 438:89–95, 2012.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Proc. of a symposium
on the Complexity of Computer Computations, ICCC, pages 85–103, 1972.

[Kar01] D.R. Karger. A randomized fully polynomial time approximation scheme for the
all-terminal network reliability problem. SIAM Review, 43(3):499–522, 2001.

[Kaw15] K. Kawarabayashi. Graph isomorphism for bounded genus graphs in linear time.
arXiv, abs/1511.02460, 2015.

[KKMT19a] Y. Kobayashi, Y. Kobayashi, S. Miyazaki, and S. Tamaki. An FPT algorithm for
Max-Cut parameterized by crossing number. arXiv, abs/1904.05011, 2019.

100 BIBLIOGRAPHY

[KKMT19b] Y. Kobayashi, Y. Kobayashi, S. Miyazaki, and S. Tamaki. An improved fixed-
parameter algorithm for Max-Cut parameterized by crossing number. In Combina-
torial Algorithms - 30th International Workshop, IWOCA 2019, Pisa, Italy, July
23-25, 2019, Proceedings, pages 327–338, 2019.

[KR07] K. Kawarabayashi and B.A. Reed. Computing crossing number in linear time. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 382–390, 2007.

[KR21] M. Koley and T. Römer. Seminormality, canonical modules, and regularity of cut
polytopes. Journal of Pure and Applied Algebra, 226:106797, 05 2021.

[Kra91] J. Kratochvíl. String graphs. II. recognizing string graphs is NP-hard. Journal of
Combinatorial Theory, Series B, 52(1):67 – 78, 1991.

[Kur30] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15(1):271–283, 1930.

[KW00] V. Kaibel and M. Wolff. Simple 0/1-polytopes. European Journal of Combinatorics,
21(1):139 – 144, 2000.

[LA20] J. H. Lange and B. Andres. On the lifted multicut polytope for trees. In Pattern
Recognition - 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen,
Germany, September 28 - October 1, 2020, Proceedings, volume 12544 of Lecture
Notes in Computer Science, pages 360–372. Springer, 2020.

[LM20] M. Lasoń and M. Michałek. A note on seminormality of cut polytopes. arXiv,
abs/2012.07907, 2020.

[LP12] F. Liers and G. Pardella. Partitioning planar graphs: A fast combinatorial ap-
proach for max-cut. Computational Optimization and Applications, 51(1):323–344,
01 2012.

[Moh99] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM Journal on Discrete Mathematics, 12:6–26, 1999.

[MR95] S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based ap-
proximation algorithms. SIAM Journal on Computing, 28(5):1641–1663, 1995.

[NW88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley
interscience series in discrete mathematics and optimization. Wiley, 1988.

[OD72] G.I. Orlova and Y.G. Dorfman. Finding the maximal cut in a graph. Cybernetics,
10:502–504, 1972.

[Ohs10] H. Ohsugi. Normality of cut polytopes of graphs is a minor closed property. Discrete
Mathematics, 310:1160–1166, 2010.

[Ohs14] H. Ohsugi. Gorenstein cut polytopes. European Journal of Combinatorics, 38:122–
129, 2014.

[PQ80] J.C. Picard and M. Queyranne. On the structure of all minimum cuts in a network
and applications. In Combinatorial Optimization II, pages 8–16. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1980.

[PT97] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17:427–439, 1997.

BIBLIOGRAPHY 101

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425 – 440, 1991.

[RS95] N. Robertson and P. D. Seymour. Graph minors .XIII. the disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[RS18] T. Römer and S. Saeedi Madani. Retracts and algebraic properties of cut algebras.
European Journal of Combinatorics, 69:214–236, 2018.

[SS08] B. Sturmfels and S. Sullivant. Toric geometry of cuts and splits. Michigan Math.
J., 57:689–709, 2008.

[SW10] M. Skutella and A. Weber. On the dominant of the s-t-cut polytope: Vertices,
facets, and adjacency. Mathematical Programming, 124(1-2):441–454, 2010.

[SWK90] W.K. Shih, S. Wu, and Y. S. Kuo. Unifying maximum cut and minimum cut of a
planar graph. IEEE Transactions on Computers, 39(5):694–697, May 1990.

[Tho99] R. Thomas. Recent excluded minor theorems for graphs. In Survey in Combina-
torics, pages 201–222. Univ. Press, 1999.

[Tut66] W. T. Tutte. Connectivity in Graphs. Univ. of Toronto Press, 1966.

[VKR08] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation
with connectivity priors. In Proc. of 2008 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, pages 1–8, 2008.

[Wag37] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen,
114(1):570–590, 1937.

[Wag60] K. Wagner. Bemerkungen zu Hadwigers Vermutung. Mathematische Annalen,
141(5):433–451, 1960.

[YKCP83] M. Yannakakis, P. C. Kanellakis, S. S. Cosmadakis, and C. H. Papadimitriou.
Cutting and partitioning a graph after a fixed pattern. In Automata, Languages and
Programming, pages 712–722, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg.

[Zie00] G. M. Ziegler. Lectures on 0/1-polytopes. In Polytopes—combinatorics and com-
putation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 1–41. Birkhäuser,
Basel, 2000.

[Zie12] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer
New York, 2012.

	Introduction
	Preliminaries
	Graphs
	Polyhedra
	Integer Linear Programming
	The Maximum Cut Problem
	Cut Polytopes

	Cut Polytopes of Minor-free Graphs
	K3,3-minor-free Graphs
	Simple and Simplicial Cut Polytopes
	Open Problems

	Maximum Cut Parameterized by Crossing Number
	Preliminaries
	Algorithm
	Minor Crossing Number
	Open Problems

	On the Bond Polytope
	First Properties and Comparison to Cut(G)
	Constructing Facets from Facets
	Reduction to 3-connectivity
	Non-Interleaved Cycle Inequalities
	Edge- and Interleaved Cycle Inequalities
	(K5-e)-Minor-Free Graphs
	Open Problems

	On the Dominant of the Multicut Polytope
	Basic Properties
	Constructing Facets from Facets
	Star Inequalities
	Tree Inequalities
	Cycle Inequalities
	Open Problems

	Conclusion
	Bibliography

