PI

UNIVERSITAT OSNABRUCK

MODEL-DRIVEN CODE GENERATION OF SAFETY
MECHANISMS

Lars Huning

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.)
des Fachbereichs Mathematik /Informatik
der Universitit Osnabriick

Disputation am 04. Oktober 2022

Erste Gutachterin: Prof. Dr.-Ing. Elke Pulvermiiller
Zweiter Gutachter: Prof. Dr. Herbert Kuchen

Acknowledgments

First and foremost 1T want to express my gratitude to Prof. Dr.-Ing. Elke Pulvermiiller
and her role as a supervisor during the composition of this thesis. I also want to thank
Prof. Dr. Herbert Kuchen for providing an outside perspective on the topic and helpful
comments. Next, I thank my bachelor’s and master’s students who contributed to the
implementation of parts of this thesis: Timo Osterkamp, Adrian Richter, Felix Hiusler and
Nicolas Wintering. Furthermore, I wish to express my gratitude to Dr. Padma Iyenghar,
who initially brought the research fields of model-driven development and safety to my
attention. Moreover, I’d like to thank Marco Schaarschmidt for fruitful discussions about
model-driven development and as a source of helpful advice when it came to the hardware-
focused parts of this thesis. My gratitude also goes to my cousin, David Huning, who
was an avid proof reader of any manuscripts I published during the time I worked on this
thesis.

iii

Abstract

Safety-critical systems are systems in which failure may lead to serious harm for humans
or the environment. Due to the nature of these systems, there exist regulatory standards
that recommend a set of safety mechanisms that should be included in these systems, e.g.,
IEC 61508. However, these standards offer little to no implementation assistance for these
mechanisms. This thesis provides such development assistance, by proposing an approach
for the automatic generation of safety mechanisms via Model-Driven Development (MDD]).
Such an automation of previously manual activities has been known to increase developer
productivity and to reduce the number of bugs in the implementation. In the context of
safety-critical systems, the latter also means an improvement in safety.

The approach introduces a novel way to define safety requirements as structured sen-
tences. This structure allows for the automatic parsing of these requirements in order
to subsequently generate software-implemented safety mechanisms, as well as to initially
configure hardware-implemented safety mechanisms.

The generation approach for software-implemented safety mechanisms uses Unified Mod-
eling Language (UML) stereotypes to represent these mechanisms in the application model.
Automated model-to-model transformations parse this model representation and realize the
safety mechanisms within an intermediate model. From this intermediate model, code may
be generated with simple 1:1 mappings.

For the generation of hardware-implemented safety mechanisms, this thesis introduces
a novel Graphical User Interface (GUI) tool for representing the configuration of hard-
ware interfaces. A template-based code snippet repository is used for generating the code
responsible for the configuration of the hardware-implemented safety mechanisms.

The presented approach is validated by applying it to the development of a safety-critical
fire detection application example. Furthermore, the runtime overhead of the respective
transformation steps of the code generation process is measured. The results indicate a
linear scalability and a runtime that is no impediment to the workflow of the developer.
Furthermore, the memory and runtime overhead of the generated code is evaluated. The
results show that the inclusion of a single safety mechanism for a single system element
has a negligible overhead. However, the relative overhead indicates that the application
of safety mechanisms should be limited to those system elements that are strictly safety-
critical, as their arbitrary application to all system elements would have large effects on
the runtime and memory usage of the application.

Contents

(1__Introduction| 1
1.1 Problem Statement and Analysig| 0 0L 2
[1.1.1 Research Challenge and Scopel. 2

[1.1.2 Research Gaps| 2

(.13 Contributions 3

1.2 Thesis Outhnel oo 4

|2 Background and Related Work| 5
2.1 Background| 5
[2.1.1 Unified Modeling Language (UML)[. 5

2.1.2 Model-Driven Development| 9

2.1.3 Satety Litecyclel oo o 14

[2.1.4 Hardware-Implemented Satety Mechanisms| 16

[2.1.5 Software-Implemented Satety Mechanisms| 21

[2.1.6 ANother Tool for Language Recognition (ANTLR)[. 27

2.2 Related Workl o 28
221 Code Generation| L 28

[2.2.2 Modeling Languages| 34

[2.2.3 Improving the Development of Satety-Critical Systems| 39

224 Conclusions for this Thesis| 46
B__Overviewl 47
[3.1 Ovwerview of the Approach| 47
3.2 Developer Workflow| oo 47
3.3 Ongoing Application Example| o000 L. 48
[3.3.1 Environment Monitoring Systems|. 50

[3.3.2 Description of the Application Example| 50

[3.3.3 Application Model| oo o000 51

[3.3.4 Hardware Setup| 53

|4 Structured Safety Requirements for Automatic Code Generation| 55
4.1 High-level Requirements| 55
|4.2 Structured Safety Requirements|. 0L 56
[4.2.1 Distinction between Hardware- and Software-Implemented Satety |

[Mechanismsl Lo Y

4.2.2 Sentence Templates tor Hardware-Implemented Safety Mechanisms| . 58
4.2.3 Sentence Templates for Software-Implemented Satety Mechanisms|. . 58

4.2.4 Expressiveness of the Sentence Templates| 60

4.3 Derived Safety Requirements| L. 63
4.4 Prototypel 63

[5 Model-Driven Code Generation of Software-lmplemented Satety Mechanisms| 67
b.1 High-level Concept| o 67
b.2 Usage Types|. o 69

vii

Contents

5.3 Automatically Applying Safety Stereotypes to the Application Model| 72
5.4 A Workflow tor Generating Software-Implemented Safety Mechanisms| 73
b.4.1 Overview of the Workflowl 73

042 Workflow Detailsl oo 74

5.5 Model Representation and Code Generation for Software-Implemented Satety |

[Mechanismsl 79
b.5.1 Overview of the Model Representation| 79

b.5.2 Error Handhing| oo 80

5.5.3 Basics tor the Model Representation and Code Generation of Safety |

[Mechanismsl o 82
5.6 Code Generation for the Satety Mechanism: Error Detection for Attributes| 89
5.6.1 Model Representation|o L. 89

B.6.2 Software Architecturel L. 92

b.6.3 Model Transtormationsl 97

5.7 Code Generation tor the Satety Mechanism: Votingl 100
b.7.1 Model Representation| 100

b.7.2 Software Architecturelo o000 104

b.7.3 Model Transtormationsl 106

5.8 Code Generation for the Satety Mechanism: Timing Constraint Monitoring| 108
b.8.1 Model Representation| 110

.82 Software Architecturelo o000 oo 111

b.8.3 Model Transformations 116

5.9 Code Generation for the Satety Mechanism: Graceful Degradation| 118
5.9.1 System Model for Gracetul Degradation| 119

5.9.2 Model Representation| 120

[£.9.3 Software Architecturel00 122

.94 Model Transtormationsl 124

[5.10 Prototype Implementation| oo 127
[5.10.1 Communicating with Rhapsody| 127

[5.10.2 Parsing the Model| 0oL 127

b.10.3 'Transtorming the Model| 129

b.11 Application Example|o oo o 129
b.11.1 Applying Safety Stereotypes to the Application Examplel. 130

b.11.2 Automatically Generating Sottware-Implemented Satety Mechanisms |

| in the Application Example|o 0oL 131
|6 Code Generation tor the Initialization of Hardware-Implemented Safety Mech- |
[_anisms 135
6.1 Developer Workflow for Automatically Generating Initialization Code]. . . . 136
6.2 PinConfig Tooll 137
[6.2.1 Graphical User Intertace tor Hardware Interface Configuration|. . . . 138

[6.2.2 Microcontroller Representation| 140

[6.2.3 Representation of the Configuration ot Hardware Interfaces 144

6.3 Generation of Initialization Code for Hardware Interfacesl 145
6.3.1 Overview| 146

[6.3.2 An Object-Oriented Hardware Abstraction Layer| 147

[6.3.3 Hardware initialization| 152

6.3.4 Automatic Code Generation of Imtialization Filesf. 157

6.4 Integration with MDD tools| 159
6.5 Application Example]o oo o 161

viil

Contents

[7_Evaluation] 165
7.1 Scalability of Model Transtormations| 165
[7.1.1 Scalability of the Automatic Application of Requirements to the Modell165

[7.1.2 Scalability of the Code Generating Model Transtormations|. 168

[7.2 Overhead of the Generated Code at Target-Levell 173
[7.2.1 Memory Overhead| 174

[(22 Runtime Overheadl 179

[7.2.3 Comparison of the Memory and Runtime Overhead with Results |

[from the Literaturel. 186
8 Summary and Future Work| 189
193
[Publicationsl 215
217
|[List of Figures| 219
[List of Tables| 223
[List of Listings| 225

ix

1 Introduction

Safety-critical systems are a category of applications whose failure may harm humans or
the environment [244]. Many of these applications are embedded systems, which interact
with the environment through sensors or actuators. Examples for safety-critical embedded
systems are fire detection systems [210], software for automobiles [118], airplanes [213] or
medical devices [117]. Due to the serious consequences in case such a system fails, strict reg-
ulations for the market admission of such systems exist. Usually, these regulations include
conformance with a relevant safety standard for the product. There exist domain specific
standards, e.g. IEC 62034 [I17] for the medicinal domain, DO-178C [213] for airborne
systems or ISO 26262 [118] for the automotive domain. Furthermore, IEC 61508 [116] pro-
vides a domain independent safety standard, which applies to general electrical/electron-
ic/programmable electronic systems. Depending on the risk level, these safety standards
recommend a set of safety mechanisms that a product has to contain in order to claim
conformance with the respective standard. Safety mechanisms aim to detect errors in the
system during runtime and to maintain the safety of the system despite the presence of
such errors, e.g., via error correction or recovery.

These safety standards, as well as the safety mechanisms they recommend, are in part a
reaction to the occurrence of catastrophic incidents related to the failure of safety-critical
software [92] 146] [174]. Despite the establishment of safety standards, such incidents still
occur. Recent examples are the crashes of two aircraft of type Boeing 737 MAX 8 in
2018 and 2019, leading to the loss of life of all passengers on board. The reason for both
crashes has been identified as the erroneous activation of a software module due to sensor
equipment malfunctions [127].

There are several factors that make the development of safety-critical systems diffi-
cult [116, 127]. One important challenge is that the size and complexity of these sys-
tems steadily increases [254]. In order to cope with these difficulties, several techniques
and approaches have been proposed, either in academia [91], [95], by the safety standards
themselves [116], or in the form of commercial products [61, 198]. Among the proposed
techniques are the use of semi-formal methods, code generation and Model-Driven Devel-
opment (MDDI). This thesis combines the aforementioned techniques in order to automat-
ically generate safety mechanisms for safety-critical systems, thereby making this task less
cumbersome and less error-prone. This is achieved by creating models with semi-formal
methods, e.g., the Unified Modeling Language (UML), that represent the desired safety
mechanisms. As part of an[MDD] process, these models are subject to a set of model trans-
formations, which result in an intermediate model that realizes the safety mechanisms.
Source code for the safety mechanisms is generated from this intermediate model with
1:1 mappings to the target programming language. The use of and automatic code
generation has been known to increase developer productivity and decrease the number of
bugs within the system [33], 73 132 [133]. Furthermore, the use of may increase the
correctness and efficiency of software engineering activities [5I]. Additionally, developers
require less knowledge about implementation details for the automatically generated code.
This is especially important for the safety mechanisms in the system, as knowledge about
safety is often only a very minor topic in current computer science and software engineer-
ing curricula [44] 91]. Thus, the approach presented in this thesis may not only increase
developer productivity, but also increase the overall safety of the system.

1 Introduction

1.1 Problem Statement and Analysis

This section discusses the research challenges addressed by this thesis in Section and
summarizes the research gaps it addresses in Section [L.1.2] Furthermore, the contributions
of this thesis are highlighted in Section [I.1.3]

1.1.1 Research Challenge and Scope

The research challenge addressed by this thesis is to provide an approach for the automatic
code generation of safety mechanisms via [MDDlI Numerous safety mechanisms have been
described in the literature, e.g., [10}, 88| 89, 140l 200, 226], as well as by safety standards,
e.g., IEC 61508 [116]. These safety mechanisms cover a broad range of techniques, some of
which may be realized in software, e.g., the use of checksums for data structures or com-
munication messages, and some of which may not be realized in software, e.g., mechanical
safety precautions such as a safety cage around a safety-critical machine. There also exist
multiple safety mechanisms that are partially realized in software. These mechanisms rely
on hardware to actually execute the safety-relevant behavior, e.g., hardware watchdogs.
However, the configuration of these hardware mechanisms is usually realized in software
that is executed at the start of the safety-critical program. In order to distinguish these
safety mechanisms that rely on hardware from the safety mechanisms that may be real-
ized purely in software, the former group is referred to as hardware-implemented safety
mechanisms, while the latter group is referred to as software-implemented safety mecha-
nisms [29]. This does not restrict the type of errors that may be detected by each type of
safety mechanism. For example, the output of a hardware sensor may be monitored by a
software-implemented safety mechanism that signals an error in case it detects anomalous
patterns in the output of the hardware sensor. Note that this does not imply that every
possible error may be always detected by both types of safety mechanisms. For example,
there may be certain hardware errors that cannot be detected by software-implemented
safety mechanisms.

The scope of this thesis is limited to the automatic code generation of software-imple-
mented safety mechanisms, as well as the generation of the initialization code for hardware-
implemented safety mechanisms. Safety mechanisms that do not contain a software com-
ponent are not considered in this thesis, e.g., mechanical mechanisms such as a hardware
emergency stop. For hardware-implemented safety mechanisms, the code generation is
limited to generating the code that initializes the hardware safety mechanisms. The design
of hardware elements, e.g., with the Very High Speed Integrated Circuit Hardware Descrip-
tion Language (VHDLJ), or the actual manufacturing of the hardware, are not considered
in this thesis.

1.1.2 Research Gaps

In line with the scope described in Section [I.1.1] the main research goal of this thesis is as
follows:

To develop an approach for the automatic code generation of safety
mechanisms from models in an environment.

Section |2.2| discusses work that is related to this research goal. It identifies three specific
research gaps (RG1 to RG3) that need to be addressed in order to achieve the research
goal presented above. They are summarized in the following:

RG1:

RG2:

RG3:

1.1 Problem Statement and Analysis

A model representation for safety mechanisms suitable for automatic code
generation. As described in Section the goal of this thesis is to provide an
approach for the automatic code generation of software-implemented safety
mechanisms, as well as the initialization code of hardware-implemented safety mech-
anisms. Current tools, e.g., [60] 205], 237], provide the technical capability to
generate source code from structural diagrams, e.g., class diagrams. Some of
the tools, e.g., IBM Rhapsody [205], additionally introduce their own runtime
frameworks to provide code generation from behavioral diagrams, e.g., state
machine diagrams. However, these tools only enable code generation from model
elements defined in the standard [I83]. This standard does not contain any
model elements for safety mechanisms. The same is true for the Modeling and Anal-
ysis of Real Time and Embedded systems (MARTE) standard, which extends
by modeling concepts often required for the development of embedded systems [186].
Other, non-standardized approaches, e.g., [25] provide initial modeling concepts for
safety mechanisms. However, they are not intended for the purpose of code genera-
tion and therefore lack the required amount of detail necessary for generating code
automatically. Thus, the first research gap addressed by this thesis is to design model
representations for safety mechanisms that are suitable for automatic code generation
and which integrate into industrial safety standards.

A software architecture for safety mechanisms suitable for automatic code
generation. The second research gap addressed by this thesis refers to the source
code level. While there already exist software architectures for safety mechanisms,
e.g., [226], these software architectures often do not consider automatic code gener-
ation. Thus, for the use case of automatic code generation, i.e., adding the software
architecture of a safety mechanism A to an existing software architecture B, a large
number of changes to B are required. Such a large number of changes quickly becomes
a complex task that demands manual supervision or interactions by a developer, i.e.,
the very opposite of automatic code generation. Therefore, the second research gap
addressed by this thesis is to define a software architecture C', which not only provides
the capabilities of safety mechanisms, but also may be integrated with an existing
software architecture B with a minimized number of manual developer interactions.

Model transformations that generate safety mechanisms. The third research
gap addressed by this thesis is the automated transformation of the model represen-
tation addressed in RG1 to the software architecture addressed by RG2. This is the
step that actually enables the automatic code generation of safety mechanisms.

1.1.3 Contributions

In order to fill the research gaps described in Section this thesis provides the following
innovative contributions (C1 to C3):

C1:

C2:

Structured safety requirements suitable for code generation. This contribu-
tion provides a structured way to refine high-level safety requirements into derived
requirements Rp. These derived requirements contain all necessary information to
automatically generate safety mechanisms for a given functional application model.
As the requirements are used to apply corresponding [UMT] stereotypes and configu-
rations in the model, this contribution addresses research gap RG1. The contribution
is published in [100] and is described in Chapter

An MDD approach for the generation of software-implemented safety
mechanisms. This contribution provides a model representation and a software

1 Introduction

architecture for software-implemented safety mechanisms, as well as model transfor-
mations that connect the former two into a holistic approach. This addresses research
gap RG1 to RG3 in the context of software-implemented safety mechanisms. Utilizing
contribution C1, a set of stereotypes is applied to a model based on the
derived safety requirements Rp. Each stereotype represents a safety mechanism. Au-
tomated model-to-model transformations are used to realize these safety mechanisms
in an intermediate model. From the intermediate model, code may be generated auto-
matically with simple 1:1 mappings by common [MDDItools, e.g, IBM Rhapsody [205]
or Papyrus [60]. The contribution is published in [100] 101} 102, 103, 104} 105] and
is described in Chapter

C3: An MDD approach for the generation of hardware-implemented safety
mechanisms. This contribution provides a tool for configuring the pins and
hardware interfaces of microcontrollers, as well as a corresponding code generation
process and its integration with [MDDItools. This addresses research gap RG1 to RG3
in the context of hardware-implemented safety mechanisms. By utilizing contribution
C1, the configuration of the hardware interfaces in the tool may be automated by
parsing the derived safety requirements Rp. Template files are used as code snippet
repositories to generate the initialization code corresponding to this configuration. A
subsequent reverse engineering process is used to integrate the generated code within
the model. The contribution is published in [I00} [106] and is described in Chapter @

As part of each contribution, a working prototype is developed as a proof-of-concept
and the presented approach is applied to the development of a safety-critical fire detection
application example. Furthermore, the overhead of the involved model transformations on
the workflow of a developer is measured. Additionally, the efficiency of the generated code
is evaluated.

1.2 Thesis Outline

This thesis is organized as follows: Chapter [2] describes background knowledge relevant
for the other chapters in this thesis, as well as related work to the contributions offered
by this thesis. Chapter [3| provides an overview of the approach presented in this the-
sis and introduces an ongoing application example that is used to illustrate the concepts
presented in the subsequent chapters. Chapter [introduces an approach for deriving struc-
tured safety requirements that serve as the first step in the automatic generation process
for safety mechanisms. Chapter [5] presents a model-driven code generation approach for
software-implemented safety mechanisms. Besides introducing a workflow for this, the con-
cept is realized for the following software-implemented safety mechanisms: error detection
for attributes, voting, timing constraint monitoring and graceful degradation. Chapter [f]
presents an approach for the automatic generation of the initialization code for hardware-
implemented safety mechanisms. This includes a tool for specifying the necessary
configuration values, as well as an object-oriented Hardware Abstraction Layer (HAL

that is used for the automatic code generation and integration with tools. The re-
sults from Chapters [to [6] are evaluated in Chapter[7] Chapter 8| concludes this thesis and
suggests future work.

2 Background and Related Work

The aim of this thesis is to provide an approach for the automatic code generation
of safety mechanisms. This chapter presents the relevant background knowledge required
for understanding the approach described in this thesis (cf. Section . Furthermore,
it provides an overview of related work and discusses how the approach presented in this
thesis differs from existing approaches (cf. Section .

2.1 Background

This thesis presents an automatic code generation approach for safety mechanisms. The ap-
proach combines aspects of MDD e.g., [UMIl with characteristics of safety-critical embed-
ded systems. This section presents background on these topics to aid in the understanding
of this thesis. Section summarizes the elements that are frequently used within
this thesis. Section presents an overview of and its concepts. Section [2.1.3] pro-
vides an overview of the development for safety-critical systems. Sections[2.1.4and[2.1.5]de-
scribe background information on hardware-implemented and software-implemented safety
mechanisms. Section presents a short introduction to the ANother Tool for Language
Recognition (ANTLR) framework and its syntax. [ANTLRI provides parsing capabilities
for grammars defined according to the syntax. It is used in Chapter [to de-
fine structured sentence templates for describing safety mechanisms that may be parsed
automatically.

2.1.1 Unified Modeling Language (UML)

At the core of this thesis is the standardized modeling language [UML], which is used for
modeling safety mechanisms and the subsequent code generation of these mechanisms.
This section presents the [UML] concepts that are used within this thesis. All references to
within this thesis refer to version 2.5.1 of the standard [I83]. A discussion of
alternative modeling languages to [UML] may be found in Section 2.2.2]

originated as a combination of several modeling languages [231]. These are the
Booch method [28], Object Modeling Technique (OMT)) [216] and Object-Oriented Software
Engineering (OOSE]) [124]. Since then, it has been revised multiple times in cooperation
with other interested parties, e.g., former competitors and corporations [231]. [UMI] pro-
vides a standardized metamodel for modeling object-oriented systems, as well as a set of
graphical notations (diagrams) that may be used to visualize the model elements.
contains fourteen types of diagrams, that may be split into structural and behavioral dia-
grams. Structural diagrams describe the structural relationships between elements,
while behavioral diagrams describe how the state of objects changes over time. Figure [2.1
shows the relationships between the different diagrams.

From the fourteen different [UMI] diagrams available, class diagrams have received the
most attention [49] 142, 188 202]. Other popular diagram types include sequence, activity,
use case and state machine diagrams. However, these are significantly less popular in
practice than class diagrams [49]. As class diagrams are the most widespread diagram
type, this thesis uses them exclusively for the model representation of safety mechanisms.
This has the additional advantage that there exist many 1:1 mappings between elements

2 Background and Related Work

Structure Diagram thawor Statg Machine
Diagram Diagram Diagram
A A |
] [I]
. C t Int ti
Class Diagram orT\ponen n ?rac ‘on Activity Diagram Use Case Diagram
Diagram Diagram
A
Interaction
Profile Diagram Object Diagram Overview Timing Diagram
Diagram
C i L
. omposite Communication Sequence
Package Diagram Structure . .
. Diagram Diagram
Diagram
Deployment
Diagram

Figure 2.1: Taxonomy of [UMI] structure and behavioral diagrams. Adapted from [183].

in class diagrams and object oriented programming languages, e.g., C++. Thus,
this limitation to [UMI] class diagrams not only makes the approach more accessible to
a wider audience of developers, but also simplifies the code generation process. This
simplification of the code generation process furthermore improves the portability of the
proposed approach for different tools. These design choices are discussed more
extensively in Section [2.2.2]

When talking about a model, it is important to distinguish between the actual
model, and the visual representation of this model. The previously introduced [UMII dia-
grams allow for the visual representation of a model. However, these diagrams may
omit certain parts of the underlying [UMI]model to communicate other parts of the model
more effectively. For example, a class in a class diagram may omit to display the
getter and setter methods for its variables to highlight the remaining operations.

Section provides an introduction to class diagrams. Section [2.1.1.2] presents
[UMII profile diagrams, which take a central role in the process of extending the [UMILI
metamodel, e.g., in order to provide a model representation for safety mechanisms within
[UMTI

2.1.1.1 UML Class Diagrams

As class diagrams are the most used diagram type in this thesis, this section presents
some characteristics of this diagram type. Figure shows an example of a class
diagram. In the figure, [UML] notes (rectangles with a fold in the upper right corner, e.g.,
the rectangle which contains the word “Superclass” in Figure , are used to illustrate the
name of the element they annotate. The explanations of the [JMI] concepts shown
in Figure [2.2] are based on [231].

General Structure: The general purpose of a [UMI class diagram is to display object-
oriented structures, e.g., classes with their data types and operations, and their relation-
ships among each other. A class in a class diagram is represented as a rectangle with
three compartments, indicating the name (top compartment), the variables (middle com-
partment) and the methods (bottom compartment) of the class. In Figure six classes
with the names A-E are displayed. Only a single class, B, shows an attribute (count) and

2.1 Background

Inheritance
i A
. -count :int]
Operation :] e Superclass
— + increment() : void

1 ,
<<Interface>>

D < —<<Usage>> — C -——CE

Attribute/
Property

N
Interface
Class I realization
Figure 2.2: Example of a class diagram 2.5.1 notation). The gray shading
of the compartments for attributes and operations are not part of the [UMII

standard, but rather an artifact of the tool used to create the figure (Microsoft
Visio [159]).

an operation (increment()). As previously mentioned, a class diagram is only a visual
aid to show a [UMLl model. The other classes besides B may also contain attributes and
operations, which are not shown in Figure 2.2l The class D is an example for a template
class, where the template parameter T is shown as a separate rectangle at the top of the
class. According to the [UMIlstandard, template parameters are typically displayed in the
top right corner of a class. However, the drawing tool used to visualize diagrams in
this thesis (Microsoft Visio [I59]) sometimes displays them in the top middle or even the
top left side of the class. Such depictions are still meant to represent template parameters
in this thesis.

Attributes and operations may also contain a visibility, similar to object-oriented pro-
gramming languages. Visibility may be expressed via specific symbols, e.g., a mathematical
plus sign “4” for public or a minus sign “-” for private visibility (cf. increment() and
count in class B of Figure . Attributes may additionally be assigned a default value
with a “=" sign. Furthermore, attributes may be assigned a specific multiplicity. This
multiplicity is expressed by adding rectangular brackets after the attribute’s name (“[|”).
Inside the brackets, an integer literal, e.g, “[5]” represents the multiplicity. An unlimited
number of elements may be represented by using an asterisk (“*”) in the brackets.

Links: Relationships between classes inside a [UMI] class diagram may be represented by
links. There are three types of links: associations, shared aggregations and compositions.
An association represents a binary relationship between two classes and is visualized by a
solid line between the two classes. Associations may further be refined by specifying their
navigability. This is expressed graphically by using an open arrowhead at the respective
end of the association. Navigability may be expressed bidirectionally (arrowheads at both
ends of the association) or unidirectionally (only a single arrowhead at one end of the
association). An arrowhead pointing at one class of the association indicates that the class
on the other side of the association may access the visible attributes and operations of the
class to which the arrowhead points.

2 Background and Related Work

Besides their navigability, associations, as well as the other link types, may further be
refined by specifying their multiplicity. Integer literals at an end of the association represent
how many instances an object at the other end of the association contains. An example for
this is the composition shown in Figure 2.2] where a single instance of class C may access
exactly one instance of class B, whereas a single instance of class B may access one or more
instances of class C. The notation for specifying the multiplicity for associations is the same
as the previously explained notation for specifying the multiplicity of attributes. From a
programming perspective, associations are usually implemented as a reference between the
two respective objects [231].

Shared aggregations and compositions represent that instances of a class are a part of
another class. Both are visualized with a solid line between two classes, where one end of
the line is a diamond symbol. The class at whose end of the line the diamond is, represents
the “whole”, whereas the other class is the “part” [231]. In case of a shared aggregation, the
diamond is unfilled. In case of a composition, the diamond is filled (c¢f. the composition
between class B and C in Figure 2.2). Compared to a composition, a shared aggregation
represents a weak form of the part belonging to the whole. In case of a composition, the
part may not exist independently of the whole.

Stereotypes: elements may be assigned new semantic meaning by applying a stereo-
type to them. The application of a stereotype is graphically represented by writing the
name of the stereotype, enclosed by angular brackets (“« »”), to the respective model
element. Figure contains two examples for the application of stereotypes. The first ex-
ample is the «Usage» stereotype applied to the association between classes C and D, which
further specifies the type of association. The second example is the «Interface» stereo-
type applied to E, which symbolizes that the respective rectangle is an interface, rather
than an ordinary class. The [UMI standard introduces a set of stereotypes for common
concepts. However, developers may also extend the [[MI] metamodel by introducing their
own stereotypes. This extension of is further explained in Section 2.1.1.2] whereas
the concept of metamodels in general is further described in Section[2.1.2.2] A concept not
shown in Figure is that stereotypes may contain one or more tagged values. These are
key-value pairs that may be used to provide a configuration for a specific stereotype. The
standard does not offer an immediate notation for specifying tagged values. They
may be described within [UMII notes or a separate piece of documentation, e.g., submenus
in an tool.

Inheritance and Interfaces: Inheritance, as an object-oriented mechanism, may be graph-
ically visualized in [UMI] diagrams by a solid line with a triangular arrowhead between two
classes. The class at which the arrowhead points is the superclass in the relationship. For
example, in Figure[2.2)class B inherits from class A. Abstract superclasses may be visualized
by writing the term “abstract” in curly brackets above the name of the superclass.

Interfaces in are realized with their own respective stereotype («Interfacey) that
is written above the class name (cf. interface E in Figure 2.2)). The notation for interface
realization is similar to inheritance, except that the line representing relationship is dashed
instead of solid (cf. Figure 2.2] where class C realizes the interface E).

2.1.1.2 UML Profile Diagrams

Section introduces [UMT stereotypes and shows how these may be applied inside a
class diagram. This section, in contrast, describes how stereotypes and their tagged
values may be defined by using [UMI] profile diagrams in order to extend the [UMI] meta-
model (cf. Section [2.1.2.2]for an introduction to the concept of metamodels). Additionally,

2.1 Background

<<Stereotype>>
Safety

<<Metaclass>>
Class <

errorDetection : String
errorHandling : String
nrReplicas : int

Figure 2.3: Example of a profile diagram 2.5.1 notation).

profile diagrams are used to define to which type of model element a stereotype may be
applied to.

Figure[2.3|shows an exemplary profile diagram which contains a newly defined stereotype,
«Safety». This stereotype contains three tagged values (errorDetection, errorHan-
dling and nrReplicas), which are shown in a compartment below the name of the
stereotype. The concept of tagged values is also known as tags in previous versions of the
standard.

The [UMI] profile diagram also shows to which [UMI] elements a stereotype may be
applied to. This is achieved by drawing a line with a filled arrow at the end, which points
to the type of [UML] element the stereotype may be applied to. In Figure this is the
element Class, i.e., the «Safety» stereotype may be applied to classes in a[UMI] class
diagram. The [UML element extended by the stereotype has to be one of the metaclasses
defined in the metamodel. This is indicated by the «Metaclass» stereotype above the
name of the [UMLI model element to which the newly defined stereotype may be applied.

Multiple stereotypes may be defined inside a single profile diagram, e.g., in case
they represent related concepts. The term [UMLI profile is used to refer to a group of related
stereotypes at the model level, while the profile diagram is the graphical representation of
this profile.

2.1.2 Model-Driven Development

The automatic code generation approach for safety mechanisms presented in this thesis uses
MDD as the main methodology. This section presents background on MDDl is a
development paradigm that uses models as the central artifacts of the software development
process [32, 240]. Related to this is the concept of Model-Based Development (MBDI),
in which models are utilized but not necessarily the driving force of development [32].
Another related concept is Model-Driven Architecture (MDA]) [197|, which is an initiative
created by the Object Management Group (OMG]). It presents an approach to
that uses modeling languages and processes standardized by the [MDAI is further
explained in Section Section discusses the relationship of models and their
metamodels in the context of this thesis, while Section presents background on
model transformation technologies. A specific tool, which is used for the creation of
a prototype of the approach presented in this thesis, is described in Section

2.1.2.1 Model-Driven Architecture

The goal of [MDAI [197] is to enable the production of source code from a set of models
that are specified at a higher abstraction level. In the vision of [MDAL automated model
transformations enable the automatic translation of one abstraction level to another. This
section elaborates on the concepts.

MDAl defines three types of abstraction levels. These are, in descending order of abstrac-
tion: Computation-Independent Model (CIM), Platform-Independent Model (PIM) and

2 Background and Related Work

Platform-Specific Model [197]. The defines the application at a computation-
independent level, i.e., it describes the solution without any specific references to the
implementation. This implies that some of the characteristics modeled by the may
potentially be realized without software, e.g., by using hardware-based solutions. The next
level of abstraction, the [PIM] is tied to software-based solutions. It describes the structure
and the behavior of the software application, e.g., by using suitable [UMTI] diagrams for this
purpose or by using custom approaches, e.g., [134]. While the [PIM] provides a lower level of
abstraction than the it does not contain any specific reference to the implementation
platform. This enables a future switch in implementation platforms while leaving large
parts of the application unchanged. The information about the implementation platform
is added at the lowest level of abstraction, the It contains all the required informa-
tion to execute either the model, or the source code generated by this model, on a specific
platform.

The automatic code generation from a platform independent model aims to simplify the
integration and interoperability across different systems. This may reduce development
time and provide an increase in software quality and developer productivity [119].

The automatic code generation approach for software-implemented safety mechanisms
presented in Chapter 5] works at the level of the and [PSMl The safety mechanisms
are modeled with stereotypes within the Automated model-to-model transfor-
mations create a from the [PIM] that contains all relevant information for the code
generation of the safety mechanisms.

2.1.2.2 Metamodels

(cf. Section envisions the automatic transformation between models. To
enable these transformations, a model for a modeling language is required. Such models,
which describe the structure of other models, are called metamodels [32]. The concept
of metamodels is explained in this section. Just as metamodels define models, metamod-
els may be defined by other models. Models that define metamodels are called meta-
metamodels. Meta-metamodels are often defined by the same language elements they
provide, similar to how a compiler for a programming language, e.g., C, may be imple-
mented in the same language it is supposed to compile. The terms model, metamodel
and meta-metamodel are relative to each other and may change depending on one’s point
of view. For example, software developers that model applications with regard the
[UML specification [I83] as a metamodel that they use to create models of their application.
The Meta Object Facility (MOF]) [182], which is used to define the [UMTlspecification, may
be seen as a meta-metamodel by these developers. Members in the taskforce for
revision, on the other hand, may see as a basic model, while they regard
as a metamodel.

In this thesis, the [UMLl specification [I83] may be seen as a metamodel, while the basic
models (without a “meta”prefix) are the actual software systems that are modeled with
[OMT] Although it is not directly used in this thesis, the [182] is the meta-metamodel
used to define the [UMI] specification.

Figure displays the relationship between models, metamodels and meta-metamodels,
as well as possible transformations between them. On the top left of Figure 2.4 a model A
exists. This model has been specified compliant to the metamodel A,,,, which in turn has
been specified in terms of a meta-metamodel, e.g., On the bottom of Figure
a model B conforms to the metamodel specification B,,, which in turn conforms to some
metamodel. Model A may now be automatically transformed into model B by executing a
set of model transformations. These model transformations have been specified in a dedi-
cated program that describes how an element from the metamodel A,, may be transformed

10

2.1 Background

<<conformsTo>> Metamodel <<conformsTo>>
Model A ~—-——=——-=-"—= A [TTTTTTTTTTToommo s o oo om s |
'm

Execution of
Model <<conformsTo>> Model <<conformsTo>> Model <<conformsTo>> Meta-
Transformation | Transformation -—————---= Transformation -——-—-—----—-- > metamodel
Program Program Language
<<conformsTo>> Metamodel <<conformsTo>>
ModelB F---—-—=—-—=———= O e !
m

Figure 2.4: Transformation between models, adapted from [32]. The rectangles indicate
model artifacts and model transformation programs. The dotted arrows show
to which metamodel a model conforms, while the solid arrows indicate the
possible transformations between models.

into one or more elements of the metamodel By,. The model transformation program is
written with a specific model transformation language, which has been defined according
to a meta-metamodel, e.g., MOFl In general, it is possible that A,, = B,,. This is also
the case in Chapter [5| where A,,, and B,,, are the metamodel.

2.1.2.3 Model Transformations

This thesis provides a novel code generation approach for safety mechanisms via
Part of this approach for software-implemented safety mechanisms is a set of model trans-
formations that realize the safety mechanisms according to a model representation based
on stereotypes. Therefore, this section provides background on such model trans-
formations. The two most prominent types of model transformations are model-to-model
transformations and model-to-text transformations [32].

Model-to-model transformations transform an input model A to an output model B,
where A conforms to the metamodel A,, and B conforms to the metamodel B,,. The
transformations may be specified at the metamodel level, which enables their reuse for
arbitrary models that conform to these metamodels. Model-to-model transformations may
be classified in in-place and out-place transformations. For in-place transformations, the
input metamodel and the output metamodel are the same, i.e., A,, = B,,. For out-place
transformations, this is not the case, i.e., A, # B,,. Out-place transformations usually
require a transformation rule for each model element in the input metamodel A,,. In
case such a rule does not exist for a model element of A, the element is simply ignored
during transformation, i.e., no corresponding model element in B is created. In-place
transformations, on the other hand, copy each model element from the input model A
to the output model B. For some of the input model elements, transformation rules
exist which may change this copy-process. For example, if A,, and B, are both
then an in-place transformation rule may specify that a composition is not copied to the
output model B, but rather replaced by a regular directed association. The model-to-
model transformations in this thesis transform from to [UML] and may be classified
as in-place transformations.

Even though text may also be viewed as a form of model, model-to-text transformations
have emerged as their own category of model transformations [32]. In this thesis, model-
to-text transformations are used for automatic code generation from a Model-to-

11

2 Background and Related Work

FireDetector COSensor

{£H threshaldCO:int
1
itsCOSensor

= checkForfire():bool

Figure 2.5: Screenshot of a class diagram created with Rhapsody.

text transformations are often based on template languages, e.g., the Epsilon Generation
Language (EGL]) [211] or Acceleo [57], which define the structure of the generated text.
During transformation, template parameters are substituted by the actual output text
that should be generated [32]. This thesis uses the tool IBM Rhapsody [205] for
model-to-text transformations. The tool is described in Section

A variety of model transformation languages have been proposed. There exist imperative
languages, often employing general-purpose programming languages, that enable model
transformation via a specific Application Programming Interface (API). Examples for this
are the tools Enterprise Architect [237| and IBM Rhapsody [205], which both offer
a Java to interact with the models created with the respective tool. However, there
also exist imperative languages that are specifically created for the purpose of enabling
model transformations, e.g., the Epsilon Object Language (EQL) [138]. Another approach
to model transformation is the use of a dedicated declarative transformation language.
This type of language allows developers to specify transformation rules that are applied
to each model element in the input model. Examples for this type of language are the
Atlas Transformation Language (ATL) [129] and the Epsilon Transformation Language
[139]. Last but not least, there are also approaches that mix the two types of
transformation language, e.g, the Epsilon Framework [62], which combines [EOI]and [ETT]
among others.

2.1.2.4 IBM Rhapsody

IBM Rhapsody [205] (sometimes referred to as Rhapsody in this thesis), is a proprietary
tool developed by IBM. It provides developers with a graphical editor that
allows them to construct [UMLl models. Rhapsody provides code generation capabilities
from these models. Additionally, the tool allows for a customization of its code generation
process, as well as the user-created model, with a dedicated Java [APIL In Chapter [a
novel, model-driven code generation approach for software-implemented safety mechanisms
is presented. As a proof-of-concept, the approach is implemented in the form of a prototype
for Rhapsody. However, the approach may also be implemented for other tools, e.g.,
Papyrus [60] or Enterprise Architect [237]. This section describes how developers may use
Rhapsody to generate code from [UMLImodels, as well as how Rhapsody’s code generation
process may be modified. Both of these aspects are described in the following subheadings.

Modeling and code generation with Rhapsody: Figure shows an exemplary [UMII
class diagram modeled with Rhapsody. The class FireDetector contains an operation
(checkForFire()) and an attribute (thresholdCO0), as well as a composition relation-
ship to the class COSensor. Rhapsody is capable of automatically generating source code

12

2.1 Background

for these model elements. The generated source code for the class FireDetector
is shown in Listings and

1 #ifndef FireDetector_H 1 #include "FireDetector.h"

2 #define FireDetector_H 2

3 3 FireDetector::FireDetector() {

4 #include <oxf\oxf.h> 4

5 #1include '"COSensor.h" 5 }

6 6

7 class FireDetector { 7 FireDetector::~FireDetector() {

8 public : 8

9 FireDetector(); 9 3}

10 ~FireDetector(); 10

11 11 bool FireDetector::checkForFire() {
12 ////Operations//// 12

13 bool checkForFire(); 13 //#[operation checkForFire()

14 COSensor* getItsCOSensor(); 14 // Handwritten implementation

15 15 //#]

16 private : 16

17 int getThresholdCO(); 17 }

18 18

19 void setThresholdCO(19 COSensorx FireDetector::getItsCOSensor(){
20 int p_thresholdCO); 20 return (COSensorx) &itsCOSensor;
21 21}

22 ////Attributes//// 22

23 protected : 23 1dint FireDetector::getThresholdCO() {
24 int thresholdCo; 24 return thresholdCoO;

25 25 }

26 ////Relations and components//// 26

27 COSensor 1itsCOSensor; 27 void FireDetector::setThresholdCO(
28 28 int p_thresholdC0) {

29 29 thresholdCO = p_thresholdCO;

30 #endif 30 %

Listing 2.2: Automatically generated im-
plementation file for the class
FireDetector in the
model shown in Figure[2.5] For
legibility purposes, some com-
ments and line breaks have
been modified.

Listing 2.1: Automatically gener-
ated header file for the
class FireDetector
in the model
shown in Figure [2.5]
For legibility purposes,
some comments and
line breaks have been
modified.

Classes, attributes and operations of the model in Figure have been mapped
directly to their C4++ equivalents in the source code of Listings and [2.2] For example,
line 13 of Listing shows the declaration of operation checkForFire(), whereas lines
11-17 of Listing show the implementation for this method. Rhapsody allows developers
to supply handwritten code for each operation (e.g., line 14 of Listing . Moreover,
Rhapsody provides a proprietary runtime framework for executing [UMI] statecharts. The
behavior of classes may also be modeled and generated with this framework.

The composition from the class FireDetector to COSensor in Figure is realized
as a member variable in the generated source code (cf. line 27 of Listing . Besides
this, Rhapsody provides a submenu with a text editor to allow developers to provide
handwritten code for the initialization of the program. This code is automatically inserted
at the beginning of the main () function of the program, which is not shown in Listings
and

The code generation engine of Rhapsody: Although Rhapsody’s code generation is
proprietary, the basic process and how it may be modified is described in [109]. It is shown

13

2 Background and Related Work

Use properties to, e.g., Use a simplifier helper to
decide whether getters change Rhapsody's default
and setters should be model transformations.
generated.

PIM PSM

User Model Transformation Code Model
(Simplification) ("Simplified" UML)
e N
Post brocessin Source code Generate
P g (annotated) L (Writer))
Use the Rules Composer to
define custom rules for the

model-to-text
transformations.

Use the Post-Processor to
achieve a specific coding
style or add annotations.

Figure 2.6: The code generation process in Rhapsody (notation UML 2.5 activity diagram).
Adapted from [109].

in Figure[2.6] The code generation process starts with a user model, which is a[PIM] created
by the developer. The example shown in Figure is such a user model. At this stage,
the developer may modify certain predefined properties via a menu available in Rhapsody.
They may be used, for example, to decide whether getters and setters for an attribute
should be generated.

The first step in the code generation process is called simplification, which performs
model-to-model transformations to transform the [PIMlinto a[PSMl An example for this is
the transformation of ports into inner classes, as ports have no direct 1:1 mapping in
C—++. The simplification process may be modified by implementing a plugin for Rhapsody
with the help of the Java offered by Rhapsody. These plugins are called helpers.
Model-to-text transformations generate the source from the (simplified model). The
default model-to-text transformations may be overwritten by using the Rules Composer.
However, the Rules Composer is only available by purchasing an additional license from
IBM. The generated source code is subsequently modified by the Post-Processor, e.g., in
order to achieve a specific coding style.

This thesis presents a prototype implementation for the model-driven code generation
of software-implemented safety mechanisms as part of Chapter For this, Rhapsody’s
default code generation has to be modified. As the approach presented in Chapter
mainly utilizes model-to-model transformations, the prototype implementation is realized
by creating a plugin for the simplification process.

2.1.3 Safety Lifecycle

The aim of this thesis is to provide an automatic code generation approach for safety
mechanisms. This section presents background information on the lifecycle of safety-critical
systems as described by the safety standard IEC 61508 [116]. Furthermore, this section
shows how the approach presented in this thesis fits within this lifecycle.

The lifecycle of a safety-critical system may be described in distinct phases. The safety
standard IEC 61508 provides one such lifecycle description. IEC 61508 is chosen as the

14

2.1 Background

Concept

!

Overall scope definition

!

Hazard and risk
analysis

!

Overall safety
reguirements

Y

Overall safety
requirements allocation

NN - -~

Y
Y E/E/PE system safety
Overall planning requirements specification . Y
11 Other risk :
Overall [Overal Overall snnnsnnnnnnnafannnunnnnnns reduction measures
loperation and)| safety installation and| » pr—————— L s
maintenance validation commissioning E/E/PE Specification and
planning planning planning safety-related systems Realisation

Realisation
(see E/E/PE system
safety lifecycle)

Overall installation and

4

commiss'oning ‘
> Overall safety Back to appropriate
validation overall safety lifecycle

phase
QOverall operation, Overall modification
maintenance and repair and retrofit

Decommissioning or
disposal

\J
H H 3

Figure 2.7: The lifecycle of a safety-critical system as described by IEC 61508. The figure
is reproduced from [116], except for the dotted box around phase 10. This box
indicates that the approach of this thesis is conceptually located in phase 10 of
the lifecycle.

15

2 Background and Related Work

reference safety standard within this thesis, as its scope are general Electrical/Electronic/-
Programmable Electronic (E/E/PE) systems, i.e., it is not limited to a specific domain.
Thus, the presented approach is not bound to one specific domain. Figure shows the
safety lifecycle as defined in IEC 61508.

In the early phases of the lifecycle (phase 1-5), the overall system is designed. This
includes the usual tasks associated with requirements engineering, but also encompasses a
hazard and risk analysis for the system (phase 3). This type of analysis is necessary for
safety-critical systems, because a failure of the system may cause harm to humans or the
environment. Based on this hazard and risk analysis, safety requirements are established
and allocated to different parts of the system (phases 4 and 5). Their goal is to mitigate
the previously identified hazards and risks. Note that this may also include safety mech-
anisms not limited to [E/E/PE]| aspects, e.g., mechanical safety mechanisms. The safety
mechanisms that are unrelated to aspects are further specified and realized in
phase 11, which is carried out in parallel to phases 6-10.

Once the safety requirements are allocated to specific parts of the system, i.e., phase
5 is completed, dedicated planning phases (phase 6-8) are used to prepare other phases
that appear later in the lifecycle. This includes planning for operation and maintenance
(phase 6), for safety validation (phase 7) and for the installation and commissioning of the
system (phase 8). In parallel to these planning phases, a safety requirements specification,
which covers those safety mechanisms that are realized with aspects, is created
(phase 9). Based on this requirements specification, the actual system is realized (phase
10). Subsequently, the system is installed, validated and taken in operation (phases 12-14).
In case the system is modified during operation (phase 15), an iterative process begins at
the phase at which the modification has taken place. The final phase, phase 16, deals with
the decommission or disposal of the system.

This thesis provides a novel approach for the automatic code generation of safety mech-
anisms. Thus, it is conceptually located within phase 10 of the safety lifecycle, which
deals with the actual realization of the system. Based on the safety requirements speci-
fication that is the result of phase 9, the approach presented in this thesis is capable of
automatically generating the source code for some of the safety mechanisms that the safety
requirements specification describes.

Phase 10, the realization phase of the safety lifecycle, is further subdivided into six
phases. These are shown in Figure 2.8] The initial phase, phase 10.1, creates a system
design requirements specification. Based on this specification the system may be designed
and developed in phase 10.3. Safety validation and its planning are considered in phases
10.2 and 10.6, while installation and operation are considered in phase 10.5. The ap-
proach that this thesis presents is conceptually located within phase 10.3, i.e, design and
development of the system. In this phase, the approach within this thesis may contribute
during design, by providing model representations for the safety mechanisms that are used
within the system. Furthermore, it may improve development, because source code may
be automatically generated from these model representations.

2.1.4 Hardware-Implemented Safety Mechanisms

Safety-critical systems often employ special-purpose computing hardware that provides a
set of safety mechanisms not included in commercial off-the-shelf hardware. The (auto-
matic) generation of physical hardware is outside the scope of this thesis. However, the
safety hardware provided by some microcontrollers often requires an initial configuration
at the start of the application, e.g., setting certain timeouts or which error types should be
detected. A similar configuration is required for many hardware peripherals that are also
relevant for commercial off-the-shelf hardware, e.g., configuring a Universal Asynchronous

16

2.1 Background

Box 10 in the overall
safety lifecycle

E/EIPE
safety-related
systems

E/E/PE system safety lifecycle (in realisation phase)
i E/E/PE system design
requirements specification

v TR Yo

E/E/PE system safety : E/EPE system design & .
validation planning . ASICs & software .
. (see Figure 3 & also IEC 61508-3) :

E/E/PE system
integration

Realisation

(see E/E/PE system
safety lifecycle)

E/E/PE system installation,
* & maintenance procedures
E/E/PE system
safety validation
To Box 14 in the
A —— ' overall safety lifecycle
One E/E/PE safety

1
lifecycle for each :
E/E/PE safety-related |

i

To Box 12 in the
overall safety lifecycle

Figure 2.8: The subphases of the realization phase of a safety-critical system. Adapted
from [116]. The dotted box around phase 10.3 indicates that this is the sub-
phase, where the approach of this thesis is conceptually located.

Receiver Transmitter (UART) regarding its use of a parity bit for data transmission. This
initial configuration of the hardware is achieved via software that is executed at the startup
of the application. The source code for this configuration may be generated automatically,
which is described in Chapter [l This section provides an overview of the concepts used
in Chapter @ i.e., a general introduction to microcontrollers (cf. Section , a de-
scription of how these microcontrollers may be used to interact with peripheral hardware
(cf. Section 2.1.4.2) and a brief introduction to Hardware Abstraction Layers (HATL) (cf.

Section [2.1.4.3]).

2.1.4.1 Microcontroller

A microcontroller is a computer system on a single chip [I31]. This includes a Central
Processing Unit ([CPU)), memory, timing units, as well as a handful of other devices, e.g.,
an Analog Digital Converter (ADC) or communication interfaces such as [TART] Mi-
crocontrollers are often used as part of an embedded system [I3I]. There exist multiple
definitions for embedded systems that slightly differ from each other, e.g., [24] (176 267].
This thesis adopts the following definition of an embedded system: “An embedded system
can be defined as a computer system with the software and operating system embedded
into it to provide a specific product or a part of a product for a specific application.” [131].

As part of an embedded system, microcontrollers often have to communicate with other
system entities, e.g., sensors, actuators or other microcontrollers that are part of the em-
bedded system. For this purpose, microcontrollers contain a set of hardware interfaces
that may be used for communication with these other system entities or for performing
other essential tasks, e.g., converting analog to digital values. These hardware interfaces
are often configured via pins, which is a term that refers to the physical leads of the micro-
controller. They may be used to connect with other devices electronically, i.e., a voltage

17

2 Background and Related Work

may be applied to them. The currently applied voltage of a pin may be set or read by
the microcontroller. The process of configuring the pins of a microcontroller is further
explained in Section [2.1.4.2]

There exist numerous hardware interfaces, some of which may be found in commod-
ity microcontrollers, e.g., General-Purpose Input/Outputs (GPIOk), and some of which are
only found in microcontrollers dedicated to the safety domain, e.g., hardware watchdog ele-
ments as in the Aurix TC297 [111] microcontroller. In order to limit the scope of the thesis,
only a small subset of hardware interfaces is considered in-depth in Chapter [6l However,
the automatic code generation approach described in Chapter [6] may be extended to in-
clude other hardware interfaces. The hardware interfaces that are considered in Chapter [6]
may be found in most commodity microcontrollers and are:

e (General-Purpose Input/Output (GPIOJ): This hardware interface may be used to
detect whether a voltage is applied to a specific pin (input mode). Conversely, the
same hardware interface may be used to create a voltage on the pin (output mode).
With this capability, are often used to interact with hardware peripherals,
e.g., sensors [12§].

e Universal Asynchronous Receier Transmitter (UART]): This is a serial interface that
uses one pin to transmit data in compliance with the communication proto-
col, while another pin is used to receive data. Communication via requires
corresponding configuration of the sender and the receiver, e.g., both need to use the
same baudrate [128]. Some also contain safety relevant configurations, e.g.,
they may use an additional bit for each message to perform parity checks [115] [I7§].

e Analog Digital Converter (ADC): This hardware interface may be used to convert
analog data into digital values. This is often necessary to further process the output
obtained by sensors within the microcontroller [128]. Some also contain safety
mechanisms, e.g., broken-wire-detection [115].

e Pulse Width Modulation (PWM): This hardware interface provides access to the
modulation technique with the same name, i.e., encoding messages by varying the
power supply of digital pins. While it may theoretically be realized in software, many
microcontrollers provide a dedicated hardware element for this functionality [128]. A
common application for the use of PWMk is the control of motor drives [86]. Some
[PWMk also contain safety mechanisms, e.g., by writing the outputs redundantly or
by performing a read back operation directly after writing [243].

2.1.4.2 Pin Configuration

This section further elaborates on the concepts of pins, which is introduced briefly in
Section Pins may be used to configure hardware interfaces of microcontrollers.
They may be manufactured in different package variants. Two popular variants are the
Quad Flaot Package package variant, where the pins are located on the sides of the
(rectangular) body of the microcontroller, as well as the Ball Grid Array (BGA]) package
variant, where the pins are located at the bottom of the microcontroller. Figure [2.9shows
an example pin layout for the variant, while Figure 2.10] shows an example for the
[BGAlpackage variant. Both variants have in common that their pins have dedicated names,
e.g., P21.7 in Figure2.10] The data sheet describes the possible functionality this pin may
assume during runtime. For pin P21.7 in Figure this includes, among others, the
possibility of using the pin as a Whether this serves as an input or output
has to be configured by the program code of the microcontroller. Similar configurations

18

2.1 Background

- a O
N.nv,m.w.-.g.nv.nov\.oooocz-.o'\.oooo'-.wn
CO0O 00000 MMOMMOOCONDOD Tt v v v v v «
cococococococ0c0cO0cO0COCC>>0o0c0c0a0a0a000n
/ C OO O U TOHONTTODDOMNOUOUTOHONTOOOMOMNOO \
,O- D OO OO OO O W OWOWOMO®WWMWWOMMDNMNDN~
Po.1 [1 O 751 P14
Po.o []2 74 P15
P0.10 [] 3 73] P1.10
P0.9 []4 72 [P1.11
P3.2[]5 71] P1.12
P3.1[]s 70] P1.13
P3.0[]7 69 [] P1.14
ussDMm [] 8 68 [] P1.15
usB DP []9 67 |] TCK
vBuUS [] 10 66] TMS
vDDP [11 65| _] PORST
vbbc [] 12 64 [] vDDC
HIB_1I0_1[] 13 XMC4500 63] vsso
HIB_IO_ 0[] 14 62 [] XTAL2
RTC_XTAL1 [] 15 (Top View) 61 [] XTAU
RTC XTAL2 [] 16 60] vDDP
VBAT[] 17 59] vss
P15.3 [_] 18 58] P5.0
P15.2 [19 57 |] P5.1
P14.15 [] 20 56] P5.2
P14.14 [] 21 55] P5.7
P14.13 [| 22 54] P2.6
P14.12 [] 23 53] P2.7
P14.7 [] 24 52] P20
P1a.6 |25 51] P2.1
O N O DO~ NOTUOHLOMNDDO—~NMTWL ONOWOOOO
\ NN ANANODODOOOOOONMONMST T T T T T T T T T 0O /
BT OoNmoOQULICALCHDOOOWTOLONDOW T ON
vvvvvvZ'-“%vatom".".DO",NNNNNN
- - (X gv—-—-—c-mmogmq_o_g_g_g_g_
[0 W « My o M « Wy« B « M~ S § > [o W o W o WY o WY« NN « MRS a
>
(a) Pin layout according to the data sheet.
Function Outputs
ALT1 [ALT2 |ALT3 |ALT4 |[ALT5S |ALT6 |ALT7
P00 ERUO0. ERUO0. CCU40.0UT USICO_CHO. [USICO_CH1.
PDOUTO GOUTO 0 SELOO SELOO
P01 ERUO0. ERUO0. CCU40.0UT SCU.
PDOUT1 GOUT1 1 VDROP
P02 ERUO. ERUO0. CCU40.0UT 'VADCO.
PDOUT2 GOUT2 2 EMUX02
P03 ERUO. ERUO0. CCU40.0UT 'VADCO.
PDOUT3 GOUT3 3 EMUX01
P04 CCU40.0UT 'VADCO. WWDT.
1 EMUX00 SERVICE_O
uT
POS CCU40.0UT
BAAAAANARARARANARAAAARENS ~ 0
' 10t X . . .
Jrtibiiisnin o o goour MOLKOUT [oouTS
Q P07 CCU40.0UT USICO_CHO. [USICO_CH1.
1 SCLKOUT |DOUTO
(b) Picture of the physical microcontroller. (c) Excerpt of data sheet with pin information.

Figure 2.9: The XMC4500 microcontroller [IT5] in the Quad Flat Package (QFP)) variant
and screenshots from its data sheet [113].

19

2 Background and Related Work

m

20 19 18 17 16 15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1
Vvss P323 | P322 | P320 | P33.13 | P33.11| P339 P33.7 | P335 | P333 | P331 ANS AN10 [VAGND1|VAREF1| VDDM | VSSM | AN20 | AN21 NC
VGATE1
VEXT vss P324 e P33.12 | P33.10 | P3338 P336 | P334 | P332 | P330 AN2 ANS AN11 AN13 | AN16 | AN18 | AN19 AN24 AN25
P23.0 | VEXT AN26 AN27
17 16 15 14 13 12 1 10 9 8 7 6 5 4

P232 | P231 Ul vss P327 | P326 | P33.15 | P345 | P343 | P341 ANt AN3 ANT AN9 AN14 | AN17 NC U AN23 AN29

P234 | P233 T| P235 | Vvss P325 | P33.14 | P344 | P342 |VEVRSB| AND AN4 ANG AN12 AN1S | AN22 | AN3O |T VAGND2 [VAREF2

P22 | P23 R| P236 | P237 | Top-View A3 | ANt R ANSS | ANG3
vss vss

P220 | P221 P| P225 | P224 VDD VSS | (AGBT | (AGBT | VsS VDD AN34 | AN32 |P AN37 AN39
TXOP) | TXON)

VDDP3 | VDD N| P22.7 | P226 VDD Vvss Vvss vss vss VDD AN33 | AN36 [N AN4S AN44
XTAL1 | XTAL2 M P229 | P2238 vss vss vss vss vss vss AN4D | AN41 M AN4T AN4B
Vvss vss
vss TRST L| P22.11 | P22.10 (AGBT vss vss vss vss vss VSS | (AGBT AN42 | AN43 |L P00.12 | P0O.11
ERR) CLKN)

NG vss
P214 | P212 K| P21.0 | TMS vss vss Vvss vss vss VSS | (AGBT P00.10 | PO0.8 |K P00.9 | P0O.7
(VDDPSB)| CLKP)

P215 | P21.3 J| P21.1 TCK Vvss vss Vvss vss vss vss PO1.7 | P006 |J P00.5 | PD0.4
P20.0 | P20.2 H P216 | P217 VDD Vvss Vvss vss vss VoD PO1.5 | P016 |H P00.3 | P00.2

(VDDSB)

P23 | P21 G| PORST | ESR1 voo | ves | ves | ves | vss (v\r;g[s)s) Po13 | Pot4 [G Po0.1 | PO0O
P208 | P20.7 F| P206 | ESRO P02.10 | PO2.11 |F P02.7 | PD2.8
P20.11 | P20.10 E| P209 | vss [vDDFL3| P155 | P142 | P120 | P121 | P110 | P11.1 | P117 | P11.8 [P11.13| Vvss | Po29 |E PO25 | PO26
P20.13 | P20.12 D[vss |vooFL3| P157 | P158 | P147 | P149 [P1410| P11.4 | P116 | P11.5 | P11.14 | P11.15 | VFLEX| VSS [D P023 | PO24
17 16 15 14 13 12 1 10 9 8 7 6 5 4
P20.14 | P15.2 P02.1 P02.2
P15.0 VSS |VDDP3 | P153 | P140 | P144 P143 P146 | P13.0 | P132 | P11.3 | P11.10 | P11.12| P10.1 P10.4 | P105 | P10.8 | VEXT Vss P02.0
VSS |VDDP3 | P15.1 | P154 | P156 | P14.1 P145 P148 | P131 | P133 | P11.2 | P119 | P11.11| P10.0 | P10.3 | P10.2 | P10.6 | P10.7 | VEXT NC
20 19 18 17 16 15 14 13 12 " 10 9 8 7 6 5 4 3 2 1

(a) Pin layout according to the data sheet.
Pin Symbol Ctrl Type Function
N21 P21.7 | A2/ General-purpose input
TIN5S PU/ GTM input
DAP2 VDDP3 OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic
TGI3 OCDS input
ETHRXERB ETH input
ITSINA GPT120 input
P21.7 00 General-purpose output
ITOUTS8 o1 GTM output

(b) Picture of the physical microcontroller.

(c) Excerpt of the data sheet with information about pin P21.7.

Figure 2.10: The Aurix TC297 microcontroller [I11] in the Ball Grid Array (BGA]) 292
package variant and screenshots from its data sheet [112].

20

2.1 Background

have to be carried out for the other hardware interfaces described in Section Often,
this includes not only the configuration of a pin, but also choosing which pin is used for
a specific hardware interface. For example, for the LPC1768 microcontroller [I78], the
UART1 interface requires two pins for transmitting and receiving data. These two pins
may be chosen from sixteen possible candidates.

During this pin configuration process, it is important that no pin is configured twice for
different interfaces. Such a double allocation of a pin also poses a possible safety risk, as
it may lead to faulty behavior of the hardware interfaces that use the doubly allocated
pin. The allocation of these pins to hardware interfaces, as well as the remaining pin-
independent configuration of these hardware interfaces, may be programmed manually.
This often involves a lot of low-level code that addresses individual registers and bits.
Programming at the level of registers and bits requires developers to reason at a different
level of abstraction compared to [TMIlbased tools. This may impede the developer
workflow. It also poses a potential risk for the developer to make programming mistakes
that may ultimately lead to bugs in the system. Therefore, Chapter [f] introduces an
automatic code generation approach that generates the corresponding low-level source
code for the initialization of the hardware interfaces based on a high-level specification
designed by developers. This enables developers to work continuously at a high-level of
abstraction as provided by [MDDI There also exist some tools by microcontroller
manufacturers for a similar purpose. Section discusses these tools and how the tool
approach presented in Chapter [6] differs from them.

2.1.4.3 Hardware Abstraction Layer (HAL)

The automatic code generation approach for the initialization of hardware interfaces de-
scribed in Chapter [6] utilizes the concept of a This section provides a short overview
on [HATE, while Section provides an overview of existing [HATE in the context of
embedded systems. In general, a serves as an intermediate layer between application
software and hardware. It provides developers with an [AP]] to access hardware elements.
Depending on the context, [HALk are defined differently. For example, in the context of
modern desktop operating systems, e.g., Windows, all hardware accesses, e.g., register ac-
cess, memory access or interrupt handling, are abstracted by a [HAI] that is part of the
operating system [247]. In other contexts, e.g., for microcontrollers that operate without
an operating system, a may be a standalone [APIl that also encapsulates all hardware
accesses [271].

This thesis presents a according to the latter definition, i.e., as a standalone,
object-oriented [API, which may be used regardless of whether the application on the
microcontroller uses an operating system. Due to the limited scope of this thesis, the
presented is limited to the hardware interfaces described in Section 2.1.4.1] However,
Chapter [0} where the [HATlis introduced, describes how other hardware interfaces may be
integrated into this approach.

2.1.5 Software-Implemented Safety Mechanisms

While safety mechanisms may be realized with special-purpose hardware, as described in
Section sone safety mechanisms may alternatively be realized in software. Usually,
this leads to a larger memory and/or runtime overhead. On the other hand, the recurring
manufacturing costs for each produced system are reduced [30]. From a code generation
perspective, software-implemented safety mechanisms may be completely generated, i.e.,
in contrast to hardware-implemented safety mechanisms the code generation is not limited
to the initialization of the safety mechanism. This section presents background information

21

2 Background and Related Work

on those software-implemented safety mechanisms for which a novel code generation ap-
proach is provided in Chapter 5| These include error detecting codes (cf. Section [2.1.5.1]),
replication-based approaches (cf. Section[2.1.5.2)), sanity checking of (intermediate) results

(cf. Section [2.1.5.3)), voting mechanisms (cf. Section [2.1.5.4]), the monitoring of timing
constraints (cf. Section [2.1.5.5) and the error handling strategy graceful degradation (cf.

Section [2.1.5.6]).

2.1.5.1 Safety Mechanism: Error Detecting Codes

An Error Detecting Code (EDC]) provides a checksum (coded block of k bits) for a number
of n bits (k < n) [116]. This checksum may be employed to detect whether the n bits used
to create the checksum have been modified at some point in time since the creation of the
checksum. Thus, [EDCk may be used as a safety mechanism to detect errors. This section
introduces the concept of [EDCE to the extent they are used in this thesis.

are recommended multiple times in TEC 61508 parts 2 and 3, e.g., for the purpose
of protecting communication messages or for the purpose of memory protection. Com-
munication messages, e.g., sent over a bus or wireless links, may be corrupted during
transmission [116]. A checksum that is attached to the message may enable the receiver of
the message to detect whether the message has been corrupted. Memory protection, on the
other hand, refers to protection from the issue of soft errors. The term soft error describes
the occurrence of a spontaneous bit flip in the memory of a microcontroller, which may be
caused by cosmic rays or alpha particles in the packaging material [I9]. Checksums, stored
in the memory, may be used to detect such soft errors [30].

While IEC 61508 recommends the use of [EDCE as a safety mechanism, it also remarks
upon the fact that many are only capable of detecting an error up to a maximum of
r affected bits. The specific value for r depends on the type of [EDC] used. Furthermore,
some also provide the ability to automatically correct some of the detected errors.
However, this automatic error correction often is only capable of correcting a predetermined
fraction of the detected errors. Therefore, IEC 61508 recommends to discard faulty data
in most cases [116].

This thesis uses two types of [EDCk: a parity check and a Cycling Redundancy Check
(CRCO). It should be noted that these [EDCk only serve as examples within this thesis.
The presented concept is independent of the particular employed and therefore other
[EDCE may be used, e.g., a Hamming code [30]. A parity check uses a single bit (k = 1)
to indicate whether the n bits that should be encoded add up to an even number [I70].
This enables the detection of 50% of bit flips, i.e., whenever an uneven number of bits are
affected. Error correction is not possible with a parity check, as the code does not provide
information about how many bits haven been flipped. Even such a simple [EDCl contains
configuration values, e.g., whether an even number of bits is encoded with value 1 or value
0.

are a class of cyclic linear block codes, i.e., end-around bit shifts produce another
valid codeword [170]. Codewords may be seen as polynomials, e.g., the codeword 10101101
may be represented as the polynomial D(x) = 27 + 2° + 2% + 22 + 1. A k-bit data
word may thus be represented by a polynomial of degree k — 1. A key element of
are the generator polynomials, G(z), which are used during the encoding and decoding
step. As the specific encoding and decoding steps are irrelevant for this thesis, cf. [170]
for an introduction to in the context of soft errors. The effectiveness of the error
detection of depends on the degree of the generator polynomial, as well as the specific
polynomial of that degree. In this thesis, an 8-bit (0x2F), 16-bit (0x1021) and 32-bit
(0xedb88320) generator polynomial are used, which are recommended by the AUTomotive
Open System ARchitecture (AUTOSARI) standard [I5]. Most generator polynomials are

22

2.1 Background

capable of detecting single-bit errors. Double-bit errors are also detectable, provided the
distance between the two erroneous bits is not too large (this distance depends on the
degree of the generator polynomial). A main advantage of is their ability to detect
burst errors. These are errors in which only adjacent bits are erroneous. In case the
generator polynomial contains the term 2% = 1, burst errors with a length equal to the
degree of the generator polynomial may be detected.

Traditionally, have been employed frequently as hardware-implemented safety
mechanisms, e.g., [46] 272]. For the purpose of memory protection, these solutions result in
recurring hardware costs per manufactured microcontroller. Software-implemented [EDCE,
although slower in their decoding and encoding steps, have been proposed to reduce the
recurring manufacturing costs [30, 68]. The additional runtime and memory overhead may
be minimized by only protecting the safety-critical parts of the application [30]. Software
implementations of may also pre-compute several key values of the encoding and
decoding step to provide a faster calculation of the checksum. While this approach has been
found faster than classic, bit-by-bit calculations that mimic hardware implementations,
they incur the additional memory overhead of storing the pre-computed values [227]. For
the specific generator polynomials used as part of the prototype implementation presented
in Section these overheads are 256 bytes for an 8-bit checksum, 512 bytes for a 16-bit
checksum and 1024 byte for a 32 bit checksum [227].

2.1.5.2 Safety Mechanism: M-out-of-N Pattern

This section presents the M-out-of-N pattern [10], a safety mechanism based on redun-
dancy. In this pattern, there exist N versions of the data. When the data is accessed, at
least M of the N versions have to agree with each other (M < N). Otherwise, an error has
been detected. The N versions of the data are often referred to as replicas. Depending on
the context, the term replicas may be used to refer to all IV versions of the data, or only to
N — 1 versions, while a single version of the data is treated as the original. In this thesis,
the term replica is used to refer only to one or more of the N — 1 redundant versions of
the original, whereas the term wversion may refer to any of the N versions of the data. The
term agreement may be interpreted differently according to the specific realization of the
M-out-of-N pattern. The simplest type of agreement is that M replicas and the original
have to be of the exact same value. Other types of agreement may introduce a certain
boundary in which unequal versions are still treated as acceptably safe (e.g., one version
has a value of 4.99, while the other has a value of 5). There also exist realizations of this
pattern where voting strategies of differing complexity are employed (cf. Section
for an introduction to the safety mechanism voting).

The N versions of the data may exist either as homogeneous or heterogeneous redun-
dancy [10]. In homogeneous redundancy, all versions of the data are exact copies of one
another, e.g., by copying memory or using another sensor of the exact same type as the
original. In heterogeneous redundancy, the versions of the data are acquired in different
ways, e.g., using a Carbon Monozide (CQ)) sensor and an infrared sensor for determining
whether a fire occurs in a fire detection system. The number of versions employed in
safety-critical systems is usually three to five [144]. However, two versions are also used
in case additional safety mechanisms are employed [30, 63]. Two well known examples
of the M-out-of-N pattern are the One’s Complement pattern and Triple Modular Re-
dundancy (TMRI), both of which may be automatically generated by the code generation
approach described in Section [5.6]

In the One’s Complement pattern, there is one replica of the original, and both versions
of the data have to agree with each other (M = N = 2). Additionally, the replica of the
data is stored in inverted fashion, e.g., if the original data is 0000, the replica is stored

23

2 Background and Related Work

as 1111. This inverted storage of the replica helps to detect stuck-at errors, where a data
bus always returns a fixed value. This additional detection ability requires the additional
runtime overhead of performing an inversion operation when storing and/or checking the
data.

In [TMR], there exist three versions of the data out of which at least two have to agree
with each other (M = 2 and N = 3). It is widely used in safety-critical hardware imple-
mentations [10], but may also be applied to software implementations [52]. The replicas
may be stored in inverted fashion, as in the One’s Complement pattern, or they may be
exact copies of the original. The use of three versions of the data enables error correction.
When two versions agree with each other, but not the third, one may assume that the
third version is erroneous and the other two are correct. Thus, the third version may be
restored to the value of the other two. Whether this assumption is acceptable from a safety
perspective depends on the specific system being developed.

2.1.5.3 Safety Mechanism: Sanity Checking

This section presents the safety mechanism sanity checking, which assesses whether some
value, e.g., sensor data, is plausible [10, 52]. It may be used to estimate whether the
source that delivers the data works according to its specifications, e.g., a sensor in a
fire detection system. For example, most sensors return a measured value within a given
range. A sanity check may be used to check whether the value obtained by the sensor
conforms to the sensor’s specified measurement range. If it does not, the sensor is most
likely erroneous. While the sanity check may be used to detect some types of errors, it is
not capable of assuring that the checked system functions properly. For example, a sensor
may measure values erroneously with a constant offset. As long as this offset does not
result in a value outside the specification range of the sensor, the error is not detected by
this safety mechanism.

This thesis uses a numeric range check as a form of sanity checking. Numeric variables
may be assigned a lower and upper bound, which is checked upon access. In case the
value of the variable is outside the specified range, an error has been detected. The model
representation and code generation approach for this concept is described in Section

2.1.5.4 Safety Mechanism: Voting

This section presents the safety mechanism voting, which aims to determine a ground truth
(or at least establish a certain degree of trust) among redundant inputs, e.g., as provided
by the M-out-of-N pattern described in Section A simple example for a voting
process is majority voting, where all the inputs are compared to each other. The value
on which the most inputs agree with each other is seen as the ground truth. A taxonomy
on voting mechanisms has been published in [144], which distinguishes two basic types of
voting: selection voters and amalgamation voters. Selection voters compare their inputs
with each other and select one of these inputs as the ground truth. This type of voting may
also fail, e.g., in case the selection criteria are not met for any of the inputs. In this case,
an error is raised. The majority voter described above is an example for a selection voter.
Amalgamation voters use their inputs to create a new value that is seen as the ground truth.
In most cases this new value is obtained by some type of calculation, e.g., calculating the
arithmetic mean among all inputs. Section presents a model representation and an
automatic code generation approach for different voting mechanisms. The specific voting
mechanisms used are:

24

2.1 Background

e Selection voters:

— A unanimity voter, which only returns a result in case all inputs agree with each
other. Otherwise, an error is raised.

— A majority voter, that returns the value of the majority of N inputs. In case
less than L%J + 1 inputs agree with each other, an error is raised.

— A plurality voter, which compares the values of N inputs. If at least M inputs
agree with each other, this value is returned. Otherwise, an error is raised.
In contrast to the majority voter, M may be less (or more) than L%J + 1.
In case M is less than a strict majority, ties may occur. The handling of
ties is usually application-dependent and may include: arbitrary tie-breaks;
considering additional, application-specific heuristics; or raising an error with
ties being interpreted as a lack of trust in the voting result.

— A consensus voter, that compares the values of N inputs. The value on which
the most inputs agree is returned. In contrast to the majority and the plurality
voter, there is no fixed number of inputs that have to agree with each other.
Consequently, this type of voter always returns a result and does not signal an
error. There may occur ties, which may be resolved arbitrarily or by considering
application-specific heuristics. In contrast to plurality voting, raising an error
in response to a tie is not possible in consensus voting, as the consensus voter
is expected to always return a result.

— A median voter, which selects the median value among N inputs. This type of
voter always returns a result.

e Amalgamation voters:

— An average voter, that calculates the average (arithmetic mean) among the
inputs and returns this value. This type of voter always returns a result.

— A weighted average voter, which calculates a weighted average among the inputs.
For this purpose, each of the inputs is assigned a weight. In this thesis, only
static weights assigned during development are used. For variants of this voter

that update their weights dynamically, refer to Section [2.2.3.4] This type of
voter always returns a result.

Section [2.2.3.4] presents additional voting mechanisms that are not realized in this thesis.
However, as the code generation approach described in Section is extensible, these
additional voting mechanisms may be integrated into the approach as future work.

2.1.5.5 Safety Mechanism: Timing Constraint Monitoring

Timing is often an important issue in safety-critical systems, e.g., in the case of an au-
tonomous emergency braking system, which has to react within a given time interval in
order to prevent accidents [I21]. While the timing of a safety-critical system is often
extensively analyzed during development (e.g., [121], [122]), some authors argue that the
timing behavior of the system should also be monitored during runtime, e.g., [13, 50, [168].
This thesis provides a novel, model-driven code generation approach for timing constraint
monitoring during runtime (cf. Section . This section presents background informa-
tion on this type of monitoring. Additional related work on static timing analysis during
development is described in Section

In timing analysis, an end-to-end execution path describes a series of actions on a chain
of events that is executed in response to a certain stimulus [I12I]. For example, this may

25

2 Background and Related Work

comprise the pre- and post-processing steps that are applied to a fresh sample of sensor
information, as well as the subsequent activation of an actuator in response to the sensor
information. The execution path may consist of individual tasks, each of which accom-
plishes some distinct feature on the execution path, e.g., a task for filtering the sensor
information or a task for controlling the actuator. The tasks themselves, in turn, may
consist of several runnables that are subroutines within a specific task. Such runnables
may be directly mapped to the source code level, i.e., a runnable corresponds to a method
(operation) inside a class [I20]. The code generation approach described in Section
generates source code for monitoring the timing constraint on operations, i.e., runnables.

An important characteristic of timing constraint monitoring is its probe overhead. The
steps of the monitoring process require time and therefore influence the timing of the
runnable that is monitored. Therefore, a small runtime overhead is pursued. Furthermore,
the probe overhead should be constant if possible. A constant probe overhead may be
taken into account during static timing analysis and thus allows for the combination of
runtime monitoring and static analysis.

2.1.5.6 Safety Mechanism: Graceful Degradation

Graceful Degradation is an error handling concept that may be applied to various system
levels. In this thesis, it is applied at the software application level as defined by [226, p.
69]: “a smooth change of some distinct system feature to a lower state as a response to
errors”. The application of graceful degradation to other system levels, e.g., the hardware
level, is described in Section[2.2.3.6] The lower state mentioned in the previous description
may be achieved by removing an erroneous component from the system or by replacing
an erroneous component with another component of lower quality. Sometimes, in the
context of graceful degradation, the term service is used instead of component. These
terms are synonyms and this thesis uses these terms interchangeably. An example for
the replacement of a component may be found in the semi-automated driving domain,
where two types of cruise control exist: Adaptive Cruise Control (ACC)) and Dynamic
Cruise Control (DCC)) [195]. is a semi-automated driving mode, in which the vehicle
automatically controls the throttle and brake in order to maintain a fixed speed set by the
driver. [ACC|provides the additional ability to automatically maintain a safe distance to the
car in front. For this,[ACCluses a radar. Radars may malfunction, either due to an internal
error or due to poor environmental conditions, e.g., mist. In case a radar malfunction is
detected in mode, the car may gracefully degrade to This provides the driver
with a lower quality version of cruise control.

The code generation approach described in Chapter [5| uses a design pattern for graceful
degradation for its software architecture. The pattern was initially described in [226] and is
summarized in the following. Figure shows a graphical representation of the pattern.
Besides the components that make up the actual application, the pattern consists of three
entities:

e Omne or more notifiers monitor the system for errors (cf. action (1) in Figure 2.11)).
In most cases, these notifiers observe a specific component of the system. Once a
notifier has detected an error, it reports this error, as well as the component in which
the error originated, to the assessor (cf. action (2) in Figure 2.11)).

e The assessor is responsible for calculating a new system state based on the type
of error (cf. action (3) in Figure [2.11)). This may include removing the erroneous
component from the system, as well as determining suitable alternative providers
for the consumer of a service. Depending on the specific type of degradation (see

26

2.1 Background

|

(1) Notifier(s) .
monitor the system [Error detected]%[(2) Notifier informs J

Assessor of error
for errors

L[No error detected]

(5) Loader(s) load
(3) Assessor
new system state (4) Assessor sends)
R [Safe state exists] calculates new
(e.g., alternative new state to Loader
. system state
provider)

[No safe state exists]
i
(6) Other error
handling (e.g.,
emergency stop)

Figure 2.11: A design pattern for graceful degradation. Italicized font is used to highlight
the acting entities of the pattern (notifier, assessor and loader). Adapted
from [226] (UML 2.5 activity diagram).

below), the assessor may also determine which other components have been affected
by an error in its calculation of the new system state. Once a suitable system state
is found, it is sent to the loader. In case no safe state is found by the assessor, other
error handling mechanisms are executed, e.g., an emergency stop of the system (cf.

action (6) in Figure [2.11]).

e One or more Loaders are responsible for degrading the system state to the state
chosen by the assessor.

2.1.6 ANother Tool for Language Recognition (ANTLR)

This section describes [192], which is a Java-based, object-oriented parser gener-
ator. The code generation approach for safety mechanisms presented in this thesis starts
at the requirements level, where safety requirements are parsed in regards to the safety
mechanisms they contain (cf. Chapter . In order to automate this parsing process, the
safety requirements have to be specified according to a specific grammar. ANTLR] provides
the capability to specify such grammars. Furthermore, it enables the automatic genera-
tion of a corresponding parser that provides the necessary information about the safety
mechanisms in a machine-readable format. The following description of is based
on [191].

The syntax for grammars is similar to Extended Backus—-Naur form (EBNE]).
Moreover, differentiates between lezer and parser rules. While lexer rules are
written in uppercase, parser rules are written in lowercase. A parser rule may reference
lexer rules or other parser rules. Lexer rules, on the other hand, may only consist of
regular expressions, a sequence of terminal characters or reference other lexer rules. When
the [ANTLR] framework is used to parse an input file according to a specific grammar, the
framework uses the lexer rules to create tokens based on the characters from the input file.
These tokens are subsequently utilized by the framework to determine whether a parser
rule is applicable for the input file, which ultimately results in the creation of a parse
tree representing the content of the file (provided the input file conforms to the [ANTLRI]
grammar). The parse tree may be traversed with the Java of ANTLRI

27

O~ O Ut WN

2 Background and Related Work

//Each grammar has a name corresponding to the filename in which it is defined.
grammar Example;

//Parser rule that expects a lexer rule (HELLO), a parser rule (name)
//and the end of the file to be read (EOF).
root : HELLO name EOF;

//Parser rule that expects another lexer rule (CHAR_SET).
name : CHAR_SET;

//Lexer rule that expects one of the two character sequences (’Hello’ or ’Good Morning?’).
HELLO : ’Hello’ | ’Good Morning’

//Example for a lexer rule that contains a regular expression.
CHAR_SET : [a-zA-Z+]+;

Listing 2.3: Example of an ANTLR grammar.

Listing shows an example for an grammar. Each grammar is
defined in a textfile with the same name as the grammar (cf. line 2 in Listing .
Each grammar contains at least one start rule (cf. line 6 in Listing [2.3), which is a
parser rule on which no other rule depends. In Listing [2.3] this start rule references one
other parser rule (defined in line 9) and a lexer rule (defined in line 12). The parser
rule defined in line 9 references another lexer rule, which is defined in line 15, i.e.; an
arbitrary combination of lower case and uppercase letters. The lexer rule defined in line
12, on the other hand, specifies alternative input possibilities, i.e., the input file may
begin with either the character sequence “Hello” or “Good morning”. Thus, the example
grammar shown in Listing [2.3]is capable of parsing input files with a single line of text that
either reads “Hello <name>" or “Good morning <name>", where <name> is an arbitrary
combination of characters. If the input file does not conform to this grammar, the
framework signals a parsing error when a character sequence not matching a grammar rule
is encountered.

2.2 Related Work

The goal of this thesis is an approach for the automatic code generation of safety
mechanisms. This section discusses approaches that are related to this goal. It groups
categories of related work and summarizes them, before selected approaches are discussed
in detail and how they differ from the approach presented in this thesis. Furthermore,
orthogonal approaches are highlighted, i.e., approaches that may be used in conjunction
with the one presented in this thesis. Section[2.2.1|presents related work on code generation,
while Section discusses modeling languages suitable for modeling safety mechanisms.
Section [2.2.3] presents related work on improving the development of safety-critical systems,
while Section provides a brief summary of the discussed approaches and highlights
the research gaps that are addressed by this thesis.

2.2.1 Code Generation

One of the research gaps addressed by this thesis is the automatic code generation of safety
mechanisms via model transformations (RG3). This section discusses approaches whose
aim is automatic code generation in one way or another. While it does contain as one
technique for automatic code generation, this section also discusses other approaches that
are not model-driven. Approaches that specifically discuss the automatic code generation
of safety mechanisms are not discussed in this section, but rather in Section [2.2.3]

28

2.2 Related Work

Section [2.2.1.1] discusses aspect-oriented programming, while Section [2.2.1.2] presents
fourth generation programming languages. The concepts of computer-aided software engi-

neering and low-code are described in Sections [2.2.1.3|and [2.2.1.4] Section [2.2.1.5| presents
related work on and its respective tools, while Section [2.2.1.6] discusses related ap-
proaches for the automatic initialization of hardware interfaces.

2.2.1.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP)) allows the addition of source code (specified as as-
pects) at predefined points within a program. This has been described as “In programs
P, whenever condition C arises, perform action A” [70]. As the action A is automatically
inserted by the aspect framework, this may be viewed as a sort of code generation. This
section presents related work on code generation with [AOPL

In [30, B1][AOPlis used in combination with template metaprogramming to automatically
generate source code for memory protection mechanisms. This approach is discussed in
more detail in Section 2.2.3.3

A survey for aspect-oriented code generation approaches within[MDDJhas been published
in [I55]. The survey finds a heterogeneous mix of characteristics and goals among the
studied approaches, with some similarities. Differences are prominent in the use of trans-
formation technologies and model notations. For example, [23] uses graph-based trans-
formations, [64] uses template-based transformations and [84), 141] use a direct mapping
approach. For model notations, formal approaches [23], an AspectJ [135] metamodel [64]
and are used [84] among others. Furthermore, most of the approaches are only
capable of generating skeleton source code or aspects for class diagrams. Other surveys
studying modeling of aspect-orientation include [228], 265]. However, these surveys do not
focus on code generation and are thus of less importance for this thesis.

In general, one defining difference between code generation via compared to
is the lack of an inherent graphical model representation with [AOPl However, it is also
possible to model [AOP] techniques with [UMI] and use code generation with as-
pects [77, 201]. This way, the model includes features. Source code generated from
the model also exhibits these [AOP| features, which are then added to the binary code
during compilation. The approach presented in this thesis, in contrast, does not utilize
[AOQDPI for the insertion of the generated source code. Instead, an automatically generated
intermediate [UML] is employed, which exhibits the features that might otherwise be added
with [AOPL

This thesis does not use [AOP] techniques, as the initial learning curve for applying [MDDI
has been reported as one issue for mass adoption [249]. Even though research on the
learning curve of is sparse and often anecdotal, e.g., [190], including within the
approach developed in this thesis would increase the learning curve further. Conversely,
does not provide new capabilities that may not be achieved via the model transfor-
mations to the intermediate model. Furthermore, while the use of as a standalone
approach for the code generation of safety mechanisms is a viable approach, e.g., as shown
in [30} B1]], such approaches lack the inherent graphical model representation provided by
MDDl Moreover, an compatible code generation approach allows an easier integra-
tion with [MDDlbased safety analysis techniques, e.g., as summarized in Section

2.2.1.2 Fourth generation programming languages

In the evolution of programming languages, there is a trend towards more abstraction [172].
The fourth and fifth generation of these programming languages provide a level of abstrac-
tion that is similar to code generation. This section presents related work on these types

29

2 Background and Related Work

of languages. Historically, first generation programming languages refer to working with
binary numbers, which where followed by Assembler-type language as second generation
programming languages [172]. Third generation programming languages refer to structured
programming languages, e.g., C, Java, C++, Pascal, Fortran. Fourth generation languages
provide developers with the ability to design their applications at a higher level of abstrac-
tion than writing source code. Fifth generation languages envision application development
based on written or spoken instructions in natural language. While fifth generation lan-
guages promise the highest level of abstraction, the design of such a programming language
is still in early research [148].

Fourth generation programming languages have been around since the 1980s, but have
failed to replace third generation programming languages as the de-facto standard for
software development [I73]. Still, these programming languages have found their re-
spective domain-specific niches in which they contribute at least partially to the devel-
opment of applications [4]. Some examples for popular fourth generation programming
languages, according to [4, 232] are, e.g., Advanced Business and Application Program-
ming [223], Matlab [154], Statistical Product and Service Solutions [110]
and Structured Query Language [38]. While these languages fulfill their intended
purpose for their specific niche, their specific focus on one niche leads to difficulties with
their application in other domains, tool support, vendor lock-in, tool discontinuation,
ete. [232).

The development paradigm adopted by this thesis, MDD follows a similar idea to fourth
generation programming languages. Applications are specified at a higher level of ab-
straction than third generation programming languages, i.e., at the level of models. An
example for this is the specification of an application with and the automatic gen-
eration of the corresponding application from this high-level specification. While [UMI] is
domain-independent, faces several challenges that also apply to fourth generation
programming languages, e.g., limited tool interoperability, which is often correlated with
vendor lock-in [232]. Nevertheless, and its respective tools are used as the
basis of this thesis, because the respective niches of fourth generation programming lan-
guages are too narrow to fit within the approach of this thesis. Furthermore, there exist
initiatives to make [UMI] models more interchangeable between different tools, e.g.,
XML Metadata Interchange (XMI) [I81].

2.2.1.3 CASE: Computer-Aided Software Engineering

Inspired by the success of Computer-Aided Design tools for hardware development,
Computer-Aided Software Engineering (CASE]) tools have been developed. Their goal is
to transform higher-level design and analysis formalisms into source code. This section
discusses how is related to [MDD] which is the development paradigm the approach
presented in this thesis uses.

In the early 90s, there were around a hundred analysis and design languages [232], each
of which a possible high-level language to be adopted by a[CASE]l tool. The result was that
each tool adopted a handful of these languages [232]. As the selection of languages differed
between the tools, interoperability was a common problem. This often resulted in vendor
lock-in. Furthermore, the code generated by [CASE] tools was often incomplete and needed
to be manually complemented by developers [232]. These manual additions to the source
code made iterative development more difficult, leading either to a divergence between the
source code and the high-level specification or to a deterioration of the high-level language
resulting in a graphical 1:1 representation of the source code [232].

The rise of [[UMIL] as a widely-accepted high-level design language and the subsequent
adoption by tools improved some of the aforementioned challenges [232]. Due to

30

2.2 Related Work

the adoption of tools became interrelated with models and [MDDl Thus,
depending on the point of view, may be seen as a predecessor to or MDDI
may be seen as a part of [CASEL

2.2.1.4 Low-Code

The term “low-code” was initially coined in 2014 and refers to a modern brand of
tools that enable code generation for business-oriented applications [222]. This section
discusses how the low-code approach is related to the work presented in this thesis.

Low-code platforms are a growing segment of tools that aim to reduce the amount of
manually written code for the development of applications. The research and advisory
firm Gartner estimates that low-code application development is going to be part of 65%
of all development activity in 2024 [261]. The low-code platforms promise high produc-
tivity gains for developers creating applications of common types, e.g., web and mobile
applications for business [206]. However, this often comes with a limited portability be-
tween low-code tools [261]. While some low-code platforms employ [MDD] techniques, these
platforms may also utilize a variety of other techniques, e.g., metadata-based programming
languages [261]. In this regard, low-code platforms are the latest iteration of the
idea. The concept of “no-code” is related to low-code. Whereas low-code platforms still
require a certain degree of manually written source code, no-code platforms do not require
any explicit coding knowledge. However, this limits the applications that may be gener-
ated by low-code platforms to a very narrow scope. For this reason, no-code platforms
are considered a niche market according to Gartner [261]. According to [206], low-code
platforms may be classified in five categories. These are:

e General purpose low-code platforms: The aim of these platforms is to displace other
established coding platforms that require manual coding, e.g., replacing Java or
NET. Platforms in this category are not limited to a specific type of application.
Examples of this category are: Microsoft Power Platform [158], Salesforce Light-
ning [221] and Mendix [156].

e Low-code platforms for process applications: These platforms provide process au-
tomation and visualization. For example, they may provide built-in metrics, analyt-
ics or audit trails for monitoring processes. Examples of this category are: Appian [6],
AgilePoint [I] and K2 [130].

e Low-code platforms for database applications: These platforms enable users to cre-
ate applications for storing, querying and presenting data in relational databases.
For example, they may provide appropriate user interfaces, schema and database
creation, as well as some lifecycle management functions. Examples of this category
are: Oracle Apex [I87] and Alphinat [3].

e Low-code platforms for request handling applications: These platforms are capable
of generating applications that accept, process and track requests. They are mainly
intended for IT service management. Examples of these tools are: ServiceNow [233]
and Cherwell [42].

e Low-code platforms for mobile applications: These platforms enable users to cre-
ate and deploy mobile applications. While some general purpose platforms are also
capable of generating mobile applications, this category encompasses tools that are
specialized for this purpose. Examples for this category are: Snappii [235] and Ap-
pery.io [65].

31

2 Background and Related Work

These categories and the previous examples show that low-code platforms primarily
target business-oriented customers. Safety concerns, or embedded concerns in general,
e.g., real-time characteristics or dealing with periphery and resource constraints, are not
considered by these platforms. For these reasons, this thesis does not consider low-code
platforms in its approach to generate safety mechanisms.

2.2.1.5 Model-Driven Development

This section discusses automatic code generation approaches that utilize models in some
way. Most prominent are the multitude of tools that are capable of generating source
code from structural [UMLl diagrams, e.g., IBM Rhapsody [205], Papyrus [60] or Enterprise
Architect [237]. For example, these tools are capable of generating C++ source code for
a [UMI] class and its variables that have been created inside a [UMI class diagram. The
source code for operations is often specified textually inside these class diagrams and may
therefore be generated (or rather, copy-pasted) by most tools as well. The tools differ in
their conformance to the standard, ranging from full conformance, e.g., Papyrus [60],
to [UMLHike dialects. These dialects provide developers with additional features that do
not exist in the standard, e.g., IBM Rhapsody [205].

While most tools are capable of generating source code for structural dia-
grams, few are capable of generating source code for behavioral diagrams. For example,
Papyrus [60] has no support for code generation from [UMILI state machine or activity
diagrams. Other tools, e.g., Rhapsody [205], also allow for the automatic code
generation of state machine diagrams. In order to provide this code generation for be-
havioral diagrams, the respective tools often define their own, tool-specific
runtime framework. As such, interoperability between different tools is limited in
case code generation from behavioral diagrams is used. Exchanges of models be-
tween the different tools is possible with the Eztensible Markup Language (XML)-based
specification [I81].

tools also differ in regards to how their code generation may be modified. These
modification possibilities may be included within the tool. For example, Rhapsody [205]
uses specific configuration values and predefined plugin hooks for this purpose. Alterna-
tively, the modification possibilities may be provided by third-party tools. An example
for this is Papyrus [60], where a model may be manipulated with model-to-model
and model-to-text transformation languages, e.g., [129], Acceleo [57] or the Epsilon
framework [62].

There exists a large number of tools that adopt [UMI] as their modeling language
and provide code generation capabilities, e.g., Rhapsody [205], Enterprise Architect [237],
Papyrus [60], BridgePoint [269], MagicDraw [177], OpenAmeos [230], StarUML [163] and
Fujaba [34] 199]. All of these tools focus on generating source code for elements as
they are defined in the[UMTIstandard [I83]. As the[UMIlstandard does not consider safety,
it is not surprising that none of these tools are capable of generating safety mechanisms.
The approach presented in this thesis provides an approach for how source code of safety
mechanisms may be automatically generated with these tools. This thesis also provides a
prototypical implementation for one of these tools, i.e., Rhapsody [205]. The approach itself
is not limited to this tool and may be implemented for each of the previously mentioned
tools.

Besides code generation from [UML], there are also some approaches that generate source
code from different modeling languages, e.g., ThingML [90]. These approaches usually
either generate code for a predecessor, e.g., [59] or the authors argue that is
a suboptimal modeling language for automatic code generation. Due to this perceived
insufficiency, these authors define their own modeling language and a subsequent code

32

2.2 Related Work

generation approach, e.g., [90]. Another category of modeling tools that do not use
are based on MATLAB/Simulink [I54], e.g., TargetLink [55]. The choice of [UMI] as a
modeling language in this thesis is discussed in-depth in Section [2.2.2]

2.2.1.6 Code Generation for Hardware Initialization

This section describes existing code generation approaches that are broadly concerned with
the initialization of hardware interfaces such as[GPIOk or[UARTE. Such hardware interfaces
may contain safety-relevant configuration parameters, e.g., the use of a parity bit with a
[UARTL Therefore, code generation approaches that enable the automatic initialization
or configuration of these hardware interfaces also provide code generation for hardware-
implemented safety mechanisms, which is one of the research goals in this thesis. As
the code generation approach for hardware initialization described in Chapter [6] utilizes
the concept of a some existing in the context of embedded systems are also
discussed in this section.

Large manufacturers of microcontrollers, like NXP, Infineon and ST Microelectron-
tcs, provide their own tools for the configuration of hardware interfaces, e.g., MCUX-
presso [179], DAVE [114], STM32CubeMX [238]. These tools are also capable of gener-
ating the respective initialization code for some microcontrollers of the respective manu-
facturer. However, these tools are also limited to the configuration of the microcontrollers
of a specific manufacturer. Additional approaches, e.g, [78], are even more specialized
and focus exclusively on a specific microcontroller. Chapter [f] introduces a tool similar
to [114, 179, 238], but also provides a manufacturer-independent description format of
microcontrollers. This way, the tool is not limited to the microcontrollers of a specific
manufacturer. Another advantage of the approach described in Chapter [0} in the context
of MDD is that it utilizes object-oriented source code for the configuration and initial-
ization of hardware interfaces. The related tools mentioned above ([114, 179, 238]) only
generate non-object-oriented source code. Such non-object-oriented code is more laborious
to integrate with [UMI}based tools, which assume that the application is developed
in an object-oriented manner. Furthermore, Section describes how the presented ap-
proach may be integrated in tools. Such a systematic description is missing for the
manufacturer-specific tools, e.g., [114] 179 23§].

Approaches for the configuration of hardware interfaces that are independent of a specific
manufacturer are described in [27], 136, 274]. They utilize or Architectural Analysis
Description Language [AADI)) files to describe the structure of microcontrollers that may
be configured. The tool described in Chapter [6]also utilizes XMLl to describe the structure
of microcontrollers and the format is inspired by the aforementioned approaches. How-
ever, the code generation of these approaches either does not consider object-orientation
and [27, 274] or focuses on code generation for non{UMI}based tools, e.g.,
Matlab/Simulink/Stateflow [I54] or UPPAAL [22]. The tool described in Chapter [6] in
contrast, focuses on the integration with [UMTLlbased tools.

There also exist orthogonal approaches to the work described in Chapter [l For ex-
ample, [8I] presents an approach for generating a portable Real-Time Operating Sys-
tem (BRTQOS). Chapter [6] focuses on code generation for hardware initialization at the
application level. The approach described in [§I] may be used orthogonally to configure
an in case the application uses an

As a part of the approach described in Chapter [6], an object-oriented [HATlis introduced.
In the embedded domain, there are also several other, non-object-oriented [HAIE available,
e.g., CMSIS [8], Mbed [9] or Arduino [7]. Similar to the non-object-oriented code generated
by the manufacturer-specific tools discussed above, this type of [HAI] is more laborious
to integrate with object-oriented tools than a that is object-oriented in its

33

2 Background and Related Work

design. Besides the non-object-oriented [HALE, some object-oriented are available,
e.g., modm [164], ChibiOS/HAL [43] and HwCpp [259]. However, these [HALK have not
been designed to be used in conjunction with [MDDl This makes their integration with
more difficult, as they often use concepts that have no equivalent representation in
[UMI] e.g., the template engine used by modm to create custom libraries. These concepts
either need to be mapped manually to elements in a laborious process, or, in some
cases, may not be able to be expressed in[UMI]at all. The object-oriented [HATLintroduced
in Chapter [6 in contrast, is designed for integration with in mind and thus only
uses concepts that have a clear mapping to [UMIl Nevertheless, the presented in
Chapter [0] is inspired by some concepts of these object-oriented [HALE, e.g., the way modm
uses template parameters to configure hardware interfaces.

2.2.2 Modeling Languages

One of the research gaps addressed in this thesis is the design of a model representation
for safety mechanisms that is suitable for automatic code generation (RG1). Such model
representations are created by using a respective modeling language. This section discusses
available modeling languages that may be used to model safety mechanisms. Furthermore,
this section argues why is selected as the modeling language for this thesis. For this
purpose, the modeling languages in this section are discussed in regards to the following
criteria:

e Extensibility: In order to represent safety mechanisms in the model, the modeling
language has to offer mechanisms for extending the modeling language itself. This
criterion is concerned with whether the modeling language offers built-in mechanisms
for its own extension.

e Code generation friendliness: This criterion is concerned with how suitable the mod-
eling language is for code generation. This is important, as the goal of this thesis
requires code generation from the model representations that are specified with the
chosen modeling language.

e Domain independence: Some modeling languages are domain-dependent, e.g., target-
ing the automotive domain. A domain-dependent modeling language may offer only
limited support for domains that it is not intended for. Additionally, if an approach
for domain A is a commercial solution, the cost of acquiring this approach may be
prohibitive for projects in other domains B that do not require the commercial solu-
tion otherwise. As the approach developed in this thesis should not be limited to a
single domain, domain independence of the modeling language is preferred.

e Popularity and tool support: Adoption of the approach presented in this thesis de-
pends, among other criteria, on the familiarity of the developers with the modeling
language. Such familiarity may decrease the learning curve for developers in adopt-
ing the presented approach. Moreover, the popularity of a modeling language is also
a good indicator for its tool support. A good tool support is important, as it may
reduce the development overhead. Furthermore, it may also prevent a lock-in effect
that may occur if the approach is limited to a single tool by a specific vendor.

The following subsections (Sections[2.2.2.1|to[2.2.2.7)) discuss the criteria described above
for a number of available modeling languages.

34

2.2 Related Work

2.2.2.1 Unified Modeling Language (UML)

The first modeling language considered is [UMI] [UML] offers strong extension mechanisms
in the form of profiles. profiles have been used to create expressive
extensions that may differ from basic [UMI]in regards to the criteria described at the start
of Section [2.2.2] Therefore, these extensions are discussed separately from each other in
the following:

Basic UML: Basic [UMI] [I83] contains an extension mechanism in the form of [UMII
stereotypes and profiles, which may be used to give [UMLl a new semantic meaning (cf.
Section for more details on stereotypes and profiles within [UMLI). These stereotypes
may be used to provide a model representation for safety mechanisms. contains
modeling elements for object-oriented software constructs (e.g., classes), but also allows to
capture implementation details (e.g., via statecharts, activity diagrams or opaque behavior
supplied in textual form). This enables code generation from models, which is also
supported by many tools, e.g., Rhapsody [205], Papyrus [60] and Enterprise Architect [237].
[OMLI] itself is independent of a specific domain, but the stereotype extension mechanism
may be used to create domain-specific profiles. [UMIlis also the de-facto standard modeling
language for software systems and is accordingly widespread [49, [166], 253].

OCL: Object Constraint Language ([OCLl) [I80] is a constraint language standardized by
the and designed to express constraints on elements. For example, may
be used to specify that a certain numeric attribute always has to be larger than a specific
value. [OCT] s less suited for modeling safety mechanisms than basic as[OCllis only
capable of specifying constraints on existing properties, whereas the modeling of safety
mechanisms focuses on adding additional properties to the model.

SysML: Systems Modeling Language (SysMT)) [184] is an extension of [UMI] that
uses the profile and stereotype mechanisms from [UMIl It features a set of diagrams and
concepts similar to However, where focuses on software engineering,
focuses on systems engineering, i.e., modeling complex systems beyond only software, e.g.,
hardware or mechanical aspects. While executable approaches to exist [175], its
focus on systems engineering means that is more distant to the source code level
than [UMIl Therefore, many tools, e.g., Rhapsody [205] and Papyrus [60], focus
their code generation capabilities on [UMIl As a [UMT profile, may be extended by
defining additional stereotypes.

MARTE: [186] is an [OMGI standard focused on modeling embedded systems.
Similar to [MARTT]is specified as a[UMI]profile. It provides elements for modeling
real-time embedded systems that are not included in basic e.g., modeling hardware
aspects or timing requirements. However, does not provide modeling constructs
for safety mechanisms. provides its own extension mechanism by introducing a
model representation for non-functional properties. While MARTElintroduces a set of non-
functional properties, developers may add their own, custom properties, e.g., properties
that represent safety mechanisms. Compared to [UMLl [MARTEl moves one step away from
model elements being directly mappable to programming constructs (e.g., specification of
non-functional properties, modeling hardware aspects, etc.). Therefore, MARTH is slightly
less suited for code generation than basic [UMT]

35

2 Background and Related Work

DAM profile: The Dependability Analysis and Modeling profile [25] is an exten-
sion for and MARTEL Tt introduces model representations for dependability concepts
for the purpose of dependability analysis. In contrast to MARTE], the profile is not
standardized by the Therefore, it is less well known among developers, and tool
support is also very sparse. While the I[DAMI profile provides model representations for
some safety mechanisms, e.g., voting, these model representations are only intended for
static dependability analysis and not for code generation. Due to this, they often lack the
required amount of detail for automatic code generation.

Sophia: Sophia [35] is a modeling language for model-based safety engineering, whose
infrastructure is inspired by Sophia itself is a profile. Similar to the
profile [25], its aim is to provide model representations for safety attributes, in order to
improve the construction of and reasoning about safety-critical systems. Sophia itself does
not provide extension capabilities. However, as a profile, new stereotypes
may be introduced that complement Sophia. Sophia is not focused on a specific domain
and, similar to the profile, does not consider code generation. Therefore, the model
representation often lacks the required amount of detail for code generation. As a [UMI]
profile, Sophia may be integrated relatively easily into tools that provide support
for UMIl However, besides its associated publications, e.g.,[35], Sophia does not seem to
have gained a wider adoption in the literature or industry.

fUML: Foundational UML [185] is a language subset of [UMI] standardized by
the Together with the Action Language for Foundational UML (AIfl), fUMI] aims
to provide an executable version of [UMIl However, the term “executable” in this case does
not refer to automatic code generation, but rather the execution of models inside simulation
environments. While may be more suited to code generation than basic due
to its language subset, its use is less widespread among developers than [UMIl This is
similar for tool support, where the majority of tools does not (yet) support
For example, neither Rhapsody [205] nor Enterprise Architect [237| support [UMII at the
time this thesis is written. Furthermore, the standard considers stereotypes
as outside its scope, which limits the extensibility of FUMII

Safety Patterns: Antonino et al. propose the combination of [UMI] profiles with descrip-
tive rules to represent safety patterns, as well as their architectural constraints [5]. Their
approach focuses on modeling architectural safety patterns, whereas the safety mechanisms
used in this thesis also consider behavioral aspects. The approach of Antonino et al. is
not limited to a specific domain. Furthermore, the authors’ of [5] declare their intent to
use their approach for the automatic code generation of these patterns. However, no such
approach has been introduced at the time this thesis is written. Furthermore, the approach
does not appear to have gained a wider adoption in the literature or the industry. Sim-
ilar to other approaches based on profiles, they do not define their own extension
capabilities, but new stereotypes may be introduced in conjunction with their approach.

2.2.2.2 ThingML

ThingML [90] is a modeling language designed to support code generation. It is based on an
Eclipse Modeling Framework (EME]) metamodel with a textual syntax. The textual syntax
may be exported to a graphical, [[MIlbased representation. ThingML has open source
tool-support and has been successfully used in several industry projects [90]. However,
these industry projects have been carried out in cooperation with the creators of the

36

2.2 Related Work

language and, at the time this thesis is written, there is no evidence of a broader adoption
in the industry. ThingML is not limited to a specific domain. While the code generation
framework for ThingML defines a set of extension points, there exist no built-in extension
mechanisms for the modeling language itself.

2.2.2.3 AUTOSAR

The consortium [I7] aims to provide standardized interfaces, tools and frame-
works for the development of automotive systems. As part of this initiative, modeling
languages and tools have been created. This section briefly discusses the suitability of
some of these modeling languages for the model representation of safety mechanisms.

EAST-ADL: FElectronics Architecture and Software Technology - Architecture Description
Language (EAST-ADI)) [56] is a language for describing architectures within the context
of projects. Extensions of address concerns such as requirements
or timing. [EAST-ADI]is well known within the automotive domain and supported by sev-
eral tools, e.g., MagicDraw [I77] and Papyrus [60]. Due to its roots within the automotive
domain, [EAST-ADI]is particularly focused on this domain, e.g., because it relies on the
representation for software architectures. At its core, combines
[UMTLI modeling concepts with natural language to define its own, domain-specific model-
ing language. The concept of User attributes defined by allows the extension
of model elements with meta information, similar to stereotypes. Thus, the exten-
sibility of is similar to [OMIl defines several abstraction levels
for development. This promotes automatic model-to-model transformations between these
levels. At the same time, the close relationship of EAST-ADI] to the standard
with its respective tools and software architecture promotes code generation.

AUTOSAR Timing Extensions: The[AUTOSARI timing extensions [16] allow the speci-
fication of timing issues and requirements in embedded systems. Due to their specific focus
on timing issues, the model representation provided by the timing extensions
may only be used for a very limited number of safety mechanisms, i.e., those that deal
with timing issues. As part of the standard, the timing extensions are simi-
larly domain-dependent and well known as Code generation and extension
capabilities are limited to the scope of timing issues.

2.2.2.4 Safe Automotive soFtware architEcture (SAFE)

The Safe Automotive soFtware architEcture (SAFE]) research project provides solutions
for safety modeling and analysis that comply with the ISO 26262 safety standard. One de-
liverable of this project is a safety code generator specification [2], which includes modeling
of software safety mechanisms based on the metamodel. Besides the deliverables of
the project, the metamodel does not seem to have gained a wider adoption at the time this
thesis is written. The metamodel and subsequent modeling of safety mechanisms assumes
its application in the automotive domain. This appears in the form of direct mappings
to software components, as well as the use of as a modeling lan-
guage. The project introduces modeling for several software safety mechanisms and new
mechanisms may be introduced by adhering to the metamodel. As code generation
is one of the goals of the project, the deliverable [2] describes code generation steps for two
selected safety mechanisms. Due to the direct consideration of in the
metamodel, it may only be used in those domains that adopt the use of AUTOSARI

37

2 Background and Related Work

2.2.2.5 Fail-Operational Patterns

Penha et al. define metamodels for safety patterns in the context of fail-operational sys-
tems [I95]. These patterns are prototypically defined as part of Eclipse [58] plugins and
may be instantiated as part of [56] models. The approach enables partial code
generation, i.e., the architectural elements may be automatically generated. The approach
has been conceived with the automotive domain and toolchain in mind. However, the
general concept may also be applied to other domains. For extensibility purposes, they
define a meta-metamodel that enables the specification of new metamodels for safety pat-
terns. While the authors implemented a prototype of their approach for Eclipse [58], this
implementation is not publicly available at the time this thesis is written.

2.2.2.6 Simulink

Simulink is a development tool developed by the company MathWorks [154], which is also
known for the tool MATLAB. Simulink provides the capabilities of an[MDDItool, i.e., mod-
eling software applications and generating source code from models. Moreover, Simulink
allows for the simulation of the created models. Simulink does not use a standardized
modeling language, such as but rather uses its own, proprietary modeling language.
Due to the proprietary nature, the extensibility of the modeling language in Simulink is
limited. Simulink is not limited to a specific domain.

2.2.2.7 Conclusions for this Thesis

This section provides a summary on how suitable the modeling languages discussed in
Sections are for the purpose of modeling safety mechanisms to facilitate
code generation. Table briefly indicates for each modeling language whether it is
suitable for this purpose. The suitability is judged by the criteria proposed at the start of
Section [2.2.2] where a description and motivation for each criterion is given. The reasoning
behind each rating is discussed in the previous Sections

The modeling languages discussed in Sections[2.2.2.1}2.2.2.6| may be categorized into four
categories: [UMI}based approaches, AUTOSAR}based approaches, standalone approaches
and Simulink.

[AUTOSARIbased approaches are not suitable for the model representation and code
generation of safety mechanisms in this thesis, as they often include many direct references
to the standard. Without major adaptations, this prevents the use of those
approaches outside those domains that use the standard, i.e., outside the
automotive domain. As this thesis does not commit to the automotive domain,
focused approaches are not used within this thesis. Simulink, on the other hand, is not used
in this thesis because of its proprietary nature that increases the difficulty of introducing
new model elements for safety mechanisms. Furthermore, the use of Simulink would lead
to vendor lock-in. While some of the standalone approaches, e.g., ThingML [90], offer
a fresh perspective on code generation and aim to improve some of the shortcomings of
previous approaches to automatic code generation, these often remain niche approaches
with limited familiarity among developers. This thesis does not rely on any of these
approaches, because this limited familiarity would limit the number of possible adopters of
the presented approach compared to more well-known modeling languages such as [UMLL

As is a general purpose modeling language, the presented [UMI}based approaches
have the advantage of being domain-independent. Furthermore, most of them are easy to
extend by using the built-in profile and stereotype mechanisms of As table[2.1]shows,
basic [UML], as defined by the [UML standard, is the only approach that performs well in
all categories. Although some existing [UMLI profiles, e.g., [25, [35], already provide model

38

2.2 Related Work

Modeling language Extensibility | Code Domain Tool
generation independencd support
friendly

Basic UML + + + -+

OCL - + + +

SysML + - + +

MARTE + - + +

DAM-Profile -+ - -+ -

Sophia -+ - -+ -

fUML - + + -

Safety Patterns -+ -+ -+ -

ThingML + + + -

EAST-ADL + + - +

Autosar Timing Extensions - - - -+

SAFE + + - -

Fail-Operational Patterns -+ —+ —+ -

Simulink - -+ -+ -+

Table 2.1: Summary of the suitability of certain modeling languages for the model represen-
tation and code generation of safety mechanisms. The sign “4” indicates that
the language is suitable regarding the respective criteria, the sign “-” indicates
that the language is unsuited for the respective criteria.

representations for safety mechanisms, they do not consider code generation. Due to this,
their model representations are too high level to be used for automatic code generation.
Nevertheless, they may be used as inspiration for novel model representations that do
consider code generation.

2.2.3 Improving the Development of Safety-Critical Systems

The overall research goal addressed by this thesis is the automatic code generation of safety
mechanisms via One part of this is the design of a software architecture for safety
mechanisms that is suitable for automatic code generation (research gap RG2). There
are resources that describe safety mechanisms, e.g., catalogs of safety patterns [10, 53] or
introductory books to safety and/or fault tolerance [89, [140] 200]. Information from these
resources may be used to design software architectures for safety mechanisms, which is a
partial fulfillment of RG2. This section presents related work on these safety mechanisms
that expands upon the aforementioned introductory books, e.g., by presenting modeling
or code generation approaches for these mechanisms. Thus, these approaches are not only
relevant for RG2, but also for research gaps RG1 and RG3, which deal with the model
representation and automatic generation of safety mechanisms, respectively.

Sections[2.2.3.3]to 2.2.3.6] present related work on those safety mechanisms, for which this
thesis presents a model representation and automatic code generation approach. Moreover,
Sections [2.2.3.7] and [2.2.3.2] highlight orthogonal approaches that focus on model-driven
safety analysis and improving safety at the system level.

39

2 Background and Related Work

2.2.3.1 Improving Safety outside the realization phase

As described in Section IEC 61508 defines sixteen phases in the lifecycle of a safety-
critical system. The core contribution of this thesis, i.e., the automatic code generation
of safety mechanisms, is located in the realization phase of the safety-critical system (step
10 of the safety lifecycle of IEC 61508). This section presents related work that improves
the development of safety-critical systems besides the realization step, i.e., approaches that
may be located in steps 1-9 and 11-16 of the safety lifecycle. As these approaches target
other phases of the development lifecycle, most of them are orthogonal to the approach
presented in this thesis and may be used in conjunction with it. For example, an approach
that improves safety analysis provides the basis for deciding which safety mechanisms
should be used within the application. The approach presented in this thesis is then
capable of automatically generating the source code for these safety mechanisms.

An important issue in the development of safety-critical systems is safety analysis, which
encompasses hazard and risk analysis. In this phase, potential hazards and risks for the
system are identified. Furthermore, their consequences and fault propagation are analyzed.
Related work in this area often aims to improve the way safety hazards are specified, as well
as the analysis methods that are applied to them [248, 270]. Once the hazards and risks
of the system are known, safety requirements may be derived from them. Another group
of related approaches aims to improve the specification of safety requirements, e.g., [21].
Furthermore, once an early system model exists, these may be analyzed regarding their
dependability, e.g., as proposed by [242]. Chapterpresents an approach for the structured
specification of safety requirements, that facilitate automatic code generation, from a set
of high-level safety requirements. The related approaches described above may be utilized
to create those high-level safety requirements based on a hazard and risk analysis.

Besides the previously mentioned approaches, current research challenges for the de-
velopment of safety-critical systems are described regularly (about every seven years) in
the “International Conference on Software Engineering”, e.g., [91) 05, [151]. Besides these
landmark articles, there also exist studies investigating the themes and issues practitioners
in the field of safety-critical systems perceive as challenges, e.g., [143].

2.2.3.2 Improving safety at the system level

The approach presented in this thesis focuses on automatically generating safety mecha-
nisms at the application level. There also exist numerous approaches that focus on im-
proving or (partially) automating safety aspects on the system level, e.g., concerning the
network or operating system level. This section presents related work on these system level
approaches. Most of these may be used in conjunction with the approach presented in this
thesis.

Examples for these approaches are the (completed) European Union (EU) projects SA-
FURE [220] and SafeAdapt [219]. SAFURE targets safety in cyber-physical systems of
mixed-criticality. Multiple publications in the project deal with the issue of improving
the predictability and timing analysis of networks that connect microcontrollers in cyber-
physical systems [165], 250] 25I]. Another focus of the project is on timing issues that arise
in the use of multicore microprocessors [66, 67, [79]. The SafeAdapt project focuses mainly
on model-driven approaches to facilitate the self-adaption of safety-critical systems in the
context of the automotive domain [107, [194] 195] 215! 264]. Some of these contributions are
further discussed in Section as they are related to the safety mechanism graceful
degradation, for which this thesis provides an automatic code generation approach.

Besides academic approaches, there are also some commercial tools, that aim to increase
the safety of the underlying operating system, e.g., [61), 198].

40

2.2 Related Work

2.2.3.3 Safety Mechanism: Error Detection

Section presents an approach for the automatic code generation of error detection
mechanisms. This section discusses related work on this topic.

In [5], a model representation of selected safety design patterns has been proposed. Their
approach is similar to the one presented in this thesis, in the sense that they use a
profile to model safety mechanisms, i.e., safety patterns. However, this thesis uses a [UMILI
profile to declare the usage of a safety mechanism for a specific element, in order to
automatically generate the source code for the safety mechanism for the specified element.
[5], in contrast, uses a[UMLl profile to represent the structure of specific safety mechanisms.
Thus, their approach may be used to describe how a specific safety mechanism works, while
the approach presented in this thesis may automatically generate the safety mechanism.

The research project deals with safety modeling and analysis. Code generation
for safety mechanisms is considered in some publications, e.g. [254], as well as the project
deliverables, e.g. [2]. They combine graphical modeling based on [EAST-ADT] with textual
Domain-Specific Languages (DSLE) in the context of a metamodel that has been conceived
as part of this project. They provide model representations for several safety mechanisms
and describe code generation steps for some of these examples. However, the project
and its approach are linked to the standard in the automotive domain. Due
to this, the model representations make direct references to elements of the [AUTOSARI
metamodel. While this is beneficial for projects that utilize[AUTOSAR] it also makes their
approach difficult to use in other domains that do not employ the toolchain.
The approach presented in this thesis provides a model representation and code generation
for safety mechanisms that is independent of and the automotive domain.

In [93], a domain-agnostic transformation language for safety mechanisms from safety
patterns is proposed. The authors define their own modeling language for safety mecha-
nisms, as well as their visual representation, instead of building atop a widespread model-
ing language that is known to many developers, e.g., Similarly, the authors define
their own transformation language instead of using general purpose model transformation
languages like[ATT]or general purpose programming languages like Java. Both of these fea-
tures necessitate the use of a custom editor provided by [93]. While their general approach
is sound and not unlike the approach presented in this thesis, their focus on re-inventing
their own modeling and transformation language contributes to a large learning curve for
developers that want to adopt their approach. This thesis aims to reduce such a learning
curve, by only building atop widespread modeling and programming languages, i.e., [UMI]
Java and C++. Moreover, the necessary use of the editor presented in [93] results in devel-
opers having to specify safety mechanisms in a standalone fashion in the editor proposed
by [93]. Adapters are subsequently used to transform and import these specifications into
other MDDI tools and their respective modeling languages. This thesis, in contrast, enables
developers to specify safety mechanisms in the same tool they use to develop their
application. Last but not least, in contrast to this thesis, [93] does not describe a way to
generate object-oriented code.

The approach described in [196] identifies several system properties that are error prone.
They define a set, of assertions for each of these properties, which check whether the given
property is fulfilled at a given point in time. For each of the properties, a custom
stereotype is defined that may be applied to a [UMI]model element for which the assertion
should hold. Then, code for the assertion may be automatically generated via tech-
niques and templates that are specified for each property. The approach presented in [196]
is similar to the one presented in this thesis in the sense that both apply stereotypes
to model elements, which are subsequently parsed for code generation. However, the ap-
proaches differ in the type of check for which they provide a model representation and code

41

2 Background and Related Work

generation. The approach described in [196] focuses on generating checks that ultimately
detect programming errors, e.g., checking whether an entity is globally unique or conforms
to the singleton design pattern. The approach in this thesis, in contrast, generates safety
mechanisms (which include runtime checks), that detect errors due to external phenomena,
e.g., faulty sensor measurements or radiation-induced soft errors. Furthermore, this thesis
also considers the automatic generation of error handling, which is not considered by [196].

An approach that utilizes the MATLAB/Simulink toolchain [I54] is proposed in [152]. Tt
aims to bridge system and software development by creating Simulink models (for software
development) from models (for architecture modeling). However, the actual
generation of source code from the Simulink models is not investigated in [I52]. They
depend on manual refinements of the models to produce the dynamic behavior of the safety
mechanisms. This thesis, in contrast, generates the actual source code automatically, which
includes the dynamic behavior of the safety mechanisms.

There are also some approaches that aim to verify structural constraints during runtime,
e.g., class and component relationships [96, 208, 263]. The approach presented in this the-
sis, on the other hand, targets dynamic behavior during runtime. Such dynamic behavior
is also the focus of assertion- and contract-based techniques [212], 262]. These are a form of
runtime check directly specified in the source code. Thus, they do not provide any model
representation of the safety mechanism, in contrast to the approach presented in this thesis.
Furthermore, a specific contract or assertion is not reusable in other applications [196].

A large subgroup of error detection in the context of safety-critical systems are ap-
proaches for software-based memory protection. There exist several approaches to code
generation for this subgroup, e.g., [30, 31} 40, 47, 48, [68], 69, 193], 203| 245, 260]. Of these
approaches, [30], [B1] are the most closely related approaches to the one presented in this
thesis. They use aspect-oriented development to specify error detection checks for individ-
ual classes. A specific compiler is capable of automatically generating source code for these
error detection checks within the specified classes. In contrast to the approach presented
in this thesis, their approach does not consider modeling, i.e., it may not be used directly
in an [MDD)] process. Basic experiments towards an automatic generation of error detection
checks for the purpose of software-based memory protection in an context have been
published in [99].

There also exist approaches that add error detection mechanisms to a program using a
more theoretical approach [11 [12]. However, as these approaches take all possible system
states into consideration, their application is limited to small and medium-scale systems
due to the state explosion problem.

2.2.3.4 Safety Mechanism: Voting

Section presents an approach for the automatic code generation of voting mechanisms.
The general concept of voting mechanisms has been explained in Section This
section discusses related approaches, which cover voting strategies, model representations
for voting and code generation techniques for this safety mechanism.

Basic voting strategies, e.g., the arithmetic mean or majority voting, exist since the
1970s and 1980s |41, 126]. From then on, a large number of different voting strategies have
been proposed. This process continues until today, e.g., [150], which proposes a voting
strategy based on fuzzy rules, and [204], which proposes continuously updated confidence
values for each voting input.

In 2004, a taxonomy for voting strategies at the software-level has been published [144].
The authors classify these strategies into different categories, which are:

e whether the voter is implemented on the software or hardware level,

42

2.2 Related Work

e whether the voter requires exact agreement of the inputs or whether differences
smaller than a predefined threshold are allowed,

e whether the voter produces binary results (agreement/non agreement) or produces
results in a potentially large output space (e.g., arithmetic mean voting),

e whether the voter functions synchronously or asynchronously,

e which type of functionality the voter exhibits. The authors of [144] distinguish generic
voting algorithms (e.g., majority voting), hybrid voting algorithms (e.g., a voter
that assigns a level of trust to each input, such as maximum likelihood voting) and
purpose-built voters, which are designed for a specific application.

The automatic code generation approach for voting mechanisms described in Section
is extensible, i.e., different voting strategies may be automatically generated with the ap-
proach. Most of the categories described above may be employed within the automatic code
generation. The only exceptions are the implementation of voters at the hardware level and
the use of purpose-built voters. As the code generation approach described in Section
is only capable of generating source code, it cannot provide a hardware implementation.
Purpose-built voters, on the other hand, are unique by definition. Therefore they may not
be automatically generated without implementing a unique generation process for each
purpose-built voter.

Besides related work on different voting strategies, there also exist approaches that
provide model representations for voting mechanisms [25] 26, 268, 276]. None of these
approaches consider automatic code generation from their model representations. Due to
this, they lack the required amount of detail that is necessary for automatic code generation,
e.g., they do not model the specific voting strategy that should be employed. In [25], a
voter is modeled as a separate class that contains two or more redundant structures and an
attribute specifying the error detection coverage of the voter. However, they do not consider
what type of voting strategy the voter should execute. Therefore, no code generation for
the voting strategy is possible. The approach described in [26] uses statecharts
to model the internal behavior of a voter and uses [UMIL] deployment diagrams to model
the relationships of the voter to other system elements. Similar to [25], the approach
focuses on dependability modeling and thus does not consider the specific type of voting
strategy used. Additionally, deployment diagrams on their own model only a high-level
version of the system, which is too coarse-grained for automatic code generation. [268]
uses the formal language Communicating Sequential Processes for failure modeling.
They provide an example in which they model a voter as a dedicated class within a [UMII
class diagram. The inputs of this voter are also modeled as separate classes and the
type of voting is specified by the name of the association between the voter and the
voting inputs. In [268], this model representation is then transformed into a model
for failure modeling. Although failure modeling is not in the scope of this thesis, their
[UMI] representation of the voting process may be used as a basis for the modeling of
voting mechanisms within this thesis. While their approach lacks the ability to model
additional configuration values, Section solves this issue by introducing appropriate
stereotypes that contain tagged values for configuration purposes. [276] introduces
a [UMI] profile for modeling safety-critical software for airborne systems. They introduce
stereotypes that model voters and their inputs. These stereotypes may be applied to
classes, i.e., the model representation is similar to [268|, while also providing the option of
specifying configuration values. However, the configuration values introduced in [276] do
not consider the specific type of voting strategy that should be employed and are therefore
unsuited for automatic code generation.

43

2 Background and Related Work

The combination of voting mechanisms, modeling and code generation has been studied
in [97, O8]. They use the text-based Cyber Physical Action Language (CPAIL]) to model
the behavior of the voting process. From this model, code for the voter may be generated
automatically. However, the syntax of is similar to the programming language C.
Thus, the modeling language in [97, O8] is very similar to the programming language for
which the code is generated. A higher abstraction level by means of a graphical model
representation, e.g., as possible with [UMI] is not considered by these approaches.

2.2.3.5 Safety Mechanism: Timing Constraint Monitoring

Section describes an approach for the automatic code generation of monitoring mech-
anisms for timing constraints. This section presents related work on timing constraint
monitoring.

In general, timing is an important issue in the development of safety-critical systems.
Thus, several approaches for static timing analysis during the design phase of the sys-
tem exist. There are multiple modeling languages for timing analysis, e.g., [16, [186] and
(semi-) automated approaches for creating timing analysis models, e.g., [120} 121} 122]. All
these approaches are intended for use during the development phase, i.e., providing timing
analysis before the system is fully developed. For this purpose, they provide powerful mod-
eling constructs to model certain assumptions about runtime conditions. The approach
presented in Section [5.8] in contrast, targets the monitoring of timing constraints at run-
time, i.e., after the system has been fully developed and is in operation. A large part of
the modeling constructs of the aforementioned approaches are not required at this stage.
Therefore, these modeling approaches mostly contain unnecessary complexity for the intent
of specifying timing constraint monitoring at runtime.

There also exist several related approaches for monitoring timing constraints during run-
time. In [I3], a survey of these approaches has been published. Some of these approaches
utilize dedicated hardware for performing the timing constraint monitoring, e.g., [161], 255].
As model-driven code generation is limited to software monitoring for timing constraints,
these approaches are of limited importance for this thesis. Furthermore, hardware ap-
proaches may become obsolete in case future hardware advances do not exhibit the charac-
teristics these approaches rely on [I3]. There are also approaches which depend on specific
operating system support, e.g., [218] 252]. These approaches may usually not be used with
other operating systems, therefore severely limiting their application to a broad range of
programs. Other approaches, e.g., [50, 217], modify system calls to include the required
monitoring statements. This process is transparent to the developer, i.e., a developer may
use the same function calls he usually uses. A disadvantage of this method is that the mon-
itoring applies to all system calls. Therefore, the probe overhead extends even to those
parts of the application that do not require timing monitoring from a safety perspective.
An alternative to modifying system calls is to provide developers with a set of operations
that manually start the monitoring process at certain points within the application, e.g.,
[87, 125], 168]. This is conceptually similar to the approach described in Section where
statements starting the monitoring process are automatically added to operations based
on whether a specific stereotype is applied to the operation within the model. The
approach presented in Section [5.8|differs from the approaches described in [87, [125], [168] by
offering an additional model representation and allowing developers to specify their timing
constraints within the model, instead of at the source code level.

44

2.2 Related Work

2.2.3.6 Safety Mechanism: Graceful Degradation

Section presents an approach for the automatic code generation of graceful degradation
mechanisms. The general concept of graceful degradation is explained in Section
This section discusses related work on graceful degradation.

The approach presented in Section provides code generation for graceful degradation
at the application level. However, the concept of graceful degradation may also be applied
at other system levels. For example, [20] [I71] study the optimal distribution of programs
on available hardware platforms. The approaches described in [80, 82] aim to provide an
optimal utilization of computing resources in resource-limited scenarios in which multiple
hardware platforms exist. In [229], graceful degradation is applied at the system level of
commodity Linux servers to deal with memory errors. While these approaches focus on
a type of graceful degradation, they are not directly related to this thesis, as they do not
apply this concept at the application level.

Graceful degradation at the application level is the focus of several approaches [225], 226]
234]. They consider neither the modeling of graceful degradation nor its automatic code
generation, but discuss how the concept may be realized at the application level. Thus,
these approaches may serve as a basis for the target software architecture that is generated
by the approach described in Section This thesis utilizes the software architecture
for graceful degradation described in [226], which is summarized in Section [225]
discusses different alternatives for performing the degradation step, i.e., removing compo-
nents, interfaces or bindings. Another alternative is described in [234], which proposes the
replacement of an erroneous component with another, non-erroneous component. These
alternatives influence the code generation approach described in Section [5.9]

A combination of graceful degradation at the application level and system level, e.g., for
energy and usage, has been studied in [224]. The proposed software architecture is
similar to [225] 226], which have been discussed above. The remaining aspects, i.e., energy
and CPU usage, are out of scope for this thesis.

Several approaches consider the automatic code generation of graceful degradation at
the application level [107), 149, 194, 195]. The approaches described in [107, 194, 195] are
related and focus on fail-operational systems in the automotive domain. However, they
provide only partial code generation for graceful degradation and exclude the generation of
the actual degradation step [195]. The code generation of the degradation is classified as a
further research challenge by [195]. This challenge is addressed in this thesis in Section
Furthermore, the approaches in [107,[194] 195] also heavily rely on the[AUTOSARItoolchain
that is widespread in the automotive domain. This increases the difficulty of using their
approach in other domains that usually do not use the toolchain. The work
described in [149] approaches code generation of graceful degradation from a theoretical
point of view. However, according to the authors, their approach is limited to small and
medium scale applications, as the underlying theoretical problem is NP-complete.

On a broader scope, graceful degradation is a specific form of self-adaption, which deals
with the automatic reconfiguration of systems. In contrast to graceful degradation, self-
adaption is not limited to reconfiguration in case of an error, but may also happen in case
of a change in requirements, updates, etc. Furthermore, model-driven approaches to self-
adaption often consider a very large number of possible system states, e.g., [71) [169]. In
these approaches, a frequent goal is to dynamically find the most suitable system state out
of the many possibilities. Graceful degradation, in contrast, is usually limited to a handful
of system states at most. This follows from the application in the safety domain, where
deterministic outcomes and static analysis of the system take a much more prominent role
than in application that are not safety-critical. This is also reflected by the safety stan-
dard IEC 61508, which discourages dynamic reconfiguration of programs at runtime [116].

45

2 Background and Related Work

Another difference between self-adaption approaches and graceful degradation is that self-
adaption approaches often do not consider the resource limitations of embedded systems or
do not consider safety programming standards, such as the Motor Industry Software Reli-
ability Association (MISRA] [162] standard. For example, the model-driven self-adaption
approaches described in |71, 169] assume that the hardware is capable of running a Java
Virtual Machine in order to use reflection mechanisms for self-adaption. Embedded sys-
tems typically do not provide the required computing resources for this. Furthermore, the
use of reflection mechanisms usually requires dynamic memory allocation, which is also
discouraged by MISRA [162] and IEC 61508 [116].

2.2.4 Conclusions for this Thesis

This section summarizes the related work from Sections to and highlights the
research gaps that are addressed by this thesis. Section [2.2.1] presents several approaches
to automatic code generation, most prominently as the basic methodology used in
this thesis. While it identifies several tools capable of generating code from [UMI]diagrams,
none of these tools are capable of generating safety mechanisms by a built-in mechanism.
Section makes similar observations for other modeling languages than [UMTland their
associated tools.

Section [2.2.3] presents related work for improving the development of safety-critical sys-
tems. It describes approaches that are orthogonal to the approach presented in this thesis,
e.g., those that focus at the system level or on other lifecycle phases than the realization
of the system. Furthermore, it presents related approaches that describe model represen-
tations and software architectures of safety mechanisms. Most of these approaches do not
consider automatic code generation. Thus, they only provide model representations with
insufficient detail or a software architecture that is unsuited for automatic code generation.
In summary, this thesis addresses the following research gaps:

e Model representations for safety mechanisms that are sufficiently detailed for auto-
matic code generation.

e Software architectures for safety mechanisms that may be integrated with existing
applications without requiring manual developer actions for this integration.

e Model transformations between the aforementioned model representations and soft-
ware architectures to automatically generate source code for the safety mechanisms.

46

3 Overview

This chapter presents an overview of the approach for the automatic generation of safety
mechanisms, which is described in detail in Chapters [to [6] Section illustrates how
the high-level concepts of the approach interact with each other, while Section provides
a more detailed workflow from the perspective of a developer that uses the approach.
Section introduces an application example that is expanded upon in the remainder of
the thesis, showing how the presented concepts may be applied to it.

3.1 Overview of the Approach

This section shows how the high-level concepts presented in Chapters [] to [6] interact with
each other. This is illustrated in Figure [3.1] which references the contributions introduced
in Section [I.1.3] The contribution C1 describes a structured way to define detailed safety
requirements. This includes the name or location of the system element that should be
protected, as well as the safety mechanism and its configuration that should be applied to
this element. These structured requirements are then used as the input for contributions
C2 and C3, which deal with the generation of software- and hardware-implemented safety
mechanisms, respectively.

For the generation of software-implemented safety mechanisms, [UMI] stereotypes are
used to specify safety mechanisms for a software element in a[UMI]model. Model-to-model
transformations subsequently transform this model representation into an intermediate
model that realizes the specified safety mechanism. In Figure this is illustrated by
the stereotype «RangeCheck» being applied to the attribute x of class Example. The
automated model-to-model transformations replace this attribute with an instance of the
class ProtectedAttribute, which not only contains x, but also methods for performing
the specified numeric range check whenever the instance is accessed.

The generation of hardware-implemented safety mechanisms relies on a tool (Pin-
Config tool), which is used to represent the configuration for the respective hardware
interfaces. Figure [3.I]shows a screenshot of this [GUIl From this tool, the automated code
generation process for hardware-implemented safety mechanisms may be started. The
generation process itself additionally relies on a code snippet repository in the form of a
template, which is not shown in Figure (3.1

3.2 Developer Workflow

This section presents a workflow from the perspective of a developer that applies the
approach for the automatic generation of safety mechanisms. Figure shows a
activity diagram for this purpose.

At the start of the workflow, i.e., action 1, a functional model of the application is created
from the functional requirements specification. This model includes the basic behavior
of the application, but does not contain any safety mechanisms yet (development artifact
(A1)). Action 2 of the workflow specifies a set of structured safety requirements that should
be applied to this functional application model. The requirements may be distinguished
in those that are realized entirely in software (development artifact (A2)) and those that

47

3 Overview

Legend

- . T T T T T T |
o : Configuration with UML stereotypes & generation with model
A contribution of [transformations]
this thesis : ProtectedAttribute
Example
I
I
I
I
I
I

—> | Example |

-x:int

I Simplified details of |
the contribution !

- <<RangeCheck>>x : int

+ getWithCheck() : int

Flow of development
> artifacts between
innovations

Contribution C2 (Chapter 5):
Generation of software-implemented
safety mechanisms

Contribution C1 (Chapter 4):
Structured requirements describing safety
mechanisms

Contribution C3 (Chapter 6):
Generation of hardware-implemented
safety mechanisms

I The <Location> shall be protected :
I by <SM> with <Config>.

Configuration with PinConfig tool &
generation with template-based
code snippet repository

Figure 3.1: Interaction of the high-level concepts presented within this thesis.

are primarily realized in hardware and only configured via software (development artifact
(A3)). Action 3 parses the requirements from development artifact (A2) and applies a set
of corresponding stereotypes to the functional application model (Al). The result
is a [UML application model in which the software-implemented safety mechanisms are
modeled via stereotypes (development artifact (A4)).

Action 4 parses the requirements from development artifact (A3). The information is
used to configure the initial configuration for hardware interfaces within the PinConfig tool,
which is described in Chapter [5] With the help of this tool, the code that executes this ini-
tial configuration may be generated and integrated with the [UMI] application model. This
happens in action 5 of the workflow and results in development artifact (A5), i.e., a
model that contains the necessary information for software- and hardware-implemented
safety mechanisms.

The software-implemented safety mechanisms are realized in action 6, which produces an
intermediate [UMLImodel (development artifact (A6)) that only contains [UMLlelements for
which a 1:1 mapping to the target programming language exists, i.e., C+- in this thesis.
Due to this 1:1 mapping, action 7 is capable of generating the source code from the model
with the default code generation of common [MDDltools, e.g., Rhapsody [205], Papyrus [60]
or Enterprise Architect [237]. This generated code contains the realized safety mechanisms
(development artifact (A7)). In the last action of the workflow, action 8 compiles the
code, which results in an executable binary that contains the specified safety mechanisms
(development artifact (A8)). During compilation, a template-based safety library is linked,
which includes part of the implementation for the software-implemented safety mechanisms.

3.3 Ongoing Application Example
This section introduces an ongoing application example. Chapters [] to [6] expand upon

this application example to demonstrate the application of the concepts presented in the
respective chapter. Section presents the concept of environment monitoring systems.

48

3.3 Ongoing Application Example

Functional

2. Specify safety
requirements to

(A3) Safety
requirements for
HW-implemented

safety mechanisms

List of available HW
interfaces and pin
allocation
(PinConfig tool)

4. Automatically set
initial configuration
of hardware

interfaces

Safety library

N

(A7) Source code
with realized safety
mechanisms

8. Compilation

enable code
generation of safety
mechanisms

(A2) Safety
requirements for
SW-implemented

safety mechanisms

5. Integrate HW

requirements
specification

1. Create functional
UML model of the
application

(A1) UML model of
application
(class diagram)

3. Automatically
apply safety
stereotypes to UML
model

(A4) UML Model
with safety
information for SW-

configuration to UML
Model

(A5) UML Model
with safety
information for HW-
and SW-
implemented safety
mechanisms

7. Automated model-
to-text

implemented safety
mechanisms

6. Automated model-
to-model
transformations

(A6) Intermediate
UML model with

transformations
(code generation)

(A8) Executable

safety mechanisms
realized

binary with safety
mechanisms

@

J

Figure 3.2: Workflow for automatically generating safety mechanisms from the perspective
of a developer ([UMILI 2.5 activity diagram notation) [100].

49

3 Overview

The ongoing application example used in this thesis is part of this category of systems.
The actual application example is described in Section [3.3.2] Section provides an
application model for this example, that is used as a basis for the generation of safety
mechanisms described in Chapters[5land [6] Section [3.3.4]briefly discusses hardware details
of the application example.

A condensed version of this application example and its different stages in the automatic
generation process provided in Chapters [f] and [] is published in [100} 103].

3.3.1 Environment Monitoring Systems

This section describes a category of related systems, i.e., environment monitoring systems.
The ongoing application example, i.e., a fire detection system, is part of this category.
In general, environment monitoring systems contain one or more sensors that monitor
one or more phenomena of the environment. Depending on the specific application, the
monitored values of the phenomena are either sent to a base station as part of a sensor
network or, in the case of non-networked systems, the phenomena are compared directly to
threshold values. If the monitored values for the phenomena are above this threshold, the
system raises an alarm. Smoke detectors, commonly found in private households, are an
example for the latter: in case the concentration in the air is over a certain threshold,
the smoke detector sounds an alarm. In contrast to this, large office buildings usually
feature a networked fire detection system and the presence of a fire is announced centrally
via installed sirens in the building. Furthermore, the fire department may be notified
automatically of the fire in this building.

While the concepts presented in this thesis are exemplified for a fire detection system
that may be used in private households, the concepts may be transferred easily to other
environment monitoring systems, as they operate in a similar manner. Thus, for further
illustration, the reader may consider the application of the concepts to a wide variety of
systems. Examples for this are the monitoring of diverse phenomena, e.g., radiation [45] [54],
air quality in underground mines [39] 209], forest fire detection [14], 94l 273] or tsunami
detection [36] 83, [147].

However, the approach presented in this thesis is not limited to environment monitoring
systems and may also be used for other safety-critical systems, e.g., automobiles or air-
craft. However, these systems often exhibit hard real-time characteristics, which have to
be considered in the application of the presented approach. This is further touched upon
in Sections [2.1.5.5] and which discuss the monitoring of timing constraints and

its automatic generation.

3.3.2 Description of the Application Example

The ongoing application example used in this thesis is a safety-critical fire detection system.
This section presents a general description of how this system operates. A fire detector
is similar to smoke detectors commonly found in private households. However, instead of
only using a single sensor, it employs a variety of sensors in order to reduce the number
of false alarms, e.g., due to burnt cooking. Furthermore, this built-in redundancy allows
for a partial operation of the system in case a single sensor malfunctions.

The specific fire detection system used as an application example in this thesis employs
three sensors: a temperature, an infrared and a sensor. Each second, the system
decides whether an alarm should be raised based on the values of these sensors. If at least
two sensors indicate the presence of a fire at the same time, the alarm is raised via an
acoustic warning tone. A raised alarm may be turned off by pressing a button located on
the fire detector.

50

3.3 Ongoing Application Example

Besides this acoustic warning tone, the fire detection system is also capable of informing
the household owner of the presence of a fire via a remote message to his smartphone.
This may be relevant when the fire detector detects the presence of a fire while the house-
hold owner is not at home. The system has two alternatives for sending the message to
the household owner’s smartphone. The first alternative uses Wireless Local Area Net-
work (WLAN]) to send a message to an accompanying smartphone app that the household
owner has installed on his phone. This alternative may fail for various reasons, e.g., the
connection of the fire detector is influenced by the presence of the fire or the house-
hold owner may not have internet access at his current location. When the fire detection
system notices that it cannot deliver the alarm message via [WLAN| despite a fire being
detected, it attempts to send another warning message to the household owner via Short
Message Service (SMS). relies on different technology than and may deliver
the message even if there is no internet connection for the fire detector or the household
owner.

In case the fire detection system detects an error within its operation, e.g., via a safety
mechanism, it is also capable of signaling this error by playing an acoustic maintenance
tone and informing the household owner of this via and as well.

3.3.3 Application Model

This section presents a functional [UMIL] model of the fire detection application example. It
serves as the basic model to which safety mechanisms are added automatically in Chapters
to[6] Figure [3.3]shows the application model.

The class FireAlarmControl is the central controlling entity of the application. It
contains compositions to the classes responsible for detecting the fire, signaling an acoustic
alarm and sending messages to the smartphone of the household owner. The class Alarm-
Buzzer is responsible for playing the acoustic warning and maintenance tones, while the
class StopAlarmButton resets the alarm once the corresponding button on the fire de-
tector is pressed. The classes HouseholdOwnerNotification and SMSService are
responsible for sending the messages to the household owner’s smartphone via and
SMS| respectively. For this purpose, both of them realize the interface Notification-
Service.

The actual fire detection process is performed by the class FireDetector, which gets
its input for the detection process from the classes TemperatureFilter, Infrared-
Filter and GasFilter. These classes determine for each individual sensor whether
a fire is present according to this sensor. For this purpose, they contain a composition
relationship to the corresponding sensor classes, i.e., TemperatureSensor, Infrared-
Sensor and GasSensor. These are responsible for actually measuring the associated
physical phenomena corresponding to their sensor type (the GasSensor measures the
concentration in the air, among other gases).

Some of the aforementioned classes interact with the hardware of the system, e.g., the
sensors. For this purpose, sensor classes and the classes responsible for managing the
acoustic alarm are connected to a software representation of a [GPIOl Furthermore, the
SMSService class is connected with a[UART] as the actual process of sending the [SMSlis
implemented on another hardware module with which the fire detector communicates via
These hardware peripherals are represented as interfaces within the application
model (IGpio and IUart) and refer to the interfaces of a [HAT] that is responsible for
actually communicating with the hardware.

o1

3 Overview

FireAlarmControl 3
StopAl Butis & "
opTamiBuon | 1 (28 darm:bocl SmsService
a itsStopAlarmButton ched®Rate:int=1000
Bl presed(rbool 54 globalErrorHander:FireAlamControl 1| (8 phoneNumber:char*
EPressed():boo itsSmsService : :
E chedkForFire() void E sendSmg(len:int;msg: char*):void

E getinstance(): FreAlarmControl {'

o I — ® & handleError(enTdLen:int enId: char®, eStatus: DetectionSt. .. itssmsServicelart
SmsServiceUart
AlarmBuzzer itiFirEDEtEEtDr&l
alarmTone:int{3] ={1,1,1} FireDetector
ﬁ maintenanceT one:int[3]1={50,60,70}
H (= detedfire():bool %7
E playAlarm():void IUart
E playMaintenance():void 0 0 0
f void
& wnOff):vol & send(length intbuffer:char* bl...
itsTemperatureFilter, itsInfraredFilter itsGasFilter.

TemperatureFilter InfraredFilter

E irThreshold:int

GasfFilter

tempThreshold:int gasThreshold:int 1| itsHouseholdOwnerNotification

E temperaturelndicatesire():bool E infraredindiatesHire():bool E gasIndicatesFire():bool HouseholdOwnerNotification

measure():void

ﬁ measureAnalog(): void

measureAnalog():void

E userld:char® [
itsTemperatureSensor, itsInfraredSensor; itsGasSensor, (= sendMsg(len:int,msg: char*):void
TemperatureSensor Dé, InfraredSensor D&, GasSensor Dé'
«Interf
measureRate:int=1000 analogIR:int=0 analogGas:int=0 Nabﬁmzcr.;ervm
& temp:int & measureRate:int=1000 measureRate:int=1000 <} ,,,,,,
(= getremp(yint (= getAnalogIR():int (= getAnalogGas(y:int & senamigylien:intmag:char):void

itsTemperatureria 1 iisInfraredei& 1

TemperatureGpio InfraredGpio

itsGastia 1

GasGpio

IGpio

E getValue():GpioValue

T | | |

Figure 3.3: Functional application model of the fire detection system application example

(adapted from [100]; screenshot of the [UMIL] model created with the MDD tool
IBM Rhapsody [205]).

52

3.3 Ongoing Application Example

Figure 3.4: Photo of the hardware setup for the application example. The picture shows
a Raspberry Pi4B and its associated breakout board, as well as the hardware
sensors and actuators used for the application example.

3.3.4 Hardware Setup

This section presents selected hardware details of the fire detection application example.
Figure[3.4shows a picture of the hardware setup. A Raspberry Pi4B is used as a microcon-
troller on which the application is implemented. However, the application of the concept
presented in this thesis is independent of a specific microcontroller. Thus, the concept
may also be applied to other microcontrollers, e.g., ones that are more cost-efficient for
commercial systems.

The Raspberry Pi offers 40 [GPIOE, which are used to connect the individual sensors, as
well as a button and a buzzer to the system. These hardware elements have been selected
from the SunFounder Sensor Kit [246]. For the [JART] that connects the Pi to another
hardware module responsible for sending SMS, the internal UARTO0 (PLO011) is used.

93

4 Structured Safety Requirements for
Automatic Code Generation

One of the research gaps identified in Section (RG2) is the need for a model rep-
resentation for safety mechanisms that is suitable for automatic code generation. With
this, safety mechanisms may be modeled within the application model, which may be the
input to subsequent automatic generation steps. The concept of a model representation
for safety mechanisms necessitates that there is some form of information that describes
which safety mechanisms should be included in the application and its model. This infor-
mation usually exists in the form of a safety requirements specification [I16]. This chapter
provides a method to define safety requirements in a structured way. Due to their specific
structure, these requirements may be parsed automatically and may thus be used to au-
tomate the process of modeling the safety mechanisms within the application model. As
the code generation from the application model is also automated (cf. Chapters [5|and @,
these structured safety requirements may be seen as the first step in the automatic code
generation process for safety mechanisms.

Section presents motivating examples for high-level requirements in the context of
the application example introduced in Section [3.3] Section uses these requirements
to motivate design choices in regards to which information the structured safety require-
ments have to be able to express. Section applies the concepts of structured safety
requirements to the high-level requirements presented in Section .1} This shows how the
presented approach may be applied to the ongoing application example. This chapter con-
cludes with Section [£.4] which describes a prototype implementation and tool support for
the presented approach.

This chapter presents contribution C1 of this thesis and partially addressed research gap
RG1 (cf. Section [1.1.2). An initial version of this approach has been published in [100]
and in a supervised bachelor’s thesis [108] that elaborated on implementation assistance
for the concepts presented in this chapter.

4.1 High-level Requirements

The structured specification of safety requirements requires an (early) model of the ap-
plication, as it references implementation entities. For this reason, they are derived from
requirements of a higher abstraction level that do not take the implementation into account.
This section presents exemplary high-level safety requirements of the fire detection appli-
cation example introduced in Section They are examples that are intended to motivate
the design choices of Section [£.2] which describes an approach on how safety requirements
may be formulated in a structured manner that enables automatic code generation.

In terms of the safety standard IEC 61508, a fire detection system may be assigned a
Safety Integrity Level (SIL)) of 2 [137, 210]. For 2 systems, IEC 61508 recommends
a variety of safety mechanisms. Some examples that are used in this thesis are: fault
detection and diagnosis for software and hardware faults (cf. IEC 61508 part 3, table A.2).
The fault detection may be carried out on multiple levels, e.g., the value, time and logical
domain. Additionally, input comparison or voting are recommended for the use of sensors

95

4 Structured Safety Requirements

(cf. IEC 61508 part 2, table A.13). Furthermore, the system should be capable of graceful
degradation to maintain its proper operation in the case of selected errors (cf. TEC 61508
part 3, table A.2).

Based on these general recommendations, the following exemplary high-level require-
ments are defined for the fire detection application example:

HR1: The output of the sensor shall be within its specified value range. Addi-
tionally, the sensor shall measure new values at least every second.

HR2: The output of the temperature sensor shall be within its specified value range.
Additionally, the temperature sensor shall measure new values at least every
second.

HR3: The output of the infrared sensor shall be within its specified value range.
Additionally, the infrared sensor shall measure new values at least every second.

HR4: The system shall check for a fire at least every second.

HRS5: The output of the sensors shall be compared in a voting process that determines
the presence of a fire.

HR6: If the system is incapable of sending the household owner a message via [WLANI
in case of an alarm, the system shall gracefully switch to sending an[SMSlinstead.

HR7: The communication of the with the external hardware module sending
an alarm SMS shall be protected with error detecting codes.

Requirements HR1 to HR4 and HR7 may be categorized as fault detection and diagnosis
for software and hardware faults. HR1 to HR3 each target the value and time domain and
respectively monitor the operation of the [COl temperature and infrared sensor. HR4
also targets the time domain and monitors the overall timing behavior of the system.
HR7 belongs to the logical domain. It monitors any communication errors that occur in
association with the to the external hardware element that is capable of sending an
to the household owner.

The requirement HR5 is derived from the recommendation for input comparison/voting
for sensors. HR6 reflects the graceful degradation capability of the system. It enables the
system to inform the household owner of an alarm even in case of no internet connection
for the household owner or the fire detection system.

4.2 Structured Safety Requirements

This section presents a method for specifying safety requirements in a structured way that
enables automatic code generation. This is achieved by using sentence templates, i.e., a
fixed sentence structure with placeholder values that are replaced with actual values when
a specific, structured safety requirement is derived from a high-level requirement. An
example for such a placeholder is the name of the system element that should be protected
by a safety mechanism.

Section presents example high-level requirements for a safety-critical system. From
these, the following criteria may be inferred that the sentence templates have to be able
to express:

e Requirements HR1 to HR6 describe requirements for software-implemented safety
mechanisms, while HR7 describes a requirement for a hardware-implemented safety

56

1

4.2 Structured Safety Requirements

mechanism. Thus, the sentence templates have to enable the specification of both
types of safety mechanisms, i.e., software-implemented and hardware-implemented
mechanisms.

e The requirements HR1 to HR7 reference system elements that should be protected.
Furthermore, the type of the system element to protect may vary. For example,
HRI1 refers to specific values measured by the sensor, i.e., an attribute in the model.
Requirement HR4, in contrast, refers to an operation in the model, i.e., checking for
fire. Thus, the sentence templates have to express the name of the system element
that should be protected, as well as its type.

e Requirement HR6 refers to the safety mechanism error detecting codes. This safety
mechanism has distinct realizations, e.g., which type of error detecting code is used.
For example, this could be a [CRC] a Hamming code or a parity check. Thus, the
sentence templates have to enable the expression of specific types of the safety mech-
anism.

e A specific type of safety mechanism, e.g., [CRCl may have additional configuration
options. In the case of [CRC] this could be the number of bits used for the generator
polynomial. Thus, the sentence templates have to provide the ability to express such
configuration options for a safety mechanism.

Sections[£.2.T]to[4.2.3| propose a set of sentence templates that achieve the characteristics
presented above. In order to enable the automatic parsing process of the requirements
specified according to the templates, the templates are formulated in ANTLR] [192] syntax.
Section discusses the expressiveness of the proposed templates.

4.2.1 Distinction between Hardware- and Software-Implemented Safety
Mechanisms

As described in Section[I.1.1] the goal of this thesis is the generation of software-implemented
safety mechanisms, as well as the automatic initial configuration for hardware-implemented
safety mechanisms. As these two types of safety mechanisms have different characteris-
tics, the sentence templates presented in this thesis distinguish between the specification
of a requirement for a software-implemented safety mechanism and a requirement for a
hardware-implemented safety mechanism. This is shown in Listing {.T| which declares
that a safety requirement may be either of these two types.

req : swReq | hwReq

Listing 4.1: Distinction of safety requirements depending on whether they are implemented
in software or hardware (ANTLRI syntax) [I00].

At the code-level, hardware-implemented safety mechanisms are often configured via
low-level [APTs. The name of the [APIl method indicates which property of the safety
mechanism should be configured, while the method parameter specifies the intended value
for this property. Thus, the configuration of hardware-implemented safety mechanisms
follows a key-value approach. The sentence template for hardware-implemented safety
mechanisms is provided in Section [4.2.2]

Software-implemented safety mechanisms, on the other hand, have no such clear struc-
ture in regards to their implementation or configuration. Thus, there exists a greater deal
of variety for these than for hardware-implemented safety mechanisms. This increased vari-
ety is reflected by a different structure for the sentence template for software-implemented
safety mechanisms, as compared to the sentence templates for hardware-implemented

57

4 Structured Safety Requirements

safety mechanisms. The structure for software-implemented safety mechanisms is described
in Section

4.2.2 Sentence Templates for Hardware-Implemented Safety Mechanisms

This section describes sentence templates for safety requirements that enable the automatic
configuration of hardware-implemented safety mechanisms. As described in Section
such a configuration follows a key-value approach. Thus, the sentence template reflects
this approach while also specifying the name of the hardware interface that provides the
hardware-implemented safety mechanism. The basic structure of this sentence template is
shown informally in Listing

The hardware element <Name of the hardware interface to be protected> shall be protected
with the configuration <key> as <value>.

Listing 4.2: Sentence template for a hardware-implemented safety requirement. The angle
brackets indicate a placeholder [100].

The <key> and <walue > elements of this template may be used multiple times, separated
with a comma. This enables the specification of multiple key-value pairs for a single
hardware interface. Listing shows the (formal) grammar for this sentence
template.

hwReq : ’The hardware element ’ hwId ’ shall be protected with the configuration ’
hwConfig ’.7;

hwId: QSTRING;

hwConfig : hwConfigEntry ((’, ’ | ’> and ’) hwConfig)* ;

hwConfigEntry : QSTRING ’ as ’ QSTRING;

Listing 4.3: [ANTLR] grammar for a hardware requirement [100]. The QSTRING lexer rule
refers to a rule that can parse strings surrounded by quotes.

Line 1 of Listing [4.3| provides the basic structure of the sentence template. The hardware
interface that should be protected is given by hwlD in line 2 and may be an arbitrary string.
The key-value configuration is achieved by lines 3 and 4 of Listing The hwConfig rule
provides the basic recursion that enables the use of multiple key-value pairs, while the
hwConfigEntry rule represents a specific key-value configuration for the specified hardware
interface. The arguments given for the name of the hardware interface and key-value
pairs have to be valid values for the given microcontroller that is used for development.
The validity of these arguments is checked during the automated integration of the safety
requirements for hardware-implemented safety mechanisms in the PinConfig tool. This is
described in detail in Chapter [0

4.2.3 Sentence Templates for Software-Implemented Safety Mechanisms

This section describes sentence templates for safety requirements that enable the automatic
generation of software-implemented safety mechanisms. Listing shows the (informal)
structure of this template.

The <model element to be protected> <general safety mechanism type> <general
configuation>. <specific safety mechanism to be applied> <specific configuration>.

Listing 4.4: Sentence template for a software-implemented safety requirement [I00]. The
angle brackets indicate a placeholder.

The template begins with the name of the system element that should be protected by
a software-implemented safety mechanism. It continues with the specification of the type
of safety mechanism that should be used and its configuration. This part of the template

58

© 00~ U WN

4.2 Structured Safety Requirements

is further split into a general configuration and a specific configuration. As shown by
the requirements HR1 to HR3 presented in Section multiple safety mechanisms may
be applied to the same system element. These multiple safety mechanisms may share
some configurations, e.g., the method of error handling once an error has been detected.
Thus, the sentence template enables developers to express that a system element should be
protected by a certain category of a safety mechanism, followed by a general configuration
that should be applied to all specific safety mechanisms of this category. Then, the specific
safety mechanisms that should be applied may be stated and configured. The second
sentence of Listing may be repeated multiple times to apply several safety mechanisms
from the same category to the system element. Listing shows the (formal)
grammar for this sentence template.

swReq : introReq (addReq)x*

introReq : ’The ’ Tlocation ’ shall be ’ {dintroHow ’ with ’ swSharedConfig ’.’ ;

addReq : ’The ’ type ’ shall be applied’ (’ to the ’ location)? ’ with ’ swConfig ’.’ ;

location : locationType SPACE locationPath ;

locationType : ’class’ | ’attribute’ | ’operation’ | ’association with’ :

locationPath : QSTRING ;

introHow : ’automatically checked on access’ | ’periodically checked every TIME_UNIT ’ |
’used for voting’ | ’monitored regarding 1its runtime’ | ’gracefully degrading’ ;

swSharedConfig : swSharedConfigEntry ((’, ’ | > and ’) sharedConfig)x* ;

type: TYPE_CHECKS | TYPE_VOTING | TYPE_TIMING_MONITORING | TYPE_GRACEFUL_DEGRADATION ;

swConfig : swConfigEntry ((’, ’ | > and ’) swConfig)x ;

Listing 4.5: [ANTLRI] grammar for a software requirement (adapted from [I00]). The
QSTRING lexer rule refers to a rule that can parse strings surrounded by
quotes. The parser rules swConfig and swSharedConfig are not defined
in the listing, but further described in the main text. The same applies to
the lexer rules TYPE_CHECKS, TYPE_VOTING, TYPE_TIMING_MONITORING
and TYPE_GRACEFUL_DEGRADATION.

Line 1 of Listing provides the basic structure that initially names a system element
that should be protected along with a category of safety mechanisms (introReq), before
an arbitrary number of specific mechanisms follow (addReq). These two parts are further
refined in lines 2 and 3.

The system element that should be protected is a[UMTlelement in this thesis, as the code
generation approach for software-implemented safety mechanisms described in Chapter
relies on [UMTI as a cornerstone. Line 5 of Listing further describes the type of the
protected element, e.g., a class, and the full path to the element in the application
model.

The general category of safety mechanism that should be applied to the specified model
element is defined in line 9. It provides a sentence fragment to represent one of the safety
mechanism categories for which Chapter [5]| presents a code generation approach. The
sentence fragment is defined in a way that indicates the type of category that should be
used. Furthermore, it fits into the (natural) grammar of the sentence template.

Line 10 of Listing[4.5]defines the configuration that is applicable for all safety mechanisms
that belong to the same category (swSharedConfig), while line 13 defines those that are
specific to a single safety mechanism (swConfig). For brevity, the specific definitions of
swSharedConfig and swConfig are not shown in Listing[4.5] as they contain an entry for each
configuration value of the safety mechanisms presented in Chapter ol They are sentence
fragments that fit grammatically in the sentence structure and contain information about
a configuration value. An example for this is the sentence fragment “with a duration of
1000ms” that is used at the end of requirement DR2 described in Section [£.3] It configures

99

4 Structured Safety Requirements

the check to signal an alarm if a time limit of 1000ms has passed without updating the
sensor value.

Line 12 of Listing furthermore defines the type parser rule, which resolves into mul-
tiple lexer rules that indicate a group of safety mechanisms. Each of these lexer rules
represents one specific safety mechanism that may be applied to the protected model ele-
ment. The names of these safety mechanisms correspond to the names of UMl stereotypes,
which are introduced as part of the profiles presented in Chapter [5| Thus, while the
type rule specifies the stereotype that should be applied to a model element, the swShared-
Config and swConfig rules define the tagged values of the stereotypes.

The addReq rule defined in line 3 of Listing also provides the option of specifying ad-
ditional locations in the model, besides the initial model element specified in introReq. This
is necessary when a code generation approach requires multiple stereotypes or references
more than one location, e.g., in case associations to other classes are involved as inputs.

An example for this is the safety mechanism voting, whose code generation approach is
described in Section .7

4.2.4 Expressiveness of the Sentence Templates

This section discusses the expressiveness of the structured sentence templates introduced
in Sections to in regards to their ability to describe safety requirements with
the intent of automatic code generation. There are two aspects that are relevant for this:

1) The degree to which safety requirements may be modeled with the templates.

2) The sufficiency of the templates in regards to automatic code generation.

These aspects are discussed in Sections [d.2.4.1] and [1.2.4.2] respectively.

4.2.4.1 Expressing Safety Requirements

The sentence templates introduced in Sections to may be used to derive detailed
safety requirements suitable for automatic code generation from more general high-level re-
quirements. This section discusses the extent to which this is possible and for which types
of high-level requirements no corresponding detailed requirement may be derived. Require-
ments for hardware- and software-implemented safety mechanisms are discussed separately,
as their corresponding sentence templates differ from each other (cf. Sectionsto .
One aspect that applies to both types of requirements is that a single high-level require-
ment may be mapped to an arbitrary number of detailed requirements, i.e., it is possible
to create two or more detailed requirements for a single high-level requirement.

Expressing safety requirements for hardware-implemented safety mechanisms: The
sentence templates for hardware-implemented safety mechanisms (c¢f. Section con-
tain the name of the hardware interface that should be protected, as well as an arbitrary
number of key-value pairs to describe the configuration of the hardware interface. Thus,
the expressiveness of the proposed approach is limited to those hardware interfaces that
may be configured via a key-value approach. This includes at least the hardware interfaces
for which Chapter [6] provides a code generation approach, i.e., [UART] and
[PWMIl Moreover, many other hardware interfaces, e.g., Serial Peripheral Interface (SPI)),
also adopt a key-value approach at the source code level for configuration, with a specific
bit in a specific register indicating the use of a specific function of the respective hard-
ware interface. Thus, as most source code for initializing hardware interfaces follows a

60

4.2 Structured Safety Requirements

key-value approach, using a key-value approach for the requirements allows for express-
ing most safety requirements for hardware-implemented safety mechanisms. There may
be exceptions to this for specialized, custom hardware interfaces, for which no adequate
requirement may be expressed via a key-value approach. However, for the microcontrollers
studied in Chapter [6] no such exception exists. As these microcontrollers are chosen from
a variety of manufacturers, this implies that the occurrence of a hardware interface, whose
initialization does not follow a key-value approach, is rare.

Expressing safety requirements for software-implemented safety mechanisms: The
sentence template for software-implemented safety mechanisms (cf. Section contains
the name of an application model element that should be protected, as well as a sentence
fragment indicating the category of safety mechanism that should be used, followed by the
name and configuration of one or more safety mechanisms from this category. While this
enables the construction of requirements that read like natural language, this comes with
the following limitations regarding the expressiveness for the templates:

e While auxiliary model elements may be referenced in the configuration of the safety
mechanism, e.g., requirement DR5 in Section the requirements are ultimately
limited to safety mechanisms that mainly protect one model element. Safety mecha-
nisms that may not be mapped to a specific model element, e.g., the use of stateless
software design, as recommended by IEC 61580 for applications with a of 3 and
above, may not be expressed with the proposed sentence templates. From the per-
spective of the research goals in this thesis, i.e., the automatic code generation of
safety mechanisms, this is only of limited importance, as such safety requirements
not only apply to the generated code for safety mechanisms, but also the application-
specific code manually written by developers. Thus, the generation of such safety
requirements, which may not be mapped to a specific model element, may be con-
sidered out of scope in this thesis, as their fulfillment depends predominantly on the
manually written code of the developers and not the automatic code generation of
safety mechanisms.

e In order to maintain sentence structures that read like natural sentences, sentence
fragments specific to a category of safety mechanisms are required (cf. rule “in-
troHow” in Listing). This implies that the grammar specifying the
sentence template has to be extended by a new, suitable sentence fragment each
time a new category of safety mechanisms should be expressed by the requirements.
The grammar is constructed in a way to make this task as simple as pos-
sible, e.g., by specifying another alternative terminal value in the rule “introHow”
that fits the new safety mechanism category. For the sake of this thesis, the
grammar presented in Section [.2.3] contains all necessary sentence fragments for the
software-implemented safety mechanisms for which Chapter [5| presents an automatic
code generation approach.

4.2.4.2 Suitability for Code Generation

The sentence templates introduced in Sections to [4.2.3] are intended as the basis
for the automatic code generation approach of safety mechanisms. This section discusses
the extent to which this is possible and what type of actions may potentially still require
manual actions by a developer. Requirements for hardware- and software-implemented
safety mechanisms are discussed separately, as their corresponding sentence templates differ

from each other (cf. Sections to 4.2.3)

61

4 Structured Safety Requirements

Suitability for code generation of the sentence templates for hardware-implemented
safety mechanisms: The key-value configuration from the sentence templates for hardware-
implemented safety mechanisms (cf. Section contains all necessary information to
describe the configuration of a hardware-implemented safety mechanism. However, differ-
ent microcontrollers may utilize different code statements to actually execute this config-
uration. Examples for this are:

e The use of different registers for a specific configuration option of a specific hardware
interface.

e The use of different driver[APIk. In the simplest case, this only affects method names,
e.g., the names of methods between the different drivers of two microcontrollers may
differ. In more advanced cases, the method parameters may differ. For example,
consider a microcontroller that uses multiple methods that each contain a single
method parameter with a primitive data type to configure a hardware interface.
Another microcontroller may only provide a single method for the configuration of
the entire hardware interface and utilize a struct as a method parameter that
contains all configuration optious.

These examples show that the key-value configurations expressed by the sentence tem-
plates for hardware-implemented safety mechanisms require a mapping to microcontroller-
specific code statements for automatic code generation. Such mappings have to be defined
manually once per microcontroller. Once such a mapping exists all necessary information
for automatic code generation is present. Chapter [6] presents a proof-of-concept for such
an automatic code generation approach.

Suitability for code generation of the sentence templates for software-implemented
safety mechanisms: As described in Section the sentence templates for software-
implemented safety mechanisms use sentence fragments that are specific to categories of
safety mechanisms. The exact content of these safety fragments reflects the necessary
values from the code generation process for software-implemented safety mechanisms (cf.
Chapter b)), i.e., there exists a direct correspondence between key words in the sentence
fragments and the tagged values of stereotypes used as part of the code generation
process to specify safety mechanisms in the application model. Thus, there exists a tight
coupling between the stereotypes proposed in Chapter |5 and the sentence fragments
of the [ANTLRI grammar proposed in Section [£.2.3] Changes to one of these, e.g., the
introduction of a new tagged value in a stereotype to reflect a novel configuration
option, necessitate changes in the other as well, e.g., modifying the sentence fragment of
the grammar to include this configuration option.

Besides this coupling between the grammar and the [UMI] stereotypes that
represent safety mechanisms in the application model, there is also a coupling between
the [UMI] stereotype and the actual code generation process. This is further described
as part of the proof-of-concept code generation described in Chapter 5] Nevertheless the
grammar ultimately contains all necessary information about the configuration of
software-implemented safety mechanisms to enable the code generation process described in
Chapter [o| for the following categories of safety mechanisms: error detection for attributes,
voting, timing constraint monitoring and graceful degradation. In order to provide a code
generation approach that starts from safety requirements for other categories of safety
mechanisms, the grammar presented in Section has to be extended with
suitable sentence fragments that correspond to the [UML stereotype(s) that represent this
novel category of safety mechanisms.

62

4.3 Derived Safety Requirements

4.3 Derived Safety Requirements

This section demonstrates how the sentence templates that enable the automatic code
generation of safety mechanisms may be applied to the high-level requirements and ap-
plication example introduced in Sections and [3.3] Figure shows the structured
safety requirements that have been derived from the high-level requirements based on the
concepts presented in Section

The derived requirements DR1 to DR7 correspond to the high-level requirement with the
same number. The requirements DR1 to DR6 demonstrate structured safety requirements
for software-implemented safety mechanisms, while DR7 represents a requirement for a
hardware-implemented safety mechanism. The text for DR5 and DR6 is longer than for
the other requirements, as they reference external classes, i.e., inputs to the voting process
and the available providers for degradation. For each such reference to an external class,
an additional sentence is added to the requirement. The requirements DR1 to DR3, on the
other hand, are examples for applying multiple safety mechanisms to the same element,
i.e., a numeric range check and a time-based check. For each such additional mechanism,
a sentence is added to the requirement as well.

4.4 Prototype

This section presents a prototype that enables developers to specify structured sentence
requirements according to the concepts presented in Section The prototype is imple-
mented in Java. Figure shows a screenshot of the of this prototype.

On the left side of the [GUIl high-level safety requirements are shown, e.g., as presented
in Section An import button enables developers to import multiple high-level require-
ments from an external document, e.g., a safety requirements specification as recommended
by the safety standard TEC 61508 [116]. In the central compartment of the [GUI] the full
text of the high-level requirement is shown. Below, the category of safety mechanism that
should be used to fulfill this safety requirement may be chosen from a drop down menu.

The text of the corresponding structured safety requirement is displayed in another
text field further below. This text field is manually editable by the developers, who may
manually write the text of the derived requirement. A label below the text field indicates
if the syntax of the derived requirement conforms to the [ANTLRI] grammar presented in
Section 4.2l

Besides writing the derived requirements manually, the prototype also enables developers
to provide the necessary values in the right panel of the [GUIL The elements shown in
this panel are dynamically updated according to the category of safety mechanism that is
chosen in the central panel of the Once a value in the right panel has been selected or
modified, the text for the derived requirement in the central panel is updated accordingly.
Thus, it is also possible for developers to create the derived requirements that enable
automatic code generation without having to know the [ANTLR] grammar presented in
Section 4.2l

The of the prototype contains a second tab, Compare and Ezport. In this tab,
developers may export the derived safety requirements to the application model, which is
the first step in the automatic code generation process of the safety mechanisms. Before
the actual export, developers are shown a list of differences between the current specifica-
tion according to the derived requirements and any information about safety mechanisms
already contained in the model. This makes it easier for developers to verify the conse-
quences of any changes in the application model when a safety requirement is changed at
a later stage in the development process.

63

4 Structured Safety Requirements

DR1: The attribute ,,GasSensor::analogGas” shall be automatically checked on access with error id ,,GasSensor” and a
global error handler class , FireAlarmControl“. The range check shall be applied with a minimum of 0 and a maximum of
10000. The update check shall be applied with a duration of 1000ms

DR2: The attribute ,Temperature::temp*“ shall be automatically checked on access with error id ,, TemperatureSensor”
and a global error handler class , FireAlarmControl”. The range check shall be applied with a minimum of -55 and a
maximum of 125. The update check shall be applied with a duration of 1000ms.

DR3: The attribute , Infrared::analogIR“ shall be automatically checked on access with error id ,,InfraredSensor” and a
global error handler class , FireAlarmControl“. The range check shall be applied with a minimum of 760 and a maximum of
1100. The update check shall be applied with a duration of 1000ms.

DR4: The operation ,FireAlarmControl::checkForFire shall be monitored regarding its runtime with error id
,checkForFire“ and a global error handler class , FireAlarmControl“ The deadline supervision shall be applied with a time
limit of 1000ms.

DR5: The class ,FireDetector” shall be used for voting with error id ,DetectorVoting” and a global error handler class
,FireAlarmControl“. The majority voting shall be applied with vote method name , detectFire”. The voting input shall be
applied to the association with ,TemperatureFilter” with input method name ,,temperaturelndicatesFire”. The voting
input shall be applied to the association with ,InfraredFilter” with input method name ,infraredindicatesFire”. The voting
input shall be applied to the association with ,GasFilter” with input method name ,gaslIndicatesFire”.

|«

D6: The class , FireAlarmControl“ shall be gracefully degrading with error id ,,ExternalComm® and a global error handler
class , FireAlarmControl“ The graceful degradation shall be applied with operation , handleError” executed in case no
provider is available anymore. The initial provider shall be applied to the association with ,,HouseholdOwnerNotification®.
The fallback provider shall be applied to the association with ,,SmsService” with priority 1.

DR7: The hardware element ,,UARTO0" shall be protected with the configuration , parityBit” as ,true”“ and , parityMode“ as
Leven”,

Legend (color-based)

Legend for a software-implemented safety requirement Legend for a hardware-implemented safety requirement
(DR1 to DR6): DR7):

Model element to be protected Hardware interface which contains safety properties
Type of safety mechanism to be employed Always the same text fragment (,filler” for a natural
General configuration applicable to multiple mechanisms sounding sentence)

Specific safety mechanism to be employed Configuration of key-value pairs

Specific configuration for the selected safety mechanism

Figure 4.1: Safety requirements that enable the automatic generation of safety mecha-
nisms (adapted from [100]). They are derived from the exemplary high-level
requirements presented in Section f.I] according to the principles introduced in

Section

64

Requirements

Compare and Export

Requirements

HR1
HR2
HR3
HR4
HR5
HR6
HR7

O RS SIS S

Import high-level requirements

Safety Requirements

Selected high-level requirment:

The output of the CO sensor shall be within its specified value range.

Addi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>