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Abstract

Safety-critical systems are systems in which failure may lead to serious harm for humans
or the environment. Due to the nature of these systems, there exist regulatory standards
that recommend a set of safety mechanisms that should be included in these systems, e.g.,
IEC 61508. However, these standards o�er little to no implementation assistance for these
mechanisms. This thesis provides such development assistance, by proposing an approach
for the automatic generation of safety mechanisms via Model-Driven Development (MDD).
Such an automation of previously manual activities has been known to increase developer
productivity and to reduce the number of bugs in the implementation. In the context of
safety-critical systems, the latter also means an improvement in safety.
The approach introduces a novel way to de�ne safety requirements as structured sen-

tences. This structure allows for the automatic parsing of these requirements in order
to subsequently generate software-implemented safety mechanisms, as well as to initially
con�gure hardware-implemented safety mechanisms.
The generation approach for software-implemented safety mechanisms uses Uni�ed Mod-

eling Language (UML) stereotypes to represent these mechanisms in the application model.
Automated model-to-model transformations parse this model representation and realize the
safety mechanisms within an intermediate model. From this intermediate model, code may
be generated with simple 1:1 mappings.
For the generation of hardware-implemented safety mechanisms, this thesis introduces

a novel Graphical User Interface (GUI) tool for representing the con�guration of hard-
ware interfaces. A template-based code snippet repository is used for generating the code
responsible for the con�guration of the hardware-implemented safety mechanisms.
The presented approach is validated by applying it to the development of a safety-critical

�re detection application example. Furthermore, the runtime overhead of the respective
transformation steps of the code generation process is measured. The results indicate a
linear scalability and a runtime that is no impediment to the work�ow of the developer.
Furthermore, the memory and runtime overhead of the generated code is evaluated. The
results show that the inclusion of a single safety mechanism for a single system element
has a negligible overhead. However, the relative overhead indicates that the application
of safety mechanisms should be limited to those system elements that are strictly safety-
critical, as their arbitrary application to all system elements would have large e�ects on
the runtime and memory usage of the application.
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1 Introduction

Safety-critical systems are a category of applications whose failure may harm humans or
the environment [244]. Many of these applications are embedded systems, which interact
with the environment through sensors or actuators. Examples for safety-critical embedded
systems are �re detection systems [210], software for automobiles [118], airplanes [213] or
medical devices [117]. Due to the serious consequences in case such a system fails, strict reg-
ulations for the market admission of such systems exist. Usually, these regulations include
conformance with a relevant safety standard for the product. There exist domain speci�c
standards, e.g. IEC 62034 [117] for the medicinal domain, DO-178C [213] for airborne
systems or ISO 26262 [118] for the automotive domain. Furthermore, IEC 61508 [116] pro-
vides a domain independent safety standard, which applies to general electrical/electron-
ic/programmable electronic systems. Depending on the risk level, these safety standards
recommend a set of safety mechanisms that a product has to contain in order to claim
conformance with the respective standard. Safety mechanisms aim to detect errors in the
system during runtime and to maintain the safety of the system despite the presence of
such errors, e.g., via error correction or recovery.
These safety standards, as well as the safety mechanisms they recommend, are in part a

reaction to the occurrence of catastrophic incidents related to the failure of safety-critical
software [92, 146, 174]. Despite the establishment of safety standards, such incidents still
occur. Recent examples are the crashes of two aircraft of type Boeing 737 MAX 8 in
2018 and 2019, leading to the loss of life of all passengers on board. The reason for both
crashes has been identi�ed as the erroneous activation of a software module due to sensor
equipment malfunctions [127].
There are several factors that make the development of safety-critical systems di�-

cult [116, 127]. One important challenge is that the size and complexity of these sys-
tems steadily increases [254]. In order to cope with these di�culties, several techniques
and approaches have been proposed, either in academia [91, 95], by the safety standards
themselves [116], or in the form of commercial products [61, 198]. Among the proposed
techniques are the use of semi-formal methods, code generation and Model-Driven Devel-
opment (MDD). This thesis combines the aforementioned techniques in order to automat-
ically generate safety mechanisms for safety-critical systems, thereby making this task less
cumbersome and less error-prone. This is achieved by creating models with semi-formal
methods, e.g., the Uni�ed Modeling Language (UML), that represent the desired safety
mechanisms. As part of an MDD process, these models are subject to a set of model trans-
formations, which result in an intermediate model that realizes the safety mechanisms.
Source code for the safety mechanisms is generated from this intermediate model with
1:1 mappings to the target programming language. The use of MDD and automatic code
generation has been known to increase developer productivity and decrease the number of
bugs within the system [33, 73, 132, 133]. Furthermore, the use of MDD may increase the
correctness and e�ciency of software engineering activities [51]. Additionally, developers
require less knowledge about implementation details for the automatically generated code.
This is especially important for the safety mechanisms in the system, as knowledge about
safety is often only a very minor topic in current computer science and software engineer-
ing curricula [44, 91]. Thus, the approach presented in this thesis may not only increase
developer productivity, but also increase the overall safety of the system.
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1 Introduction

1.1 Problem Statement and Analysis

This section discusses the research challenges addressed by this thesis in Section 1.1.1 and
summarizes the research gaps it addresses in Section 1.1.2. Furthermore, the contributions
of this thesis are highlighted in Section 1.1.3.

1.1.1 Research Challenge and Scope

The research challenge addressed by this thesis is to provide an approach for the automatic
code generation of safety mechanisms via MDD. Numerous safety mechanisms have been
described in the literature, e.g., [10, 88, 89, 140, 200, 226], as well as by safety standards,
e.g., IEC 61508 [116]. These safety mechanisms cover a broad range of techniques, some of
which may be realized in software, e.g., the use of checksums for data structures or com-
munication messages, and some of which may not be realized in software, e.g., mechanical
safety precautions such as a safety cage around a safety-critical machine. There also exist
multiple safety mechanisms that are partially realized in software. These mechanisms rely
on hardware to actually execute the safety-relevant behavior, e.g., hardware watchdogs.
However, the con�guration of these hardware mechanisms is usually realized in software
that is executed at the start of the safety-critical program. In order to distinguish these
safety mechanisms that rely on hardware from the safety mechanisms that may be real-
ized purely in software, the former group is referred to as hardware-implemented safety
mechanisms, while the latter group is referred to as software-implemented safety mecha-
nisms [29]. This does not restrict the type of errors that may be detected by each type of
safety mechanism. For example, the output of a hardware sensor may be monitored by a
software-implemented safety mechanism that signals an error in case it detects anomalous
patterns in the output of the hardware sensor. Note that this does not imply that every
possible error may be always detected by both types of safety mechanisms. For example,
there may be certain hardware errors that cannot be detected by software-implemented
safety mechanisms.
The scope of this thesis is limited to the automatic code generation of software-imple-

mented safety mechanisms, as well as the generation of the initialization code for hardware-
implemented safety mechanisms. Safety mechanisms that do not contain a software com-
ponent are not considered in this thesis, e.g., mechanical mechanisms such as a hardware
emergency stop. For hardware-implemented safety mechanisms, the code generation is
limited to generating the code that initializes the hardware safety mechanisms. The design
of hardware elements, e.g., with the Very High Speed Integrated Circuit Hardware Descrip-
tion Language (VHDL), or the actual manufacturing of the hardware, are not considered
in this thesis.

1.1.2 Research Gaps

In line with the scope described in Section 1.1.1, the main research goal of this thesis is as
follows:

To develop an approach for the automatic code generation of safety
mechanisms from models in an MDD environment.

Section 2.2 discusses work that is related to this research goal. It identi�es three speci�c
research gaps (RG1 to RG3) that need to be addressed in order to achieve the research
goal presented above. They are summarized in the following:

2



1.1 Problem Statement and Analysis

RG1: A model representation for safety mechanisms suitable for automatic code
generation. As described in Section 1.1.1, the goal of this thesis is to provide an
MDD approach for the automatic code generation of software-implemented safety
mechanisms, as well as the initialization code of hardware-implemented safety mech-
anisms. Current MDD tools, e.g., [60, 205, 237], provide the technical capability to
generate source code from structural UML diagrams, e.g., class diagrams. Some of
the MDD tools, e.g., IBM Rhapsody [205], additionally introduce their own runtime
frameworks to provide code generation from behavioral UML diagrams, e.g., state
machine diagrams. However, these tools only enable code generation from model
elements de�ned in the UML standard [183]. This standard does not contain any
model elements for safety mechanisms. The same is true for the Modeling and Anal-
ysis of Real Time and Embedded systems (MARTE) standard, which extends UML
by modeling concepts often required for the development of embedded systems [186].
Other, non-standardized approaches, e.g., [25] provide initial modeling concepts for
safety mechanisms. However, they are not intended for the purpose of code genera-
tion and therefore lack the required amount of detail necessary for generating code
automatically. Thus, the �rst research gap addressed by this thesis is to design model
representations for safety mechanisms that are suitable for automatic code generation
and which integrate into industrial safety standards.

RG2: A software architecture for safety mechanisms suitable for automatic code
generation. The second research gap addressed by this thesis refers to the source
code level. While there already exist software architectures for safety mechanisms,
e.g., [226], these software architectures often do not consider automatic code gener-
ation. Thus, for the use case of automatic code generation, i.e., adding the software
architecture of a safety mechanism A to an existing software architecture B, a large
number of changes toB are required. Such a large number of changes quickly becomes
a complex task that demands manual supervision or interactions by a developer, i.e.,
the very opposite of automatic code generation. Therefore, the second research gap
addressed by this thesis is to de�ne a software architecture C, which not only provides
the capabilities of safety mechanisms, but also may be integrated with an existing
software architecture B with a minimized number of manual developer interactions.

RG3: Model transformations that generate safety mechanisms. The third research
gap addressed by this thesis is the automated transformation of the model represen-
tation addressed in RG1 to the software architecture addressed by RG2. This is the
step that actually enables the automatic code generation of safety mechanisms.

1.1.3 Contributions

In order to �ll the research gaps described in Section 1.1.2, this thesis provides the following
innovative contributions (C1 to C3):

C1: Structured safety requirements suitable for code generation. This contribu-
tion provides a structured way to re�ne high-level safety requirements into derived
requirements RD. These derived requirements contain all necessary information to
automatically generate safety mechanisms for a given functional application model.
As the requirements are used to apply corresponding UML stereotypes and con�gu-
rations in the model, this contribution addresses research gap RG1. The contribution
is published in [100] and is described in Chapter 4.

C2: An MDD approach for the generation of software-implemented safety
mechanisms. This contribution provides a model representation and a software

3



1 Introduction

architecture for software-implemented safety mechanisms, as well as model transfor-
mations that connect the former two into a holistic approach. This addresses research
gap RG1 to RG3 in the context of software-implemented safety mechanisms. Utilizing
contribution C1, a set of UML stereotypes is applied to a UML model based on the
derived safety requirements RD. Each stereotype represents a safety mechanism. Au-
tomated model-to-model transformations are used to realize these safety mechanisms
in an intermediate model. From the intermediate model, code may be generated auto-
matically with simple 1:1 mappings by common MDD tools, e.g, IBM Rhapsody [205]
or Papyrus [60]. The contribution is published in [100, 101, 102, 103, 104, 105] and
is described in Chapter 5.

C3: An MDD approach for the generation of hardware-implemented safety
mechanisms. This contribution provides a GUI tool for con�guring the pins and
hardware interfaces of microcontrollers, as well as a corresponding code generation
process and its integration with MDD tools. This addresses research gap RG1 to RG3
in the context of hardware-implemented safety mechanisms. By utilizing contribution
C1, the con�guration of the hardware interfaces in the GUI tool may be automated by
parsing the derived safety requirements RD. Template �les are used as code snippet
repositories to generate the initialization code corresponding to this con�guration. A
subsequent reverse engineering process is used to integrate the generated code within
the model. The contribution is published in [100, 106] and is described in Chapter 6.

As part of each contribution, a working prototype is developed as a proof-of-concept
and the presented approach is applied to the development of a safety-critical �re detection
application example. Furthermore, the overhead of the involved model transformations on
the work�ow of a developer is measured. Additionally, the e�ciency of the generated code
is evaluated.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 describes background knowledge relevant
for the other chapters in this thesis, as well as related work to the contributions o�ered
by this thesis. Chapter 3 provides an overview of the approach presented in this the-
sis and introduces an ongoing application example that is used to illustrate the concepts
presented in the subsequent chapters. Chapter 4 introduces an approach for deriving struc-
tured safety requirements that serve as the �rst step in the automatic generation process
for safety mechanisms. Chapter 5 presents a model-driven code generation approach for
software-implemented safety mechanisms. Besides introducing a work�ow for this, the con-
cept is realized for the following software-implemented safety mechanisms: error detection
for attributes, voting, timing constraint monitoring and graceful degradation. Chapter 6
presents an approach for the automatic generation of the initialization code for hardware-
implemented safety mechanisms. This includes a GUI tool for specifying the necessary
con�guration values, as well as an object-oriented Hardware Abstraction Layer (HAL)
that is used for the automatic code generation and integration with MDD tools. The re-
sults from Chapters 4 to 6 are evaluated in Chapter 7. Chapter 8 concludes this thesis and
suggests future work.
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2 Background and Related Work

The aim of this thesis is to provide an MDD approach for the automatic code generation
of safety mechanisms. This chapter presents the relevant background knowledge required
for understanding the approach described in this thesis (cf. Section 2.1). Furthermore,
it provides an overview of related work and discusses how the approach presented in this
thesis di�ers from existing approaches (cf. Section 2.2).

2.1 Background

This thesis presents an automatic code generation approach for safety mechanisms. The ap-
proach combines aspects of MDD, e.g., UML, with characteristics of safety-critical embed-
ded systems. This section presents background on these topics to aid in the understanding
of this thesis. Section 2.1.1 summarizes the UML elements that are frequently used within
this thesis. Section 2.1.2 presents an overview of MDD and its concepts. Section 2.1.3 pro-
vides an overview of the development for safety-critical systems. Sections 2.1.4 and 2.1.5 de-
scribe background information on hardware-implemented and software-implemented safety
mechanisms. Section 2.1.6 presents a short introduction to the ANother Tool for Language
Recognition (ANTLR) framework and its syntax. ANTLR provides parsing capabilities
for grammars de�ned according to the ANTLR syntax. It is used in Chapter 4 to de-
�ne structured sentence templates for describing safety mechanisms that may be parsed
automatically.

2.1.1 Uni�ed Modeling Language (UML)

At the core of this thesis is the standardized modeling language UML, which is used for
modeling safety mechanisms and the subsequent code generation of these mechanisms.
This section presents the UML concepts that are used within this thesis. All references to
UML within this thesis refer to version 2.5.1 of the UML standard [183]. A discussion of
alternative modeling languages to UML may be found in Section 2.2.2.
UML originated as a combination of several modeling languages [231]. These are the

Booch method [28], Object Modeling Technique (OMT) [216] and Object-Oriented Software
Engineering (OOSE) [124]. Since then, it has been revised multiple times in cooperation
with other interested parties, e.g., former competitors and corporations [231]. UML pro-
vides a standardized metamodel for modeling object-oriented systems, as well as a set of
graphical notations (diagrams) that may be used to visualize the model elements. UML
contains fourteen types of diagrams, that may be split into structural and behavioral dia-
grams. Structural diagrams describe the structural relationships between UML elements,
while behavioral diagrams describe how the state of objects changes over time. Figure 2.1
shows the relationships between the di�erent UML diagrams.
From the fourteen di�erent UML diagrams available, class diagrams have received the

most attention [49, 142, 188, 202]. Other popular diagram types include sequence, activity,
use case and state machine diagrams. However, these are signi�cantly less popular in
practice than class diagrams [49]. As class diagrams are the most widespread diagram
type, this thesis uses them exclusively for the model representation of safety mechanisms.
This has the additional advantage that there exist many 1:1 mappings between elements
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2 Background and Related Work

Figure 2.1: Taxonomy of UML structure and behavioral diagrams. Adapted from [183].

in UML class diagrams and object oriented programming languages, e.g., C++. Thus,
this limitation to UML class diagrams not only makes the approach more accessible to
a wider audience of developers, but also simpli�es the code generation process. This
simpli�cation of the code generation process furthermore improves the portability of the
proposed approach for di�erent MDD tools. These design choices are discussed more
extensively in Section 2.2.2.
When talking about a UML model, it is important to distinguish between the actual

model, and the visual representation of this model. The previously introduced UML dia-
grams allow for the visual representation of a UML model. However, these diagrams may
omit certain parts of the underlying UML model to communicate other parts of the model
more e�ectively. For example, a class in a UML class diagram may omit to display the
getter and setter methods for its variables to highlight the remaining operations.
Section 2.1.1.1 provides an introduction to UML class diagrams. Section 2.1.1.2 presents

UML pro�le diagrams, which take a central role in the process of extending the UML
metamodel, e.g., in order to provide a model representation for safety mechanisms within
UML.

2.1.1.1 UML Class Diagrams

As class diagrams are the most used diagram type in this thesis, this section presents
some characteristics of this diagram type. Figure 2.2 shows an example of a UML class
diagram. In the �gure, UML notes (rectangles with a fold in the upper right corner, e.g.,
the rectangle which contains the word �Superclass� in Figure 2.2), are used to illustrate the
name of the UML element they annotate. The explanations of the UML concepts shown
in Figure 2.2 are based on [231].

General Structure: The general purpose of a UML class diagram is to display object-
oriented structures, e.g., classes with their data types and operations, and their relation-
ships among each other. A class in a class diagram is represented as a rectangle with
three compartments, indicating the name (top compartment), the variables (middle com-
partment) and the methods (bottom compartment) of the class. In Figure 2.2, six classes
with the names A-E are displayed. Only a single class, B, shows an attribute (count) and
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Figure 2.2: Example of a UML class diagram (UML 2.5.1 notation). The gray shading
of the compartments for attributes and operations are not part of the UML
standard, but rather an artifact of the tool used to create the �gure (Microsoft
Visio [159]).

an operation (increment()). As previously mentioned, a class diagram is only a visual
aid to show a UML model. The other classes besides B may also contain attributes and
operations, which are not shown in Figure 2.2. The class D is an example for a template
class, where the template parameter T is shown as a separate rectangle at the top of the
class. According to the UML standard, template parameters are typically displayed in the
top right corner of a class. However, the drawing tool used to visualize UML diagrams in
this thesis (Microsoft Visio [159]) sometimes displays them in the top middle or even the
top left side of the class. Such depictions are still meant to represent template parameters
in this thesis.

Attributes and operations may also contain a visibility, similar to object-oriented pro-
gramming languages. Visibility may be expressed via speci�c symbols, e.g., a mathematical
plus sign �+� for public or a minus sign �-� for private visibility (cf. increment() and
count in class B of Figure 2.2). Attributes may additionally be assigned a default value
with a �=� sign. Furthermore, attributes may be assigned a speci�c multiplicity. This
multiplicity is expressed by adding rectangular brackets after the attribute's name (�[]�).
Inside the brackets, an integer literal, e.g, �[5]� represents the multiplicity. An unlimited
number of elements may be represented by using an asterisk (�*�) in the brackets.

Links: Relationships between classes inside a UML class diagram may be represented by
links. There are three types of links: associations, shared aggregations and compositions.
An association represents a binary relationship between two classes and is visualized by a
solid line between the two classes. Associations may further be re�ned by specifying their
navigability. This is expressed graphically by using an open arrowhead at the respective
end of the association. Navigability may be expressed bidirectionally (arrowheads at both
ends of the association) or unidirectionally (only a single arrowhead at one end of the
association). An arrowhead pointing at one class of the association indicates that the class
on the other side of the association may access the visible attributes and operations of the
class to which the arrowhead points.
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Besides their navigability, associations, as well as the other link types, may further be
re�ned by specifying their multiplicity. Integer literals at an end of the association represent
how many instances an object at the other end of the association contains. An example for
this is the composition shown in Figure 2.2, where a single instance of class C may access
exactly one instance of class B, whereas a single instance of class B may access one or more
instances of class C. The notation for specifying the multiplicity for associations is the same
as the previously explained notation for specifying the multiplicity of attributes. From a
programming perspective, associations are usually implemented as a reference between the
two respective objects [231].
Shared aggregations and compositions represent that instances of a class are a part of

another class. Both are visualized with a solid line between two classes, where one end of
the line is a diamond symbol. The class at whose end of the line the diamond is, represents
the �whole�, whereas the other class is the �part� [231]. In case of a shared aggregation, the
diamond is un�lled. In case of a composition, the diamond is �lled (cf. the composition
between class B and C in Figure 2.2). Compared to a composition, a shared aggregation
represents a weak form of the part belonging to the whole. In case of a composition, the
part may not exist independently of the whole.

Stereotypes: UML elements may be assigned new semantic meaning by applying a stereo-
type to them. The application of a stereotype is graphically represented by writing the
name of the stereotype, enclosed by angular brackets (�� ��), to the respective model
element. Figure 2.2 contains two examples for the application of stereotypes. The �rst ex-
ample is the �Usage� stereotype applied to the association between classes C and D, which
further speci�es the type of association. The second example is the �Interface� stereo-
type applied to E, which symbolizes that the respective rectangle is an interface, rather
than an ordinary class. The UML standard introduces a set of stereotypes for common
concepts. However, developers may also extend the UML metamodel by introducing their
own stereotypes. This extension of UML is further explained in Section 2.1.1.2, whereas
the concept of metamodels in general is further described in Section 2.1.2.2. A concept not
shown in Figure 2.2 is that stereotypes may contain one or more tagged values. These are
key-value pairs that may be used to provide a con�guration for a speci�c stereotype. The
UML standard does not o�er an immediate notation for specifying tagged values. They
may be described within UML notes or a separate piece of documentation, e.g., submenus
in an MDD tool.

Inheritance and Interfaces: Inheritance, as an object-oriented mechanism, may be graph-
ically visualized in UML diagrams by a solid line with a triangular arrowhead between two
classes. The class at which the arrowhead points is the superclass in the relationship. For
example, in Figure 2.2 class B inherits from class A. Abstract superclasses may be visualized
by writing the term �abstract� in curly brackets above the name of the superclass.
Interfaces in UML are realized with their own respective stereotype (�Interface�) that

is written above the class name (cf. interface E in Figure 2.2). The notation for interface
realization is similar to inheritance, except that the line representing relationship is dashed
instead of solid (cf. Figure 2.2, where class C realizes the interface E).

2.1.1.2 UML Pro�le Diagrams

Section 2.1.1.1 introduces UML stereotypes and shows how these may be applied inside a
UML class diagram. This section, in contrast, describes how stereotypes and their tagged
values may be de�ned by using UML pro�le diagrams in order to extend the UML meta-
model (cf. Section 2.1.2.2 for an introduction to the concept of metamodels). Additionally,
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Figure 2.3: Example of a UML pro�le diagram (UML 2.5.1 notation).

pro�le diagrams are used to de�ne to which type of model element a stereotype may be
applied to.
Figure 2.3 shows an exemplary pro�le diagram which contains a newly de�ned stereotype,

�Safety�. This stereotype contains three tagged values (errorDetection, errorHan-
dling and nrReplicas), which are shown in a compartment below the name of the
stereotype. The concept of tagged values is also known as tags in previous versions of the
UML standard.
The UML pro�le diagram also shows to which UML elements a stereotype may be

applied to. This is achieved by drawing a line with a �lled arrow at the end, which points
to the type of UML element the stereotype may be applied to. In Figure 2.3, this is the
UML element Class, i.e., the �Safety� stereotype may be applied to classes in a UML class
diagram. The UML element extended by the stereotype has to be one of the metaclasses
de�ned in the UML metamodel. This is indicated by the �Metaclass� stereotype above the
name of the UML model element to which the newly de�ned stereotype may be applied.
Multiple stereotypes may be de�ned inside a single UML pro�le diagram, e.g., in case

they represent related concepts. The term UML pro�le is used to refer to a group of related
stereotypes at the model level, while the pro�le diagram is the graphical representation of
this pro�le.

2.1.2 Model-Driven Development

The automatic code generation approach for safety mechanisms presented in this thesis uses
MDD as the main methodology. This section presents background on MDD. MDD is a
development paradigm that uses models as the central artifacts of the software development
process [32, 240]. Related to this is the concept of Model-Based Development (MBD),
in which models are utilized but not necessarily the driving force of development [32].
Another related concept is Model-Driven Architecture (MDA) [197], which is an initiative
created by the Object Management Group (OMG). It presents an approach to MDD
that uses modeling languages and processes standardized by the OMG. MDA is further
explained in Section 2.1.2.1. Section 2.1.2.2 discusses the relationship of models and their
metamodels in the context of this thesis, while Section 2.1.2.3 presents background on
model transformation technologies. A speci�c MDD tool, which is used for the creation of
a prototype of the approach presented in this thesis, is described in Section 2.1.2.4.

2.1.2.1 Model-Driven Architecture

The goal of MDA [197] is to enable the production of source code from a set of models
that are speci�ed at a higher abstraction level. In the vision of MDA, automated model
transformations enable the automatic translation of one abstraction level to another. This
section elaborates on the MDA concepts.
MDA de�nes three types of abstraction levels. These are, in descending order of abstrac-

tion: Computation-Independent Model (CIM), Platform-Independent Model (PIM) and
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Platform-Speci�c Model (PSM) [197]. The CIM de�nes the application at a computation-
independent level, i.e., it describes the solution without any speci�c references to the
implementation. This implies that some of the characteristics modeled by the CIM may
potentially be realized without software, e.g., by using hardware-based solutions. The next
level of abstraction, the PIM, is tied to software-based solutions. It describes the structure
and the behavior of the software application, e.g., by using suitable UML diagrams for this
purpose or by using custom approaches, e.g., [134]. While the PIM provides a lower level of
abstraction than the CIM, it does not contain any speci�c reference to the implementation
platform. This enables a future switch in implementation platforms while leaving large
parts of the application unchanged. The information about the implementation platform
is added at the lowest level of abstraction, the PSM. It contains all the required informa-
tion to execute either the model, or the source code generated by this model, on a speci�c
platform.
The automatic code generation from a platform independent model aims to simplify the

integration and interoperability across di�erent systems. This may reduce development
time and provide an increase in software quality and developer productivity [119].
The automatic code generation approach for software-implemented safety mechanisms

presented in Chapter 5 works at the level of the PIM and PSM. The safety mechanisms
are modeled with UML stereotypes within the PIM. Automated model-to-model transfor-
mations create a PSM from the PIM that contains all relevant information for the code
generation of the safety mechanisms.

2.1.2.2 Metamodels

MDA (cf. Section 2.1.2.1) envisions the automatic transformation between models. To
enable these transformations, a model for a modeling language is required. Such models,
which describe the structure of other models, are called metamodels [32]. The concept
of metamodels is explained in this section. Just as metamodels de�ne models, metamod-
els may be de�ned by other models. Models that de�ne metamodels are called meta-
metamodels. Meta-metamodels are often de�ned by the same language elements they
provide, similar to how a compiler for a programming language, e.g., C, may be imple-
mented in the same language it is supposed to compile. The terms model, metamodel
and meta-metamodel are relative to each other and may change depending on one's point
of view. For example, software developers that model applications with UML regard the
UML speci�cation [183] as a metamodel that they use to create models of their application.
The Meta Object Facility (MOF) [182], which is used to de�ne the UML speci�cation, may
be seen as a meta-metamodel by these developers. Members in the OMG taskforce for
UML revision, on the other hand, may see UML as a basic model, while they regard MOF
as a metamodel.
In this thesis, the UML speci�cation [183] may be seen as a metamodel, while the basic

models (without a �meta�-pre�x) are the actual software systems that are modeled with
UML. Although it is not directly used in this thesis, the MOF [182] is the meta-metamodel
used to de�ne the UML speci�cation.
Figure 2.4 displays the relationship between models, metamodels and meta-metamodels,

as well as possible transformations between them. On the top left of Figure 2.4, a model A
exists. This model has been speci�ed compliant to the metamodel Am, which in turn has
been speci�ed in terms of a meta-metamodel, e.g., MOF. On the bottom of Figure 2.4,
a model B conforms to the metamodel speci�cation Bm, which in turn conforms to some
metamodel. Model A may now be automatically transformed into model B by executing a
set of model transformations. These model transformations have been speci�ed in a dedi-
cated program that describes how an element from the metamodel Am may be transformed
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Figure 2.4: Transformation between models, adapted from [32]. The rectangles indicate
model artifacts and model transformation programs. The dotted arrows show
to which metamodel a model conforms, while the solid arrows indicate the
possible transformations between models.

into one or more elements of the metamodel Bm. The model transformation program is
written with a speci�c model transformation language, which has been de�ned according
to a meta-metamodel, e.g., MOF. In general, it is possible that Am = Bm. This is also
the case in Chapter 5, where Am and Bm are the UML metamodel.

2.1.2.3 Model Transformations

This thesis provides a novel code generation approach for safety mechanisms via MDD.
Part of this approach for software-implemented safety mechanisms is a set of model trans-
formations that realize the safety mechanisms according to a model representation based
on UML stereotypes. Therefore, this section provides background on such model trans-
formations. The two most prominent types of model transformations are model-to-model
transformations and model-to-text transformations [32].
Model-to-model transformations transform an input model A to an output model B,

where A conforms to the metamodel Am and B conforms to the metamodel Bm. The
transformations may be speci�ed at the metamodel level, which enables their reuse for
arbitrary models that conform to these metamodels. Model-to-model transformations may
be classi�ed in in-place and out-place transformations. For in-place transformations, the
input metamodel and the output metamodel are the same, i.e., Am = Bm. For out-place
transformations, this is not the case, i.e., Am ̸= Bm. Out-place transformations usually
require a transformation rule for each model element in the input metamodel Am. In
case such a rule does not exist for a model element of A, the element is simply ignored
during transformation, i.e., no corresponding model element in B is created. In-place
transformations, on the other hand, copy each model element from the input model A
to the output model B. For some of the input model elements, transformation rules
exist which may change this copy-process. For example, if Am and Bm are both UML,
then an in-place transformation rule may specify that a composition is not copied to the
output model B, but rather replaced by a regular directed association. The model-to-
model transformations in this thesis transform from UML to UML and may be classi�ed
as in-place transformations.
Even though text may also be viewed as a form of model, model-to-text transformations

have emerged as their own category of model transformations [32]. In this thesis, model-
to-text transformations are used for automatic code generation from a PSM. Model-to-
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Figure 2.5: Screenshot of a UML class diagram created with Rhapsody.

text transformations are often based on template languages, e.g., the Epsilon Generation
Language (EGL) [211] or Acceleo [57], which de�ne the structure of the generated text.
During transformation, template parameters are substituted by the actual output text
that should be generated [32]. This thesis uses the MDD tool IBM Rhapsody [205] for
model-to-text transformations. The tool is described in Section 2.1.2.4.
A variety of model transformation languages have been proposed. There exist imperative

languages, often employing general-purpose programming languages, that enable model
transformation via a speci�c Application Programming Interface (API). Examples for this
are the MDD tools Enterprise Architect [237] and IBM Rhapsody [205], which both o�er
a Java API to interact with the models created with the respective tool. However, there
also exist imperative languages that are speci�cally created for the purpose of enabling
model transformations, e.g., the Epsilon Object Language (EOL) [138]. Another approach
to model transformation is the use of a dedicated declarative transformation language.
This type of language allows developers to specify transformation rules that are applied
to each model element in the input model. Examples for this type of language are the
Atlas Transformation Language (ATL) [129] and the Epsilon Transformation Language
(ETL) [139]. Last but not least, there are also approaches that mix the two types of
transformation language, e.g, the Epsilon Framework [62], which combines EOL and ETL,
among others.

2.1.2.4 IBM Rhapsody

IBM Rhapsody [205] (sometimes referred to as Rhapsody in this thesis), is a proprietary
MDD tool developed by IBM. It provides developers with a graphical UML editor that
allows them to construct UML models. Rhapsody provides code generation capabilities
from these models. Additionally, the tool allows for a customization of its code generation
process, as well as the user-created model, with a dedicated Java API. In Chapter 5, a
novel, model-driven code generation approach for software-implemented safety mechanisms
is presented. As a proof-of-concept, the approach is implemented in the form of a prototype
for Rhapsody. However, the approach may also be implemented for other MDD tools, e.g.,
Papyrus [60] or Enterprise Architect [237]. This section describes how developers may use
Rhapsody to generate code from UML models, as well as how Rhapsody's code generation
process may be modi�ed. Both of these aspects are described in the following subheadings.

Modeling and code generation with Rhapsody: Figure 2.5 shows an exemplary UML
class diagram modeled with Rhapsody. The class FireDetector contains an operation
(checkForFire()) and an attribute (thresholdCO), as well as a composition relation-
ship to the class COSensor. Rhapsody is capable of automatically generating source code
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for these UML model elements. The generated source code for the class FireDetector
is shown in Listings 2.1 and 2.2.

1 #ifndef FireDetector_H
2 #define FireDetector_H
3

4 #include <oxf\oxf.h>
5 #include "COSensor.h"
6

7 class FireDetector {
8 public :
9 FireDetector();
10 ~FireDetector();
11

12 ////Operations////
13 bool checkForFire();
14 COSensor* getItsCOSensor();
15

16 private :
17 int getThresholdCO();
18

19 void setThresholdCO(
20 int p_thresholdCO);
21

22 ////Attributes////
23 protected :
24 int thresholdCO;
25

26 ////Relations and components////
27 COSensor itsCOSensor;
28 };
29

30 #endif

Listing 2.1: Automatically gener-
ated header �le for the
class FireDetector
in the UML model
shown in Figure 2.5.
For legibility purposes,
some comments and
line breaks have been
modi�ed.

1 #include "FireDetector.h"
2

3 FireDetector::FireDetector() {
4

5 }
6

7 FireDetector::~FireDetector() {
8

9 }
10

11 bool FireDetector::checkForFire() {
12

13 //#[ operation checkForFire()
14 // Handwritten implementation
15 //#]
16

17 }
18

19 COSensor* FireDetector::getItsCOSensor(){
20 return (COSensor*) &itsCOSensor;
21 }
22

23 int FireDetector::getThresholdCO(){
24 return thresholdCO;
25 }
26

27 void FireDetector::setThresholdCO(
28 int p_thresholdCO) {
29 thresholdCO = p_thresholdCO;
30 }

Listing 2.2: Automatically generated im-
plementation �le for the class
FireDetector in the UML
model shown in Figure 2.5. For
legibility purposes, some com-
ments and line breaks have
been modi�ed.

Classes, attributes and operations of the UML model in Figure 2.5 have been mapped
directly to their C++ equivalents in the source code of Listings 2.1 and 2.2. For example,
line 13 of Listing 2.1 shows the declaration of operation checkForFire(), whereas lines
11-17 of Listing 2.2 show the implementation for this method. Rhapsody allows developers
to supply handwritten code for each operation (e.g., line 14 of Listing 2.2). Moreover,
Rhapsody provides a proprietary runtime framework for executing UML statecharts. The
behavior of classes may also be modeled and generated with this framework.
The composition from the class FireDetector to COSensor in Figure 2.5 is realized

as a member variable in the generated source code (cf. line 27 of Listing 2.1). Besides
this, Rhapsody provides a submenu with a text editor to allow developers to provide
handwritten code for the initialization of the program. This code is automatically inserted
at the beginning of the main() function of the program, which is not shown in Listings 2.1
and 2.2.

The code generation engine of Rhapsody: Although Rhapsody's code generation is
proprietary, the basic process and how it may be modi�ed is described in [109]. It is shown
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Figure 2.6: The code generation process in Rhapsody (notation UML 2.5 activity diagram).
Adapted from [109].

in Figure 2.6. The code generation process starts with a user model, which is a PIM created
by the developer. The example shown in Figure 2.5 is such a user model. At this stage,
the developer may modify certain prede�ned properties via a menu available in Rhapsody.
They may be used, for example, to decide whether getters and setters for an attribute
should be generated.
The �rst step in the code generation process is called simpli�cation, which performs

model-to-model transformations to transform the PIM into a PSM. An example for this is
the transformation of UML ports into inner classes, as ports have no direct 1:1 mapping in
C++. The simpli�cation process may be modi�ed by implementing a plugin for Rhapsody
with the help of the Java API o�ered by Rhapsody. These plugins are called helpers.
Model-to-text transformations generate the source from the PSM (simpli�ed model). The
default model-to-text transformations may be overwritten by using the Rules Composer.
However, the Rules Composer is only available by purchasing an additional license from
IBM. The generated source code is subsequently modi�ed by the Post-Processor, e.g., in
order to achieve a speci�c coding style.
This thesis presents a prototype implementation for the model-driven code generation

of software-implemented safety mechanisms as part of Chapter 5. For this, Rhapsody's
default code generation has to be modi�ed. As the approach presented in Chapter 5
mainly utilizes model-to-model transformations, the prototype implementation is realized
by creating a plugin for the simpli�cation process.

2.1.3 Safety Lifecycle

The aim of this thesis is to provide an automatic code generation approach for safety
mechanisms. This section presents background information on the lifecycle of safety-critical
systems as described by the safety standard IEC 61508 [116]. Furthermore, this section
shows how the approach presented in this thesis �ts within this lifecycle.
The lifecycle of a safety-critical system may be described in distinct phases. The safety

standard IEC 61508 provides one such lifecycle description. IEC 61508 is chosen as the
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Figure 2.7: The lifecycle of a safety-critical system as described by IEC 61508. The �gure
is reproduced from [116], except for the dotted box around phase 10. This box
indicates that the approach of this thesis is conceptually located in phase 10 of
the lifecycle.
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reference safety standard within this thesis, as its scope are general Electrical/Electronic/-
Programmable Electronic (E/E/PE) systems, i.e., it is not limited to a speci�c domain.
Thus, the presented approach is not bound to one speci�c domain. Figure 2.7 shows the
safety lifecycle as de�ned in IEC 61508.
In the early phases of the lifecycle (phase 1-5), the overall system is designed. This

includes the usual tasks associated with requirements engineering, but also encompasses a
hazard and risk analysis for the system (phase 3). This type of analysis is necessary for
safety-critical systems, because a failure of the system may cause harm to humans or the
environment. Based on this hazard and risk analysis, safety requirements are established
and allocated to di�erent parts of the system (phases 4 and 5). Their goal is to mitigate
the previously identi�ed hazards and risks. Note that this may also include safety mech-
anisms not limited to E/E/PE aspects, e.g., mechanical safety mechanisms. The safety
mechanisms that are unrelated to E/E/PE aspects are further speci�ed and realized in
phase 11, which is carried out in parallel to phases 6-10.
Once the safety requirements are allocated to speci�c parts of the system, i.e., phase

5 is completed, dedicated planning phases (phase 6-8) are used to prepare other phases
that appear later in the lifecycle. This includes planning for operation and maintenance
(phase 6), for safety validation (phase 7) and for the installation and commissioning of the
system (phase 8). In parallel to these planning phases, a safety requirements speci�cation,
which covers those safety mechanisms that are realized with E/E/PE aspects, is created
(phase 9). Based on this requirements speci�cation, the actual system is realized (phase
10). Subsequently, the system is installed, validated and taken in operation (phases 12-14).
In case the system is modi�ed during operation (phase 15), an iterative process begins at
the phase at which the modi�cation has taken place. The �nal phase, phase 16, deals with
the decommission or disposal of the system.
This thesis provides a novel approach for the automatic code generation of safety mech-

anisms. Thus, it is conceptually located within phase 10 of the safety lifecycle, which
deals with the actual realization of the system. Based on the safety requirements speci-
�cation that is the result of phase 9, the approach presented in this thesis is capable of
automatically generating the source code for some of the safety mechanisms that the safety
requirements speci�cation describes.
Phase 10, the realization phase of the safety lifecycle, is further subdivided into six

phases. These are shown in Figure 2.8. The initial phase, phase 10.1, creates a system
design requirements speci�cation. Based on this speci�cation the system may be designed
and developed in phase 10.3. Safety validation and its planning are considered in phases
10.2 and 10.6, while installation and operation are considered in phase 10.5. The ap-
proach that this thesis presents is conceptually located within phase 10.3, i.e, design and
development of the system. In this phase, the approach within this thesis may contribute
during design, by providing model representations for the safety mechanisms that are used
within the system. Furthermore, it may improve development, because source code may
be automatically generated from these model representations.

2.1.4 Hardware-Implemented Safety Mechanisms

Safety-critical systems often employ special-purpose computing hardware that provides a
set of safety mechanisms not included in commercial o�-the-shelf hardware. The (auto-
matic) generation of physical hardware is outside the scope of this thesis. However, the
safety hardware provided by some microcontrollers often requires an initial con�guration
at the start of the application, e.g., setting certain timeouts or which error types should be
detected. A similar con�guration is required for many hardware peripherals that are also
relevant for commercial o�-the-shelf hardware, e.g., con�guring a Universal Asynchronous

16



2.1 Background

Figure 2.8: The subphases of the realization phase of a safety-critical system. Adapted
from [116]. The dotted box around phase 10.3 indicates that this is the sub-
phase, where the approach of this thesis is conceptually located.

Receiver Transmitter (UART) regarding its use of a parity bit for data transmission. This
initial con�guration of the hardware is achieved via software that is executed at the startup
of the application. The source code for this con�guration may be generated automatically,
which is described in Chapter 6. This section provides an overview of the concepts used
in Chapter 6, i.e., a general introduction to microcontrollers (cf. Section 2.1.4.1), a de-
scription of how these microcontrollers may be used to interact with peripheral hardware
(cf. Section 2.1.4.2) and a brief introduction to Hardware Abstraction Layers (HALs) (cf.
Section 2.1.4.3).

2.1.4.1 Microcontroller

A microcontroller is a computer system on a single chip [131]. This includes a Central
Processing Unit (CPU), memory, timing units, as well as a handful of other devices, e.g.,
an Analog Digital Converter (ADC) or communication interfaces such as UART. Mi-
crocontrollers are often used as part of an embedded system [131]. There exist multiple
de�nitions for embedded systems that slightly di�er from each other, e.g., [24, 176, 267].
This thesis adopts the following de�nition of an embedded system: �An embedded system
can be de�ned as a computer system with the software and operating system embedded
into it to provide a speci�c product or a part of a product for a speci�c application.� [131].
As part of an embedded system, microcontrollers often have to communicate with other

system entities, e.g., sensors, actuators or other microcontrollers that are part of the em-
bedded system. For this purpose, microcontrollers contain a set of hardware interfaces
that may be used for communication with these other system entities or for performing
other essential tasks, e.g., converting analog to digital values. These hardware interfaces
are often con�gured via pins, which is a term that refers to the physical leads of the micro-
controller. They may be used to connect with other devices electronically, i.e., a voltage
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may be applied to them. The currently applied voltage of a pin may be set or read by
the microcontroller. The process of con�guring the pins of a microcontroller is further
explained in Section 2.1.4.2.
There exist numerous hardware interfaces, some of which may be found in commod-

ity microcontrollers, e.g., General-Purpose Input/Outputs (GPIOs), and some of which are
only found in microcontrollers dedicated to the safety domain, e.g., hardware watchdog ele-
ments as in the Aurix TC297 [111] microcontroller. In order to limit the scope of the thesis,
only a small subset of hardware interfaces is considered in-depth in Chapter 6. However,
the automatic code generation approach described in Chapter 6 may be extended to in-
clude other hardware interfaces. The hardware interfaces that are considered in Chapter 6
may be found in most commodity microcontrollers and are:

� General-Purpose Input/Output (GPIO): This hardware interface may be used to
detect whether a voltage is applied to a speci�c pin (input mode). Conversely, the
same hardware interface may be used to create a voltage on the pin (output mode).
With this capability, GPIOs are often used to interact with hardware peripherals,
e.g., sensors [128].

� Universal Asynchronous Receiver Transmitter (UART): This is a serial interface that
uses one pin to transmit data in compliance with the UART communication proto-
col, while another pin is used to receive data. Communication via UART requires
corresponding con�guration of the sender and the receiver, e.g., both need to use the
same baudrate [128]. Some UARTs also contain safety relevant con�gurations, e.g.,
they may use an additional bit for each message to perform parity checks [115, 178].

� Analog Digital Converter (ADC): This hardware interface may be used to convert
analog data into digital values. This is often necessary to further process the output
obtained by sensors within the microcontroller [128]. Some ADCs also contain safety
mechanisms, e.g., broken-wire-detection [115].

� Pulse Width Modulation (PWM): This hardware interface provides access to the
modulation technique with the same name, i.e., encoding messages by varying the
power supply of digital pins. While it may theoretically be realized in software, many
microcontrollers provide a dedicated hardware element for this functionality [128]. A
common application for the use of PWMs is the control of motor drives [86]. Some
PWMs also contain safety mechanisms, e.g., by writing the outputs redundantly or
by performing a read back operation directly after writing [243].

2.1.4.2 Pin Con�guration

This section further elaborates on the concepts of pins, which is introduced brie�y in
Section 2.1.4.1. Pins may be used to con�gure hardware interfaces of microcontrollers.
They may be manufactured in di�erent package variants. Two popular variants are the
Quad Flat Package (QFP) package variant, where the pins are located on the sides of the
(rectangular) body of the microcontroller, as well as the Ball Grid Array (BGA) package
variant, where the pins are located at the bottom of the microcontroller. Figure 2.9 shows
an example pin layout for the QFP variant, while Figure 2.10 shows an example for the
BGA package variant. Both variants have in common that their pins have dedicated names,
e.g., P21.7 in Figure 2.10. The data sheet describes the possible functionality this pin may
assume during runtime. For pin P21.7 in Figure 2.10 this includes, among others, the
possibility of using the pin as a GPIO. Whether this GPIO serves as an input or output
has to be con�gured by the program code of the microcontroller. Similar con�gurations
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Figure 2.9: The XMC4500 microcontroller [115] in the Quad Flat Package (QFP) variant
and screenshots from its data sheet [113].
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Figure 2.10: The Aurix TC297 microcontroller [111] in the Ball Grid Array (BGA) 292
package variant and screenshots from its data sheet [112].
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have to be carried out for the other hardware interfaces described in Section 2.1.4.1. Often,
this includes not only the con�guration of a pin, but also choosing which pin is used for
a speci�c hardware interface. For example, for the LPC1768 microcontroller [178], the
UART1 interface requires two pins for transmitting and receiving data. These two pins
may be chosen from sixteen possible candidates.
During this pin con�guration process, it is important that no pin is con�gured twice for

di�erent interfaces. Such a double allocation of a pin also poses a possible safety risk, as
it may lead to faulty behavior of the hardware interfaces that use the doubly allocated
pin. The allocation of these pins to hardware interfaces, as well as the remaining pin-
independent con�guration of these hardware interfaces, may be programmed manually.
This often involves a lot of low-level code that addresses individual registers and bits.
Programming at the level of registers and bits requires developers to reason at a di�erent
level of abstraction compared to UML-based MDD tools. This may impede the developer
work�ow. It also poses a potential risk for the developer to make programming mistakes
that may ultimately lead to bugs in the system. Therefore, Chapter 6 introduces an
automatic code generation approach that generates the corresponding low-level source
code for the initialization of the hardware interfaces based on a high-level speci�cation
designed by developers. This enables developers to work continuously at a high-level of
abstraction as provided by MDD. There also exist some GUI tools by microcontroller
manufacturers for a similar purpose. Section 2.2.1.6 discusses these tools and how the tool
approach presented in Chapter 6 di�ers from them.

2.1.4.3 Hardware Abstraction Layer (HAL)

The automatic code generation approach for the initialization of hardware interfaces de-
scribed in Chapter 6 utilizes the concept of a HAL. This section provides a short overview
on HALs, while Section 2.2.1.6 provides an overview of existing HALs in the context of
embedded systems. In general, a HAL serves as an intermediate layer between application
software and hardware. It provides developers with an API to access hardware elements.
Depending on the context, HALs are de�ned di�erently. For example, in the context of
modern desktop operating systems, e.g., Windows, all hardware accesses, e.g., register ac-
cess, memory access or interrupt handling, are abstracted by a HAL that is part of the
operating system [247]. In other contexts, e.g., for microcontrollers that operate without
an operating system, a HAL may be a standalone API that also encapsulates all hardware
accesses [271].
This thesis presents a HAL according to the latter de�nition, i.e., as a standalone,

object-oriented API, which may be used regardless of whether the application on the
microcontroller uses an operating system. Due to the limited scope of this thesis, the
presented HAL is limited to the hardware interfaces described in Section 2.1.4.1. However,
Chapter 6, where the HAL is introduced, describes how other hardware interfaces may be
integrated into this approach.

2.1.5 Software-Implemented Safety Mechanisms

While safety mechanisms may be realized with special-purpose hardware, as described in
Section 2.1.4, some safety mechanisms may alternatively be realized in software. Usually,
this leads to a larger memory and/or runtime overhead. On the other hand, the recurring
manufacturing costs for each produced system are reduced [30]. From a code generation
perspective, software-implemented safety mechanisms may be completely generated, i.e.,
in contrast to hardware-implemented safety mechanisms the code generation is not limited
to the initialization of the safety mechanism. This section presents background information
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on those software-implemented safety mechanisms for which a novel code generation ap-
proach is provided in Chapter 5. These include error detecting codes (cf. Section 2.1.5.1),
replication-based approaches (cf. Section 2.1.5.2), sanity checking of (intermediate) results
(cf. Section 2.1.5.3), voting mechanisms (cf. Section 2.1.5.4), the monitoring of timing
constraints (cf. Section 2.1.5.5) and the error handling strategy graceful degradation (cf.
Section 2.1.5.6).

2.1.5.1 Safety Mechanism: Error Detecting Codes

An Error Detecting Code (EDC) provides a checksum (coded block of k bits) for a number
of n bits (k ≤ n) [116]. This checksum may be employed to detect whether the n bits used
to create the checksum have been modi�ed at some point in time since the creation of the
checksum. Thus, EDCs may be used as a safety mechanism to detect errors. This section
introduces the concept of EDCs to the extent they are used in this thesis.
EDCs are recommended multiple times in IEC 61508 parts 2 and 3, e.g., for the purpose

of protecting communication messages or for the purpose of memory protection. Com-
munication messages, e.g., sent over a bus or wireless links, may be corrupted during
transmission [116]. A checksum that is attached to the message may enable the receiver of
the message to detect whether the message has been corrupted. Memory protection, on the
other hand, refers to protection from the issue of soft errors. The term soft error describes
the occurrence of a spontaneous bit �ip in the memory of a microcontroller, which may be
caused by cosmic rays or alpha particles in the packaging material [19]. Checksums, stored
in the memory, may be used to detect such soft errors [30].
While IEC 61508 recommends the use of EDCs as a safety mechanism, it also remarks

upon the fact that many EDCs are only capable of detecting an error up to a maximum of
r a�ected bits. The speci�c value for r depends on the type of EDC used. Furthermore,
some EDCs also provide the ability to automatically correct some of the detected errors.
However, this automatic error correction often is only capable of correcting a predetermined
fraction of the detected errors. Therefore, IEC 61508 recommends to discard faulty data
in most cases [116].
This thesis uses two types of EDCs: a parity check and a Cycling Redundancy Check

(CRC). It should be noted that these EDCs only serve as examples within this thesis.
The presented concept is independent of the particular EDC employed and therefore other
EDCs may be used, e.g., a Hamming code [30]. A parity check uses a single bit (k = 1)
to indicate whether the n bits that should be encoded add up to an even number [170].
This enables the detection of 50% of bit �ips, i.e., whenever an uneven number of bits are
a�ected. Error correction is not possible with a parity check, as the code does not provide
information about how many bits haven been �ipped. Even such a simple EDC contains
con�guration values, e.g., whether an even number of bits is encoded with value 1 or value
0.
CRCs are a class of cyclic linear block codes, i.e., end-around bit shifts produce another

valid codeword [170]. Codewords may be seen as polynomials, e.g., the codeword 10101101
may be represented as the polynomial D(x) = x7 + x5 + x3 + x2 + 1. A k-bit data
word may thus be represented by a polynomial of degree k − 1. A key element of CRCs
are the generator polynomials, G(x), which are used during the encoding and decoding
step. As the speci�c encoding and decoding steps are irrelevant for this thesis, cf. [170]
for an introduction to CRCs in the context of soft errors. The e�ectiveness of the error
detection of CRCs depends on the degree of the generator polynomial, as well as the speci�c
polynomial of that degree. In this thesis, an 8-bit (0x2F), 16-bit (0x1021) and 32-bit
(0xedb88320) generator polynomial are used, which are recommended by the AUTomotive
Open System ARchitecture (AUTOSAR) standard [15]. Most generator polynomials are
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capable of detecting single-bit errors. Double-bit errors are also detectable, provided the
distance between the two erroneous bits is not too large (this distance depends on the
degree of the generator polynomial). A main advantage of CRCs is their ability to detect
burst errors. These are errors in which only adjacent bits are erroneous. In case the
generator polynomial contains the term x0 = 1, burst errors with a length equal to the
degree of the generator polynomial may be detected.
Traditionally, EDCs have been employed frequently as hardware-implemented safety

mechanisms, e.g., [46, 272]. For the purpose of memory protection, these solutions result in
recurring hardware costs per manufactured microcontroller. Software-implemented EDCs,
although slower in their decoding and encoding steps, have been proposed to reduce the
recurring manufacturing costs [30, 68]. The additional runtime and memory overhead may
be minimized by only protecting the safety-critical parts of the application [30]. Software
implementations of CRCs may also pre-compute several key values of the encoding and
decoding step to provide a faster calculation of the checksum. While this approach has been
found faster than classic, bit-by-bit calculations that mimic hardware implementations,
they incur the additional memory overhead of storing the pre-computed values [227]. For
the speci�c generator polynomials used as part of the prototype implementation presented
in Section 5.10, these overheads are 256 bytes for an 8-bit checksum, 512 bytes for a 16-bit
checksum and 1024 byte for a 32 bit checksum [227].

2.1.5.2 Safety Mechanism: M-out-of-N Pattern

This section presents the M-out-of-N pattern [10], a safety mechanism based on redun-
dancy. In this pattern, there exist N versions of the data. When the data is accessed, at
least M of the N versions have to agree with each other (M ≤ N). Otherwise, an error has
been detected. The N versions of the data are often referred to as replicas. Depending on
the context, the term replicas may be used to refer to all N versions of the data, or only to
N − 1 versions, while a single version of the data is treated as the original. In this thesis,
the term replica is used to refer only to one or more of the N − 1 redundant versions of
the original, whereas the term version may refer to any of the N versions of the data. The
term agreement may be interpreted di�erently according to the speci�c realization of the
M-out-of-N pattern. The simplest type of agreement is that M replicas and the original
have to be of the exact same value. Other types of agreement may introduce a certain
boundary in which unequal versions are still treated as acceptably safe (e.g., one version
has a value of 4.99, while the other has a value of 5). There also exist realizations of this
pattern where voting strategies of di�ering complexity are employed (cf. Section 2.1.5.4
for an introduction to the safety mechanism voting).
The N versions of the data may exist either as homogeneous or heterogeneous redun-

dancy [10]. In homogeneous redundancy, all versions of the data are exact copies of one
another, e.g., by copying memory or using another sensor of the exact same type as the
original. In heterogeneous redundancy, the versions of the data are acquired in di�erent
ways, e.g., using a Carbon Monoxide (CO) sensor and an infrared sensor for determining
whether a �re occurs in a �re detection system. The number of versions employed in
safety-critical systems is usually three to �ve [144]. However, two versions are also used
in case additional safety mechanisms are employed [30, 53]. Two well known examples
of the M-out-of-N pattern are the One's Complement pattern and Triple Modular Re-
dundancy (TMR), both of which may be automatically generated by the code generation
approach described in Section 5.6.
In the One's Complement pattern, there is one replica of the original, and both versions

of the data have to agree with each other (M = N = 2). Additionally, the replica of the
data is stored in inverted fashion, e.g., if the original data is 0000, the replica is stored
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as 1111. This inverted storage of the replica helps to detect stuck-at errors, where a data
bus always returns a �xed value. This additional detection ability requires the additional
runtime overhead of performing an inversion operation when storing and/or checking the
data.

In TMR, there exist three versions of the data out of which at least two have to agree
with each other (M = 2 and N = 3). It is widely used in safety-critical hardware imple-
mentations [10], but may also be applied to software implementations [52]. The replicas
may be stored in inverted fashion, as in the One's Complement pattern, or they may be
exact copies of the original. The use of three versions of the data enables error correction.
When two versions agree with each other, but not the third, one may assume that the
third version is erroneous and the other two are correct. Thus, the third version may be
restored to the value of the other two. Whether this assumption is acceptable from a safety
perspective depends on the speci�c system being developed.

2.1.5.3 Safety Mechanism: Sanity Checking

This section presents the safety mechanism sanity checking, which assesses whether some
value, e.g., sensor data, is plausible [10, 52]. It may be used to estimate whether the
source that delivers the data works according to its speci�cations, e.g., a CO sensor in a
�re detection system. For example, most sensors return a measured value within a given
range. A sanity check may be used to check whether the value obtained by the sensor
conforms to the sensor's speci�ed measurement range. If it does not, the sensor is most
likely erroneous. While the sanity check may be used to detect some types of errors, it is
not capable of assuring that the checked system functions properly. For example, a sensor
may measure values erroneously with a constant o�set. As long as this o�set does not
result in a value outside the speci�cation range of the sensor, the error is not detected by
this safety mechanism.

This thesis uses a numeric range check as a form of sanity checking. Numeric variables
may be assigned a lower and upper bound, which is checked upon access. In case the
value of the variable is outside the speci�ed range, an error has been detected. The model
representation and code generation approach for this concept is described in Section 5.6.

2.1.5.4 Safety Mechanism: Voting

This section presents the safety mechanism voting, which aims to determine a ground truth
(or at least establish a certain degree of trust) among redundant inputs, e.g., as provided
by the M-out-of-N pattern described in Section 2.1.5.2. A simple example for a voting
process is majority voting, where all the inputs are compared to each other. The value
on which the most inputs agree with each other is seen as the ground truth. A taxonomy
on voting mechanisms has been published in [144], which distinguishes two basic types of
voting: selection voters and amalgamation voters. Selection voters compare their inputs
with each other and select one of these inputs as the ground truth. This type of voting may
also fail, e.g., in case the selection criteria are not met for any of the inputs. In this case,
an error is raised. The majority voter described above is an example for a selection voter.
Amalgamation voters use their inputs to create a new value that is seen as the ground truth.
In most cases this new value is obtained by some type of calculation, e.g., calculating the
arithmetic mean among all inputs. Section 5.7 presents a model representation and an
automatic code generation approach for di�erent voting mechanisms. The speci�c voting
mechanisms used are:
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� Selection voters:

� A unanimity voter, which only returns a result in case all inputs agree with each
other. Otherwise, an error is raised.

� A majority voter, that returns the value of the majority of N inputs. In case
less than

⌊︁
N
2

⌋︁
+ 1 inputs agree with each other, an error is raised.

� A plurality voter, which compares the values of N inputs. If at least M inputs
agree with each other, this value is returned. Otherwise, an error is raised.
In contrast to the majority voter, M may be less (or more) than

⌊︁
N
2

⌋︁
+ 1.

In case M is less than a strict majority, ties may occur. The handling of
ties is usually application-dependent and may include: arbitrary tie-breaks;
considering additional, application-speci�c heuristics; or raising an error with
ties being interpreted as a lack of trust in the voting result.

� A consensus voter, that compares the values of N inputs. The value on which
the most inputs agree is returned. In contrast to the majority and the plurality
voter, there is no �xed number of inputs that have to agree with each other.
Consequently, this type of voter always returns a result and does not signal an
error. There may occur ties, which may be resolved arbitrarily or by considering
application-speci�c heuristics. In contrast to plurality voting, raising an error
in response to a tie is not possible in consensus voting, as the consensus voter
is expected to always return a result.

� A median voter, which selects the median value among N inputs. This type of
voter always returns a result.

� Amalgamation voters:

� An average voter, that calculates the average (arithmetic mean) among the
inputs and returns this value. This type of voter always returns a result.

� A weighted average voter, which calculates a weighted average among the inputs.
For this purpose, each of the inputs is assigned a weight. In this thesis, only
static weights assigned during development are used. For variants of this voter
that update their weights dynamically, refer to Section 2.2.3.4. This type of
voter always returns a result.

Section 2.2.3.4 presents additional voting mechanisms that are not realized in this thesis.
However, as the code generation approach described in Section 5.7 is extensible, these
additional voting mechanisms may be integrated into the approach as future work.

2.1.5.5 Safety Mechanism: Timing Constraint Monitoring

Timing is often an important issue in safety-critical systems, e.g., in the case of an au-
tonomous emergency braking system, which has to react within a given time interval in
order to prevent accidents [121]. While the timing of a safety-critical system is often
extensively analyzed during development (e.g., [121, 122]), some authors argue that the
timing behavior of the system should also be monitored during runtime, e.g., [13, 50, 168].
This thesis provides a novel, model-driven code generation approach for timing constraint
monitoring during runtime (cf. Section 5.8). This section presents background informa-
tion on this type of monitoring. Additional related work on static timing analysis during
development is described in Section 2.2.3.5.
In timing analysis, an end-to-end execution path describes a series of actions on a chain

of events that is executed in response to a certain stimulus [121]. For example, this may
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comprise the pre- and post-processing steps that are applied to a fresh sample of sensor
information, as well as the subsequent activation of an actuator in response to the sensor
information. The execution path may consist of individual tasks, each of which accom-
plishes some distinct feature on the execution path, e.g., a task for �ltering the sensor
information or a task for controlling the actuator. The tasks themselves, in turn, may
consist of several runnables that are subroutines within a speci�c task. Such runnables
may be directly mapped to the source code level, i.e., a runnable corresponds to a method
(operation) inside a class [120]. The code generation approach described in Section 5.8
generates source code for monitoring the timing constraint on operations, i.e., runnables.
An important characteristic of timing constraint monitoring is its probe overhead. The

steps of the monitoring process require time and therefore in�uence the timing of the
runnable that is monitored. Therefore, a small runtime overhead is pursued. Furthermore,
the probe overhead should be constant if possible. A constant probe overhead may be
taken into account during static timing analysis and thus allows for the combination of
runtime monitoring and static analysis.

2.1.5.6 Safety Mechanism: Graceful Degradation

Graceful Degradation is an error handling concept that may be applied to various system
levels. In this thesis, it is applied at the software application level as de�ned by [226, p.
69]: �a smooth change of some distinct system feature to a lower state as a response to
errors�. The application of graceful degradation to other system levels, e.g., the hardware
level, is described in Section 2.2.3.6. The lower state mentioned in the previous description
may be achieved by removing an erroneous component from the system or by replacing
an erroneous component with another component of lower quality. Sometimes, in the
context of graceful degradation, the term service is used instead of component. These
terms are synonyms and this thesis uses these terms interchangeably. An example for
the replacement of a component may be found in the semi-automated driving domain,
where two types of cruise control exist: Adaptive Cruise Control (ACC) and Dynamic
Cruise Control (DCC) [195]. DCC is a semi-automated driving mode, in which the vehicle
automatically controls the throttle and brake in order to maintain a �xed speed set by the
driver. ACC provides the additional ability to automatically maintain a safe distance to the
car in front. For this, ACC uses a radar. Radars may malfunction, either due to an internal
error or due to poor environmental conditions, e.g., mist. In case a radar malfunction is
detected in ACC mode, the car may gracefully degrade to DCC. This provides the driver
with a lower quality version of cruise control.
The code generation approach described in Chapter 5 uses a design pattern for graceful

degradation for its software architecture. The pattern was initially described in [226] and is
summarized in the following. Figure 2.11 shows a graphical representation of the pattern.
Besides the components that make up the actual application, the pattern consists of three
entities:

� One or more noti�ers monitor the system for errors (cf. action (1) in Figure 2.11).
In most cases, these noti�ers observe a speci�c component of the system. Once a
noti�er has detected an error, it reports this error, as well as the component in which
the error originated, to the assessor (cf. action (2) in Figure 2.11).

� The assessor is responsible for calculating a new system state based on the type
of error (cf. action (3) in Figure 2.11). This may include removing the erroneous
component from the system, as well as determining suitable alternative providers
for the consumer of a service. Depending on the speci�c type of degradation (see
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Figure 2.11: A design pattern for graceful degradation. Italicized font is used to highlight
the acting entities of the pattern (noti�er, assessor and loader). Adapted
from [226] (UML 2.5 activity diagram).

below), the assessor may also determine which other components have been a�ected
by an error in its calculation of the new system state. Once a suitable system state
is found, it is sent to the loader. In case no safe state is found by the assessor, other
error handling mechanisms are executed, e.g., an emergency stop of the system (cf.
action (6) in Figure 2.11).

� One or more Loaders are responsible for degrading the system state to the state
chosen by the assessor.

2.1.6 ANother Tool for Language Recognition (ANTLR)

This section describes ANTLR [192], which is a Java-based, object-oriented parser gener-
ator. The code generation approach for safety mechanisms presented in this thesis starts
at the requirements level, where safety requirements are parsed in regards to the safety
mechanisms they contain (cf. Chapter 4). In order to automate this parsing process, the
safety requirements have to be speci�ed according to a speci�c grammar. ANTLR provides
the capability to specify such grammars. Furthermore, it enables the automatic genera-
tion of a corresponding parser that provides the necessary information about the safety
mechanisms in a machine-readable format. The following description of ANTLR is based
on [191].
The syntax for ANTLR grammars is similar to Extended Backus�Naur form (EBNF).

Moreover, ANTLR di�erentiates between lexer and parser rules. While lexer rules are
written in uppercase, parser rules are written in lowercase. A parser rule may reference
lexer rules or other parser rules. Lexer rules, on the other hand, may only consist of
regular expressions, a sequence of terminal characters or reference other lexer rules. When
the ANTLR framework is used to parse an input �le according to a speci�c grammar, the
framework uses the lexer rules to create tokens based on the characters from the input �le.
These tokens are subsequently utilized by the framework to determine whether a parser
rule is applicable for the input �le, which ultimately results in the creation of a parse
tree representing the content of the �le (provided the input �le conforms to the ANTLR
grammar). The parse tree may be traversed with the Java API of ANTLR.

27



2 Background and Related Work

1 //Each grammar has a name corresponding to the filename in which it is defined.
2 grammar Example;
3

4 //Parser rule that expects a lexer rule (HELLO), a parser rule (name)
5 //and the end of the file to be read (EOF).
6 root : HELLO name EOF;
7

8 //Parser rule that expects another lexer rule (CHAR_SET).
9 name : CHAR_SET;
10

11 //Lexer rule that expects one of the two character sequences (’Hello’ or ’Good Morning’).
12 HELLO : ’Hello’ | ’Good Morning’
13

14 //Example for a lexer rule that contains a regular expression.
15 CHAR_SET : [a-zA-Z+]+;

Listing 2.3: Example of an ANTLR grammar.

Listing 2.3 shows an example for an ANTLR grammar. Each ANTLR grammar is
de�ned in a text�le with the same name as the grammar (cf. line 2 in Listing 2.3).
Each grammar contains at least one start rule (cf. line 6 in Listing 2.3), which is a
parser rule on which no other rule depends. In Listing 2.3, this start rule references one
other parser rule (de�ned in line 9) and a lexer rule (de�ned in line 12). The parser
rule de�ned in line 9 references another lexer rule, which is de�ned in line 15, i.e., an
arbitrary combination of lower case and uppercase letters. The lexer rule de�ned in line
12, on the other hand, speci�es alternative input possibilities, i.e., the input �le may
begin with either the character sequence �Hello� or �Good morning�. Thus, the example
grammar shown in Listing 2.3 is capable of parsing input �les with a single line of text that
either reads �Hello <name>� or �Good morning <name>�, where <name> is an arbitrary
combination of characters. If the input �le does not conform to this grammar, the ANTLR
framework signals a parsing error when a character sequence not matching a grammar rule
is encountered.

2.2 Related Work

The goal of this thesis is an MDD approach for the automatic code generation of safety
mechanisms. This section discusses approaches that are related to this goal. It groups
categories of related work and summarizes them, before selected approaches are discussed
in detail and how they di�er from the approach presented in this thesis. Furthermore,
orthogonal approaches are highlighted, i.e., approaches that may be used in conjunction
with the one presented in this thesis. Section 2.2.1 presents related work on code generation,
while Section 2.2.2 discusses modeling languages suitable for modeling safety mechanisms.
Section 2.2.3 presents related work on improving the development of safety-critical systems,
while Section 2.2.4 provides a brief summary of the discussed approaches and highlights
the research gaps that are addressed by this thesis.

2.2.1 Code Generation

One of the research gaps addressed by this thesis is the automatic code generation of safety
mechanisms via model transformations (RG3). This section discusses approaches whose
aim is automatic code generation in one way or another. While it does contain MDD as one
technique for automatic code generation, this section also discusses other approaches that
are not model-driven. Approaches that speci�cally discuss the automatic code generation
of safety mechanisms are not discussed in this section, but rather in Section 2.2.3.
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Section 2.2.1.1 discusses aspect-oriented programming, while Section 2.2.1.2 presents
fourth generation programming languages. The concepts of computer-aided software engi-
neering and low-code are described in Sections 2.2.1.3 and 2.2.1.4. Section 2.2.1.5 presents
related work on MDD and its respective tools, while Section 2.2.1.6 discusses related ap-
proaches for the automatic initialization of hardware interfaces.

2.2.1.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) allows the addition of source code (speci�ed as as-
pects) at prede�ned points within a program. This has been described as �In programs
P , whenever condition C arises, perform action A� [70]. As the action A is automatically
inserted by the aspect framework, this may be viewed as a sort of code generation. This
section presents related work on code generation with AOP.
In [30, 31] AOP is used in combination with template metaprogramming to automatically

generate source code for memory protection mechanisms. This approach is discussed in
more detail in Section 2.2.3.3.
A survey for aspect-oriented code generation approaches within MDD has been published

in [155]. The survey �nds a heterogeneous mix of characteristics and goals among the
studied approaches, with some similarities. Di�erences are prominent in the use of trans-
formation technologies and model notations. For example, [23] uses graph-based trans-
formations, [64] uses template-based transformations and [84, 141] use a direct mapping
approach. For model notations, formal approaches [23], an AspectJ [135] metamodel [64]
and UML are used [84] among others. Furthermore, most of the approaches are only
capable of generating skeleton source code or aspects for class diagrams. Other surveys
studying modeling of aspect-orientation include [228, 265]. However, these surveys do not
focus on code generation and are thus of less importance for this thesis.
In general, one de�ning di�erence between code generation via AOP compared to MDD

is the lack of an inherent graphical model representation with AOP. However, it is also
possible to model AOP techniques with UML and use MDD code generation with as-
pects [77, 201]. This way, the model includes AOP features. Source code generated from
the model also exhibits these AOP features, which are then added to the binary code
during compilation. The approach presented in this thesis, in contrast, does not utilize
AOP for the insertion of the generated source code. Instead, an automatically generated
intermediate UML is employed, which exhibits the features that might otherwise be added
with AOP.
This thesis does not use AOP techniques, as the initial learning curve for applying MDD

has been reported as one issue for mass adoption [249]. Even though research on the
learning curve of AOP is sparse and often anecdotal, e.g., [190], including AOP within the
approach developed in this thesis would increase the learning curve further. Conversely,
AOP does not provide new capabilities that may not be achieved via the model transfor-
mations to the intermediate model. Furthermore, while the use of AOP as a standalone
approach for the code generation of safety mechanisms is a viable approach, e.g., as shown
in [30, 31], such approaches lack the inherent graphical model representation provided by
MDD. Moreover, an MDD compatible code generation approach allows an easier integra-
tion with MDD-based safety analysis techniques, e.g., as summarized in Section 2.2.3.1.

2.2.1.2 Fourth generation programming languages

In the evolution of programming languages, there is a trend towards more abstraction [172].
The fourth and �fth generation of these programming languages provide a level of abstrac-
tion that is similar to code generation. This section presents related work on these types
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of languages. Historically, �rst generation programming languages refer to working with
binary numbers, which where followed by Assembler-type language as second generation
programming languages [172]. Third generation programming languages refer to structured
programming languages, e.g., C, Java, C++, Pascal, Fortran. Fourth generation languages
provide developers with the ability to design their applications at a higher level of abstrac-
tion than writing source code. Fifth generation languages envision application development
based on written or spoken instructions in natural language. While �fth generation lan-
guages promise the highest level of abstraction, the design of such a programming language
is still in early research [148].
Fourth generation programming languages have been around since the 1980s, but have

failed to replace third generation programming languages as the de-facto standard for
software development [173]. Still, these programming languages have found their re-
spective domain-speci�c niches in which they contribute at least partially to the devel-
opment of applications [4]. Some examples for popular fourth generation programming
languages, according to [4, 232] are, e.g., Advanced Business and Application Program-
ming (ABAP) [223], Matlab [154], Statistical Product and Service Solutions (SPSS) [110]
and Structured Query Language (SQL) [38]. While these languages ful�ll their intended
purpose for their speci�c niche, their speci�c focus on one niche leads to di�culties with
their application in other domains, tool support, vendor lock-in, tool discontinuation,
etc. [232].
The development paradigm adopted by this thesis, MDD, follows a similar idea to fourth

generation programming languages. Applications are speci�ed at a higher level of ab-
straction than third generation programming languages, i.e., at the level of models. An
example for this is the speci�cation of an application with UML and the automatic gen-
eration of the corresponding application from this high-level speci�cation. While UML is
domain-independent, MDD faces several challenges that also apply to fourth generation
programming languages, e.g., limited tool interoperability, which is often correlated with
vendor lock-in [232]. Nevertheless, UML and its respective MDD tools are used as the
basis of this thesis, because the respective niches of fourth generation programming lan-
guages are too narrow to �t within the approach of this thesis. Furthermore, there exist
initiatives to make UML models more interchangeable between di�erent MDD tools, e.g.,
XML Metadata Interchange (XMI) [181].

2.2.1.3 CASE: Computer-Aided Software Engineering

Inspired by the success of Computer-Aided Design (CAD) tools for hardware development,
Computer-Aided Software Engineering (CASE) tools have been developed. Their goal is
to transform higher-level design and analysis formalisms into source code. This section
discusses how CASE is related to MDD, which is the development paradigm the approach
presented in this thesis uses.
In the early 90s, there were around a hundred analysis and design languages [232], each

of which a possible high-level language to be adopted by a CASE tool. The result was that
each tool adopted a handful of these languages [232]. As the selection of languages di�ered
between the tools, interoperability was a common problem. This often resulted in vendor
lock-in. Furthermore, the code generated by CASE tools was often incomplete and needed
to be manually complemented by developers [232]. These manual additions to the source
code made iterative development more di�cult, leading either to a divergence between the
source code and the high-level speci�cation or to a deterioration of the high-level language
resulting in a graphical 1:1 representation of the source code [232].
The rise of UML as a widely-accepted high-level design language and the subsequent

adoption by CASE tools improved some of the aforementioned challenges [232]. Due to
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the adoption of UML, CASE tools became interrelated with models and MDD. Thus,
depending on the point of view, CASE may be seen as a predecessor to MDD or MDD
may be seen as a part of CASE.

2.2.1.4 Low-Code

The term �low-code� was initially coined in 2014 and refers to a modern brand of CASE
tools that enable code generation for business-oriented applications [222]. This section
discusses how the low-code approach is related to the work presented in this thesis.
Low-code platforms are a growing segment of tools that aim to reduce the amount of

manually written code for the development of applications. The research and advisory
�rm Gartner estimates that low-code application development is going to be part of 65%
of all development activity in 2024 [261]. The low-code platforms promise high produc-
tivity gains for developers creating applications of common types, e.g., web and mobile
applications for business [206]. However, this often comes with a limited portability be-
tween low-code tools [261]. While some low-code platforms employ MDD techniques, these
platforms may also utilize a variety of other techniques, e.g., metadata-based programming
languages [261]. In this regard, low-code platforms are the latest iteration of the CASE
idea. The concept of �no-code� is related to low-code. Whereas low-code platforms still
require a certain degree of manually written source code, no-code platforms do not require
any explicit coding knowledge. However, this limits the applications that may be gener-
ated by low-code platforms to a very narrow scope. For this reason, no-code platforms
are considered a niche market according to Gartner [261]. According to [206], low-code
platforms may be classi�ed in �ve categories. These are:

� General purpose low-code platforms: The aim of these platforms is to displace other
established coding platforms that require manual coding, e.g., replacing Java or
.NET. Platforms in this category are not limited to a speci�c type of application.
Examples of this category are: Microsoft Power Platform [158], Salesforce Light-
ning [221] and Mendix [156].

� Low-code platforms for process applications: These platforms provide process au-
tomation and visualization. For example, they may provide built-in metrics, analyt-
ics or audit trails for monitoring processes. Examples of this category are: Appian [6],
AgilePoint [1] and K2 [130].

� Low-code platforms for database applications: These platforms enable users to cre-
ate applications for storing, querying and presenting data in relational databases.
For example, they may provide appropriate user interfaces, schema and database
creation, as well as some lifecycle management functions. Examples of this category
are: Oracle Apex [187] and Alphinat [3].

� Low-code platforms for request handling applications: These platforms are capable
of generating applications that accept, process and track requests. They are mainly
intended for IT service management. Examples of these tools are: ServiceNow [233]
and Cherwell [42].

� Low-code platforms for mobile applications: These platforms enable users to cre-
ate and deploy mobile applications. While some general purpose platforms are also
capable of generating mobile applications, this category encompasses tools that are
specialized for this purpose. Examples for this category are: Snappii [235] and Ap-
pery.io [65].
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These categories and the previous examples show that low-code platforms primarily
target business-oriented customers. Safety concerns, or embedded concerns in general,
e.g., real-time characteristics or dealing with periphery and resource constraints, are not
considered by these platforms. For these reasons, this thesis does not consider low-code
platforms in its approach to generate safety mechanisms.

2.2.1.5 Model-Driven Development

This section discusses automatic code generation approaches that utilize models in some
way. Most prominent are the multitude of MDD tools that are capable of generating source
code from structural UML diagrams, e.g., IBM Rhapsody [205], Papyrus [60] or Enterprise
Architect [237]. For example, these tools are capable of generating C++ source code for
a UML class and its variables that have been created inside a UML class diagram. The
source code for operations is often speci�ed textually inside these class diagrams and may
therefore be generated (or rather, copy-pasted) by most tools as well. The tools di�er in
their conformance to the UML standard, ranging from full conformance, e.g., Papyrus [60],
to UML-like dialects. These dialects provide developers with additional features that do
not exist in the UML standard, e.g., IBM Rhapsody [205].
While most MDD tools are capable of generating source code for structural UML dia-

grams, few are capable of generating source code for behavioral diagrams. For example,
Papyrus [60] has no support for code generation from UML state machine or activity
diagrams. Other MDD tools, e.g., Rhapsody [205], also allow for the automatic code
generation of state machine diagrams. In order to provide this code generation for be-
havioral UML diagrams, the respective MDD tools often de�ne their own, tool-speci�c
runtime framework. As such, interoperability between di�erent MDD tools is limited in
case code generation from behavioral diagrams is used. Exchanges of UML models be-
tween the di�erent tools is possible with the Extensible Markup Language (XML)-based
XMI speci�cation [181].
MDD tools also di�er in regards to how their code generation may be modi�ed. These

modi�cation possibilities may be included within the tool. For example, Rhapsody [205]
uses speci�c con�guration values and prede�ned plugin hooks for this purpose. Alterna-
tively, the modi�cation possibilities may be provided by third-party tools. An example
for this is Papyrus [60], where a UML model may be manipulated with model-to-model
and model-to-text transformation languages, e.g., ATL [129], Acceleo [57] or the Epsilon
framework [62].
There exists a large number of MDD tools that adopt UML as their modeling language

and provide code generation capabilities, e.g., Rhapsody [205], Enterprise Architect [237],
Papyrus [60], BridgePoint [269], MagicDraw [177], OpenAmeos [230], StarUML [163] and
Fujaba [34, 199]. All of these tools focus on generating source code for UML elements as
they are de�ned in the UML standard [183]. As the UML standard does not consider safety,
it is not surprising that none of these tools are capable of generating safety mechanisms.
The approach presented in this thesis provides an approach for how source code of safety
mechanisms may be automatically generated with these tools. This thesis also provides a
prototypical implementation for one of these tools, i.e., Rhapsody [205]. The approach itself
is not limited to this tool and may be implemented for each of the previously mentioned
tools.
Besides code generation from UML, there are also some approaches that generate source

code from di�erent modeling languages, e.g., ThingML [90]. These approaches usually
either generate code for a UML predecessor, e.g., [59] or the authors argue that UML is
a suboptimal modeling language for automatic code generation. Due to this perceived
insu�ciency, these authors de�ne their own modeling language and a subsequent code
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generation approach, e.g., [90]. Another category of modeling tools that do not use UML
are based on MATLAB/Simulink [154], e.g., TargetLink [55]. The choice of UML as a
modeling language in this thesis is discussed in-depth in Section 2.2.2.

2.2.1.6 Code Generation for Hardware Initialization

This section describes existing code generation approaches that are broadly concerned with
the initialization of hardware interfaces such as GPIOs or UARTs. Such hardware interfaces
may contain safety-relevant con�guration parameters, e.g., the use of a parity bit with a
UART. Therefore, code generation approaches that enable the automatic initialization
or con�guration of these hardware interfaces also provide code generation for hardware-
implemented safety mechanisms, which is one of the research goals in this thesis. As
the code generation approach for hardware initialization described in Chapter 6 utilizes
the concept of a HAL, some existing HALs in the context of embedded systems are also
discussed in this section.
Large manufacturers of microcontrollers, like NXP, In�neon and ST Microelectron-

ics, provide their own tools for the con�guration of hardware interfaces, e.g., MCUX-
presso [179], DAVE [114], STM32CubeMX [238]. These tools are also capable of gener-
ating the respective initialization code for some microcontrollers of the respective manu-
facturer. However, these tools are also limited to the con�guration of the microcontrollers
of a speci�c manufacturer. Additional approaches, e.g, [78], are even more specialized
and focus exclusively on a speci�c microcontroller. Chapter 6 introduces a tool similar
to [114, 179, 238], but also provides a manufacturer-independent description format of
microcontrollers. This way, the tool is not limited to the microcontrollers of a speci�c
manufacturer. Another advantage of the approach described in Chapter 6, in the context
of MDD, is that it utilizes object-oriented source code for the con�guration and initial-
ization of hardware interfaces. The related tools mentioned above ([114, 179, 238]) only
generate non-object-oriented source code. Such non-object-oriented code is more laborious
to integrate with UML-based MDD tools, which assume that the application is developed
in an object-oriented manner. Furthermore, Section 6.4 describes how the presented ap-
proach may be integrated in MDD tools. Such a systematic description is missing for the
manufacturer-speci�c tools, e.g., [114, 179, 238].
Approaches for the con�guration of hardware interfaces that are independent of a speci�c

manufacturer are described in [27, 136, 274]. They utilize XML or Architectural Analysis
Description Language (AADL) �les to describe the structure of microcontrollers that may
be con�gured. The tool described in Chapter 6 also utilizes XML to describe the structure
of microcontrollers and the format is inspired by the aforementioned approaches. How-
ever, the code generation of these approaches either does not consider object-orientation
and MDD [27, 274] or focuses on code generation for non-UML-based MDD tools, e.g.,
Matlab/Simulink/State�ow [154] or UPPAAL [22]. The tool described in Chapter 6, in
contrast, focuses on the integration with UML-based MDD tools.
There also exist orthogonal approaches to the work described in Chapter 6. For ex-

ample, [81] presents an approach for generating a portable Real-Time Operating Sys-
tem (RTOS). Chapter 6 focuses on code generation for hardware initialization at the
application level. The approach described in [81] may be used orthogonally to con�gure
an RTOS in case the application uses an RTOS.
As a part of the approach described in Chapter 6, an object-oriented HAL is introduced.

In the embedded domain, there are also several other, non-object-oriented HALs available,
e.g., CMSIS [8], Mbed [9] or Arduino [7]. Similar to the non-object-oriented code generated
by the manufacturer-speci�c tools discussed above, this type of HAL is more laborious
to integrate with object-oriented MDD tools than a HAL that is object-oriented in its
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design. Besides the non-object-oriented HALs, some object-oriented HALs are available,
e.g., modm [164], ChibiOS/HAL [43] and HwCpp [259]. However, these HALs have not
been designed to be used in conjunction with MDD. This makes their integration with
MDD more di�cult, as they often use concepts that have no equivalent representation in
UML, e.g., the template engine used by modm to create custom libraries. These concepts
either need to be mapped manually to UML elements in a laborious process, or, in some
cases, may not be able to be expressed in UML at all. The object-oriented HAL introduced
in Chapter 6, in contrast, is designed for integration with MDD in mind and thus only
uses concepts that have a clear mapping to UML. Nevertheless, the HAL presented in
Chapter 6 is inspired by some concepts of these object-oriented HALs, e.g., the way modm
uses template parameters to con�gure hardware interfaces.

2.2.2 Modeling Languages

One of the research gaps addressed in this thesis is the design of a model representation
for safety mechanisms that is suitable for automatic code generation (RG1). Such model
representations are created by using a respective modeling language. This section discusses
available modeling languages that may be used to model safety mechanisms. Furthermore,
this section argues why UML is selected as the modeling language for this thesis. For this
purpose, the modeling languages in this section are discussed in regards to the following
criteria:

� Extensibility: In order to represent safety mechanisms in the model, the modeling
language has to o�er mechanisms for extending the modeling language itself. This
criterion is concerned with whether the modeling language o�ers built-in mechanisms
for its own extension.

� Code generation friendliness: This criterion is concerned with how suitable the mod-
eling language is for code generation. This is important, as the goal of this thesis
requires code generation from the model representations that are speci�ed with the
chosen modeling language.

� Domain independence: Some modeling languages are domain-dependent, e.g., target-
ing the automotive domain. A domain-dependent modeling language may o�er only
limited support for domains that it is not intended for. Additionally, if an approach
for domain A is a commercial solution, the cost of acquiring this approach may be
prohibitive for projects in other domains B that do not require the commercial solu-
tion otherwise. As the approach developed in this thesis should not be limited to a
single domain, domain independence of the modeling language is preferred.

� Popularity and tool support: Adoption of the approach presented in this thesis de-
pends, among other criteria, on the familiarity of the developers with the modeling
language. Such familiarity may decrease the learning curve for developers in adopt-
ing the presented approach. Moreover, the popularity of a modeling language is also
a good indicator for its tool support. A good tool support is important, as it may
reduce the development overhead. Furthermore, it may also prevent a lock-in e�ect
that may occur if the approach is limited to a single MDD tool by a speci�c vendor.

The following subsections (Sections 2.2.2.1 to 2.2.2.7) discuss the criteria described above
for a number of available modeling languages.
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2.2.2.1 Uni�ed Modeling Language (UML)

The �rst modeling language considered is UML. UML o�ers strong extension mechanisms
in the form of UML pro�les. UML pro�les have been used to create expressive UML
extensions that may di�er from basic UML in regards to the criteria described at the start
of Section 2.2.2. Therefore, these extensions are discussed separately from each other in
the following:

Basic UML: Basic UML [183] contains an extension mechanism in the form of UML
stereotypes and pro�les, which may be used to give UML a new semantic meaning (cf.
Section 2.1.1 for more details on stereotypes and pro�les within UML). These stereotypes
may be used to provide a model representation for safety mechanisms. UML contains
modeling elements for object-oriented software constructs (e.g., classes), but also allows to
capture implementation details (e.g., via statecharts, activity diagrams or opaque behavior
supplied in textual form). This enables code generation from UML models, which is also
supported by many tools, e.g., Rhapsody [205], Papyrus [60] and Enterprise Architect [237].
UML itself is independent of a speci�c domain, but the stereotype extension mechanism
may be used to create domain-speci�c pro�les. UML is also the de-facto standard modeling
language for software systems and is accordingly widespread [49, 166, 253].

OCL: Object Constraint Language (OCL) [180] is a constraint language standardized by
the OMG and designed to express constraints on UML elements. For example, OCL may
be used to specify that a certain numeric attribute always has to be larger than a speci�c
value. OCL is less suited for modeling safety mechanisms than basic UML, as OCL is only
capable of specifying constraints on existing properties, whereas the modeling of safety
mechanisms focuses on adding additional properties to the model.

SysML: Systems Modeling Language (SysML) [184] is an OMG extension of UML that
uses the pro�le and stereotype mechanisms from UML. It features a set of diagrams and
concepts similar to UML. However, where UML focuses on software engineering, SysML
focuses on systems engineering, i.e., modeling complex systems beyond only software, e.g.,
hardware or mechanical aspects. While executable approaches to SysML exist [175], its
focus on systems engineering means that SysML is more distant to the source code level
than UML. Therefore, many MDD tools, e.g., Rhapsody [205] and Papyrus [60], focus
their code generation capabilities on UML. As a UML pro�le, SysML may be extended by
de�ning additional stereotypes.

MARTE: MARTE [186] is an OMG standard focused on modeling embedded systems.
Similar to SysML, MARTE is speci�ed as a UML pro�le. It provides elements for modeling
real-time embedded systems that are not included in basic UML, e.g., modeling hardware
aspects or timing requirements. However, MARTE does not provide modeling constructs
for safety mechanisms. MARTE provides its own extension mechanism by introducing a
model representation for non-functional properties. While MARTE introduces a set of non-
functional properties, developers may add their own, custom properties, e.g., properties
that represent safety mechanisms. Compared to UML, MARTE moves one step away from
model elements being directly mappable to programming constructs (e.g., speci�cation of
non-functional properties, modeling hardware aspects, etc.). Therefore, MARTE is slightly
less suited for code generation than basic UML.
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DAM pro�le: The Dependability Analysis and Modeling (DAM) pro�le [25] is an exten-
sion for UML and MARTE. It introduces model representations for dependability concepts
for the purpose of dependability analysis. In contrast to MARTE, the DAM pro�le is not
standardized by the OMG. Therefore, it is less well known among developers, and tool
support is also very sparse. While the DAM pro�le provides model representations for
some safety mechanisms, e.g., voting, these model representations are only intended for
static dependability analysis and not for code generation. Due to this, they often lack the
required amount of detail for automatic code generation.

Sophia: Sophia [35] is a modeling language for model-based safety engineering, whose
infrastructure is inspired by MARTE. Sophia itself is a UML pro�le. Similar to the DAM
pro�le [25], its aim is to provide model representations for safety attributes, in order to
improve the construction of and reasoning about safety-critical systems. Sophia itself does
not provide extension capabilities. However, as a UML pro�le, new UML stereotypes
may be introduced that complement Sophia. Sophia is not focused on a speci�c domain
and, similar to the DAM pro�le, does not consider code generation. Therefore, the model
representation often lacks the required amount of detail for code generation. As a UML
pro�le, Sophia may be integrated relatively easily into MDD tools that provide support
for UML. However, besides its associated publications, e.g.,[35], Sophia does not seem to
have gained a wider adoption in the literature or industry.

fUML: Foundational UML (fUML) [185] is a language subset of UML standardized by
the OMG. Together with the Action Language for Foundational UML (Alf), fUML aims
to provide an executable version of UML. However, the term �executable� in this case does
not refer to automatic code generation, but rather the execution of models inside simulation
environments. While fUML may be more suited to code generation than basic UML due
to its language subset, its use is less widespread among developers than UML. This is
similar for tool support, where the majority of MDD tools does not (yet) support fUML.
For example, neither Rhapsody [205] nor Enterprise Architect [237] support fUML at the
time this thesis is written. Furthermore, the fUML standard considers UML stereotypes
as outside its scope, which limits the extensibility of fUML.

Safety Patterns: Antonino et al. propose the combination of UML pro�les with descrip-
tive rules to represent safety patterns, as well as their architectural constraints [5]. Their
approach focuses on modeling architectural safety patterns, whereas the safety mechanisms
used in this thesis also consider behavioral aspects. The approach of Antonino et al. is
not limited to a speci�c domain. Furthermore, the authors' of [5] declare their intent to
use their approach for the automatic code generation of these patterns. However, no such
approach has been introduced at the time this thesis is written. Furthermore, the approach
does not appear to have gained a wider adoption in the literature or the industry. Sim-
ilar to other approaches based on UML pro�les, they do not de�ne their own extension
capabilities, but new stereotypes may be introduced in conjunction with their approach.

2.2.2.2 ThingML

ThingML [90] is a modeling language designed to support code generation. It is based on an
Eclipse Modeling Framework (EMF) metamodel with a textual syntax. The textual syntax
may be exported to a graphical, UML-based representation. ThingML has open source
tool-support and has been successfully used in several industry projects [90]. However,
these industry projects have been carried out in cooperation with the creators of the
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language and, at the time this thesis is written, there is no evidence of a broader adoption
in the industry. ThingML is not limited to a speci�c domain. While the code generation
framework for ThingML de�nes a set of extension points, there exist no built-in extension
mechanisms for the modeling language itself.

2.2.2.3 AUTOSAR

The AUTOSAR consortium [17] aims to provide standardized interfaces, tools and frame-
works for the development of automotive systems. As part of this initiative, modeling
languages and tools have been created. This section brie�y discusses the suitability of
some of these modeling languages for the model representation of safety mechanisms.

EAST-ADL: Electronics Architecture and Software Technology - Architecture Description
Language (EAST-ADL) [56] is a language for describing architectures within the context
of AUTOSAR projects. Extensions of EAST-ADL address concerns such as requirements
or timing. EAST-ADL is well known within the automotive domain and supported by sev-
eral tools, e.g., MagicDraw [177] and Papyrus [60]. Due to its roots within the automotive
domain, EAST-ADL is particularly focused on this domain, e.g., because it relies on the
AUTOSAR representation for software architectures. At its core, EAST-ADL combines
UML modeling concepts with natural language to de�ne its own, domain-speci�c model-
ing language. The concept of User attributes de�ned by EAST-ADL allows the extension
of model elements with meta information, similar to UML stereotypes. Thus, the exten-
sibility of EAST-ADL is similar to UML. EAST-ADL de�nes several abstraction levels
for development. This promotes automatic model-to-model transformations between these
levels. At the same time, the close relationship of EAST-ADL to the AUTOSAR standard
with its respective tools and software architecture promotes code generation.

AUTOSAR Timing Extensions: The AUTOSAR timing extensions [16] allow the speci-
�cation of timing issues and requirements in embedded systems. Due to their speci�c focus
on timing issues, the model representation provided by the AUTOSAR timing extensions
may only be used for a very limited number of safety mechanisms, i.e., those that deal
with timing issues. As part of the AUTOSAR standard, the timing extensions are simi-
larly domain-dependent and well known as EAST-ADL. Code generation and extension
capabilities are limited to the scope of timing issues.

2.2.2.4 Safe Automotive soFtware architEcture (SAFE)

The Safe Automotive soFtware architEcture (SAFE) research project provides solutions
for safety modeling and analysis that comply with the ISO 26262 safety standard. One de-
liverable of this project is a safety code generator speci�cation [2], which includes modeling
of software safety mechanisms based on the SAFE metamodel. Besides the deliverables of
the project, the metamodel does not seem to have gained a wider adoption at the time this
thesis is written. The metamodel and subsequent modeling of safety mechanisms assumes
its application in the automotive domain. This appears in the form of direct mappings
to AUTOSAR software components, as well as the use of EAST-ADL as a modeling lan-
guage. The project introduces modeling for several software safety mechanisms and new
mechanisms may be introduced by adhering to the SAFE metamodel. As code generation
is one of the goals of the project, the deliverable [2] describes code generation steps for two
selected safety mechanisms. Due to the direct consideration of AUTOSAR in the SAFE
metamodel, it may only be used in those domains that adopt the use of AUTOSAR.
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2.2.2.5 Fail-Operational Patterns

Penha et al. de�ne metamodels for safety patterns in the context of fail-operational sys-
tems [195]. These patterns are prototypically de�ned as part of Eclipse [58] plugins and
may be instantiated as part of EAST-ADL [56] models. The approach enables partial code
generation, i.e., the architectural elements may be automatically generated. The approach
has been conceived with the automotive domain and toolchain in mind. However, the
general concept may also be applied to other domains. For extensibility purposes, they
de�ne a meta-metamodel that enables the speci�cation of new metamodels for safety pat-
terns. While the authors implemented a prototype of their approach for Eclipse [58], this
implementation is not publicly available at the time this thesis is written.

2.2.2.6 Simulink

Simulink is a development tool developed by the company MathWorks [154], which is also
known for the tool MATLAB. Simulink provides the capabilities of an MDD tool, i.e., mod-
eling software applications and generating source code from models. Moreover, Simulink
allows for the simulation of the created models. Simulink does not use a standardized
modeling language, such as UML, but rather uses its own, proprietary modeling language.
Due to the proprietary nature, the extensibility of the modeling language in Simulink is
limited. Simulink is not limited to a speci�c domain.

2.2.2.7 Conclusions for this Thesis

This section provides a summary on how suitable the modeling languages discussed in
Sections 2.2.2.1-2.2.2.6 are for the purpose of modeling safety mechanisms to facilitate
code generation. Table 2.1 brie�y indicates for each modeling language whether it is
suitable for this purpose. The suitability is judged by the criteria proposed at the start of
Section 2.2.2, where a description and motivation for each criterion is given. The reasoning
behind each rating is discussed in the previous Sections 2.2.2.1-2.2.2.6.
The modeling languages discussed in Sections 2.2.2.1-2.2.2.6 may be categorized into four

categories: UML-based approaches, AUTOSAR-based approaches, standalone approaches
and Simulink.
AUTOSAR-based approaches are not suitable for the model representation and code

generation of safety mechanisms in this thesis, as they often include many direct references
to the AUTOSAR standard. Without major adaptations, this prevents the use of those
approaches outside those domains that use the AUTOSAR standard, i.e., outside the
automotive domain. As this thesis does not commit to the automotive domain, AUTOSAR-
focused approaches are not used within this thesis. Simulink, on the other hand, is not used
in this thesis because of its proprietary nature that increases the di�culty of introducing
new model elements for safety mechanisms. Furthermore, the use of Simulink would lead
to vendor lock-in. While some of the standalone approaches, e.g., ThingML [90], o�er
a fresh perspective on code generation and aim to improve some of the shortcomings of
previous approaches to automatic code generation, these often remain niche approaches
with limited familiarity among developers. This thesis does not rely on any of these
approaches, because this limited familiarity would limit the number of possible adopters of
the presented approach compared to more well-known modeling languages such as UML.
As UML is a general purpose modeling language, the presented UML-based approaches

have the advantage of being domain-independent. Furthermore, most of them are easy to
extend by using the built-in pro�le and stereotype mechanisms of UML. As table 2.1 shows,
basic UML, as de�ned by the UML standard, is the only approach that performs well in
all categories. Although some existing UML pro�les, e.g., [25, 35], already provide model
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Modeling language Extensibility Code
generation
friendly

Domain
independence

Tool
support

Basic UML + + + +
OCL - + + +
SysML + - + +
MARTE + - + +
DAM-Pro�le + - + -
Sophia + - + -
fUML - + + -
Safety Patterns + + + -
ThingML + + + -
EAST-ADL + + - +
Autosar Timing Extensions - - - +
SAFE + + - -
Fail-Operational Patterns + + + -
Simulink - + + +

Table 2.1: Summary of the suitability of certain modeling languages for the model represen-
tation and code generation of safety mechanisms. The sign �+� indicates that
the language is suitable regarding the respective criteria, the sign �-� indicates
that the language is unsuited for the respective criteria.

representations for safety mechanisms, they do not consider code generation. Due to this,
their model representations are too high level to be used for automatic code generation.
Nevertheless, they may be used as inspiration for novel model representations that do
consider code generation.

2.2.3 Improving the Development of Safety-Critical Systems

The overall research goal addressed by this thesis is the automatic code generation of safety
mechanisms via MDD. One part of this is the design of a software architecture for safety
mechanisms that is suitable for automatic code generation (research gap RG2). There
are resources that describe safety mechanisms, e.g., catalogs of safety patterns [10, 53] or
introductory books to safety and/or fault tolerance [89, 140, 200]. Information from these
resources may be used to design software architectures for safety mechanisms, which is a
partial ful�llment of RG2. This section presents related work on these safety mechanisms
that expands upon the aforementioned introductory books, e.g., by presenting modeling
or code generation approaches for these mechanisms. Thus, these approaches are not only
relevant for RG2, but also for research gaps RG1 and RG3, which deal with the model
representation and automatic generation of safety mechanisms, respectively.

Sections 2.2.3.3 to 2.2.3.6 present related work on those safety mechanisms, for which this
thesis presents a model representation and automatic code generation approach. Moreover,
Sections 2.2.3.1 and 2.2.3.2 highlight orthogonal approaches that focus on model-driven
safety analysis and improving safety at the system level.
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2.2.3.1 Improving Safety outside the realization phase

As described in Section 2.1.3, IEC 61508 de�nes sixteen phases in the lifecycle of a safety-
critical system. The core contribution of this thesis, i.e., the automatic code generation
of safety mechanisms, is located in the realization phase of the safety-critical system (step
10 of the safety lifecycle of IEC 61508). This section presents related work that improves
the development of safety-critical systems besides the realization step, i.e., approaches that
may be located in steps 1-9 and 11-16 of the safety lifecycle. As these approaches target
other phases of the development lifecycle, most of them are orthogonal to the approach
presented in this thesis and may be used in conjunction with it. For example, an approach
that improves safety analysis provides the basis for deciding which safety mechanisms
should be used within the application. The approach presented in this thesis is then
capable of automatically generating the source code for these safety mechanisms.
An important issue in the development of safety-critical systems is safety analysis, which

encompasses hazard and risk analysis. In this phase, potential hazards and risks for the
system are identi�ed. Furthermore, their consequences and fault propagation are analyzed.
Related work in this area often aims to improve the way safety hazards are speci�ed, as well
as the analysis methods that are applied to them [248, 270]. Once the hazards and risks
of the system are known, safety requirements may be derived from them. Another group
of related approaches aims to improve the speci�cation of safety requirements, e.g., [21].
Furthermore, once an early system model exists, these may be analyzed regarding their
dependability, e.g., as proposed by [242]. Chapter 4 presents an approach for the structured
speci�cation of safety requirements, that facilitate automatic code generation, from a set
of high-level safety requirements. The related approaches described above may be utilized
to create those high-level safety requirements based on a hazard and risk analysis.
Besides the previously mentioned approaches, current research challenges for the de-

velopment of safety-critical systems are described regularly (about every seven years) in
the �International Conference on Software Engineering�, e.g., [91, 95, 151]. Besides these
landmark articles, there also exist studies investigating the themes and issues practitioners
in the �eld of safety-critical systems perceive as challenges, e.g., [143].

2.2.3.2 Improving safety at the system level

The approach presented in this thesis focuses on automatically generating safety mecha-
nisms at the application level. There also exist numerous approaches that focus on im-
proving or (partially) automating safety aspects on the system level, e.g., concerning the
network or operating system level. This section presents related work on these system level
approaches. Most of these may be used in conjunction with the approach presented in this
thesis.
Examples for these approaches are the (completed) European Union (EU) projects SA-

FURE [220] and SafeAdapt [219]. SAFURE targets safety in cyber-physical systems of
mixed-criticality. Multiple publications in the project deal with the issue of improving
the predictability and timing analysis of networks that connect microcontrollers in cyber-
physical systems [165, 250, 251]. Another focus of the project is on timing issues that arise
in the use of multicore microprocessors [66, 67, 79]. The SafeAdapt project focuses mainly
on model-driven approaches to facilitate the self-adaption of safety-critical systems in the
context of the automotive domain [107, 194, 195, 215, 264]. Some of these contributions are
further discussed in Section 2.2.3.6, as they are related to the safety mechanism graceful
degradation, for which this thesis provides an automatic code generation approach.
Besides academic approaches, there are also some commercial tools, that aim to increase

the safety of the underlying operating system, e.g., [61, 198].
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2.2.3.3 Safety Mechanism: Error Detection

Section 5.6 presents an approach for the automatic code generation of error detection
mechanisms. This section discusses related work on this topic.
In [5], a model representation of selected safety design patterns has been proposed. Their

approach is similar to the one presented in this thesis, in the sense that they use a UML
pro�le to model safety mechanisms, i.e., safety patterns. However, this thesis uses a UML
pro�le to declare the usage of a safety mechanism for a speci�c UML element, in order to
automatically generate the source code for the safety mechanism for the speci�ed element.
[5], in contrast, uses a UML pro�le to represent the structure of speci�c safety mechanisms.
Thus, their approach may be used to describe how a speci�c safety mechanism works, while
the approach presented in this thesis may automatically generate the safety mechanism.
The SAFE research project deals with safety modeling and analysis. Code generation

for safety mechanisms is considered in some publications, e.g. [254], as well as the project
deliverables, e.g. [2]. They combine graphical modeling based on EAST-ADL with textual
Domain-Speci�c Languages (DSLs) in the context of a metamodel that has been conceived
as part of this project. They provide model representations for several safety mechanisms
and describe code generation steps for some of these examples. However, the project
and its approach are linked to the AUTOSAR standard in the automotive domain. Due
to this, the model representations make direct references to elements of the AUTOSAR
metamodel. While this is bene�cial for projects that utilize AUTOSAR, it also makes their
approach di�cult to use in other domains that do not employ the AUTOSAR toolchain.
The approach presented in this thesis provides a model representation and code generation
for safety mechanisms that is independent of AUTOSAR and the automotive domain.
In [93], a domain-agnostic transformation language for safety mechanisms from safety

patterns is proposed. The authors de�ne their own modeling language for safety mecha-
nisms, as well as their visual representation, instead of building atop a widespread model-
ing language that is known to many developers, e.g., UML. Similarly, the authors de�ne
their own transformation language instead of using general purpose model transformation
languages like ATL or general purpose programming languages like Java. Both of these fea-
tures necessitate the use of a custom editor provided by [93]. While their general approach
is sound and not unlike the approach presented in this thesis, their focus on re-inventing
their own modeling and transformation language contributes to a large learning curve for
developers that want to adopt their approach. This thesis aims to reduce such a learning
curve, by only building atop widespread modeling and programming languages, i.e., UML,
Java and C++. Moreover, the necessary use of the editor presented in [93] results in devel-
opers having to specify safety mechanisms in a standalone fashion in the editor proposed
by [93]. Adapters are subsequently used to transform and import these speci�cations into
other MDD tools and their respective modeling languages. This thesis, in contrast, enables
developers to specify safety mechanisms in the same MDD tool they use to develop their
application. Last but not least, in contrast to this thesis, [93] does not describe a way to
generate object-oriented code.
The approach described in [196] identi�es several system properties that are error prone.

They de�ne a set of assertions for each of these properties, which check whether the given
property is ful�lled at a given point in time. For each of the properties, a custom UML
stereotype is de�ned that may be applied to a UML model element for which the assertion
should hold. Then, code for the assertion may be automatically generated via AOP tech-
niques and templates that are speci�ed for each property. The approach presented in [196]
is similar to the one presented in this thesis in the sense that both apply UML stereotypes
to model elements, which are subsequently parsed for code generation. However, the ap-
proaches di�er in the type of check for which they provide a model representation and code
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generation. The approach described in [196] focuses on generating checks that ultimately
detect programming errors, e.g., checking whether an entity is globally unique or conforms
to the singleton design pattern. The approach in this thesis, in contrast, generates safety
mechanisms (which include runtime checks), that detect errors due to external phenomena,
e.g., faulty sensor measurements or radiation-induced soft errors. Furthermore, this thesis
also considers the automatic generation of error handling, which is not considered by [196].
An approach that utilizes the MATLAB/Simulink toolchain [154] is proposed in [152]. It

aims to bridge system and software development by creating Simulink models (for software
development) from EAST-ADL models (for architecture modeling). However, the actual
generation of source code from the Simulink models is not investigated in [152]. They
depend on manual re�nements of the models to produce the dynamic behavior of the safety
mechanisms. This thesis, in contrast, generates the actual source code automatically, which
includes the dynamic behavior of the safety mechanisms.
There are also some approaches that aim to verify structural constraints during runtime,

e.g., class and component relationships [96, 208, 263]. The approach presented in this the-
sis, on the other hand, targets dynamic behavior during runtime. Such dynamic behavior
is also the focus of assertion- and contract-based techniques [212, 262]. These are a form of
runtime check directly speci�ed in the source code. Thus, they do not provide any model
representation of the safety mechanism, in contrast to the approach presented in this thesis.
Furthermore, a speci�c contract or assertion is not reusable in other applications [196].
A large subgroup of error detection in the context of safety-critical systems are ap-

proaches for software-based memory protection. There exist several approaches to code
generation for this subgroup, e.g., [30, 31, 40, 47, 48, 68, 69, 193, 203, 245, 260]. Of these
approaches, [30, 31] are the most closely related approaches to the one presented in this
thesis. They use aspect-oriented development to specify error detection checks for individ-
ual classes. A speci�c compiler is capable of automatically generating source code for these
error detection checks within the speci�ed classes. In contrast to the approach presented
in this thesis, their approach does not consider modeling, i.e., it may not be used directly
in an MDD process. Basic experiments towards an automatic generation of error detection
checks for the purpose of software-based memory protection in an MDD context have been
published in [99].
There also exist approaches that add error detection mechanisms to a program using a

more theoretical approach [11, 12]. However, as these approaches take all possible system
states into consideration, their application is limited to small and medium-scale systems
due to the state explosion problem.

2.2.3.4 Safety Mechanism: Voting

Section 5.7 presents an approach for the automatic code generation of voting mechanisms.
The general concept of voting mechanisms has been explained in Section 2.1.5. This
section discusses related approaches, which cover voting strategies, model representations
for voting and code generation techniques for this safety mechanism.
Basic voting strategies, e.g., the arithmetic mean or majority voting, exist since the

1970s and 1980s [41, 126]. From then on, a large number of di�erent voting strategies have
been proposed. This process continues until today, e.g., [150], which proposes a voting
strategy based on fuzzy rules, and [204], which proposes continuously updated con�dence
values for each voting input.
In 2004, a taxonomy for voting strategies at the software-level has been published [144].

The authors classify these strategies into di�erent categories, which are:

� whether the voter is implemented on the software or hardware level,
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� whether the voter requires exact agreement of the inputs or whether di�erences
smaller than a prede�ned threshold are allowed,

� whether the voter produces binary results (agreement/non agreement) or produces
results in a potentially large output space (e.g., arithmetic mean voting),

� whether the voter functions synchronously or asynchronously,

� which type of functionality the voter exhibits. The authors of [144] distinguish generic
voting algorithms (e.g., majority voting), hybrid voting algorithms (e.g., a voter
that assigns a level of trust to each input, such as maximum likelihood voting) and
purpose-built voters, which are designed for a speci�c application.

The automatic code generation approach for voting mechanisms described in Section 5.7
is extensible, i.e., di�erent voting strategies may be automatically generated with the ap-
proach. Most of the categories described above may be employed within the automatic code
generation. The only exceptions are the implementation of voters at the hardware level and
the use of purpose-built voters. As the code generation approach described in Section 5.7
is only capable of generating source code, it cannot provide a hardware implementation.
Purpose-built voters, on the other hand, are unique by de�nition. Therefore they may not
be automatically generated without implementing a unique generation process for each
purpose-built voter.
Besides related work on di�erent voting strategies, there also exist approaches that

provide model representations for voting mechanisms [25, 26, 268, 276]. None of these
approaches consider automatic code generation from their model representations. Due to
this, they lack the required amount of detail that is necessary for automatic code generation,
e.g., they do not model the speci�c voting strategy that should be employed. In [25], a
voter is modeled as a separate class that contains two or more redundant structures and an
attribute specifying the error detection coverage of the voter. However, they do not consider
what type of voting strategy the voter should execute. Therefore, no code generation for
the voting strategy is possible. The approach described in [26] uses UML statecharts
to model the internal behavior of a voter and uses UML deployment diagrams to model
the relationships of the voter to other system elements. Similar to [25], the approach
focuses on dependability modeling and thus does not consider the speci�c type of voting
strategy used. Additionally, deployment diagrams on their own model only a high-level
version of the system, which is too coarse-grained for automatic code generation. [268]
uses the formal language Communicating Sequential Processes (CSP) for failure modeling.
They provide an example in which they model a voter as a dedicated class within a UML
class diagram. The inputs of this voter are also modeled as separate classes and the
type of voting is speci�ed by the name of the association between the voter and the
voting inputs. In [268], this model representation is then transformed into a CSP model
for failure modeling. Although failure modeling is not in the scope of this thesis, their
UML representation of the voting process may be used as a basis for the modeling of
voting mechanisms within this thesis. While their approach lacks the ability to model
additional con�guration values, Section 5.7 solves this issue by introducing appropriate
UML stereotypes that contain tagged values for con�guration purposes. [276] introduces
a UML pro�le for modeling safety-critical software for airborne systems. They introduce
UML stereotypes that model voters and their inputs. These stereotypes may be applied to
classes, i.e., the model representation is similar to [268], while also providing the option of
specifying con�guration values. However, the con�guration values introduced in [276] do
not consider the speci�c type of voting strategy that should be employed and are therefore
unsuited for automatic code generation.
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The combination of voting mechanisms, modeling and code generation has been studied
in [97, 98]. They use the text-based Cyber Physical Action Language (CPAL) to model
the behavior of the voting process. From this model, code for the voter may be generated
automatically. However, the syntax of CPAL is similar to the programming language C.
Thus, the modeling language in [97, 98] is very similar to the programming language for
which the code is generated. A higher abstraction level by means of a graphical model
representation, e.g., as possible with UML, is not considered by these approaches.

2.2.3.5 Safety Mechanism: Timing Constraint Monitoring

Section 5.8 describes an approach for the automatic code generation of monitoring mech-
anisms for timing constraints. This section presents related work on timing constraint
monitoring.

In general, timing is an important issue in the development of safety-critical systems.
Thus, several approaches for static timing analysis during the design phase of the sys-
tem exist. There are multiple modeling languages for timing analysis, e.g., [16, 186] and
(semi-) automated approaches for creating timing analysis models, e.g., [120, 121, 122]. All
these approaches are intended for use during the development phase, i.e., providing timing
analysis before the system is fully developed. For this purpose, they provide powerful mod-
eling constructs to model certain assumptions about runtime conditions. The approach
presented in Section 5.8, in contrast, targets the monitoring of timing constraints at run-
time, i.e., after the system has been fully developed and is in operation. A large part of
the modeling constructs of the aforementioned approaches are not required at this stage.
Therefore, these modeling approaches mostly contain unnecessary complexity for the intent
of specifying timing constraint monitoring at runtime.

There also exist several related approaches for monitoring timing constraints during run-
time. In [13], a survey of these approaches has been published. Some of these approaches
utilize dedicated hardware for performing the timing constraint monitoring, e.g., [161, 255].
As model-driven code generation is limited to software monitoring for timing constraints,
these approaches are of limited importance for this thesis. Furthermore, hardware ap-
proaches may become obsolete in case future hardware advances do not exhibit the charac-
teristics these approaches rely on [13]. There are also approaches which depend on speci�c
operating system support, e.g., [218, 252]. These approaches may usually not be used with
other operating systems, therefore severely limiting their application to a broad range of
programs. Other approaches, e.g., [50, 217], modify system calls to include the required
monitoring statements. This process is transparent to the developer, i.e., a developer may
use the same function calls he usually uses. A disadvantage of this method is that the mon-
itoring applies to all system calls. Therefore, the probe overhead extends even to those
parts of the application that do not require timing monitoring from a safety perspective.
An alternative to modifying system calls is to provide developers with a set of operations
that manually start the monitoring process at certain points within the application, e.g.,
[87, 125, 168]. This is conceptually similar to the approach described in Section 5.8, where
statements starting the monitoring process are automatically added to operations based
on whether a speci�c UML stereotype is applied to the operation within the model. The
approach presented in Section 5.8 di�ers from the approaches described in [87, 125, 168] by
o�ering an additional model representation and allowing developers to specify their timing
constraints within the model, instead of at the source code level.

44



2.2 Related Work

2.2.3.6 Safety Mechanism: Graceful Degradation

Section 5.9 presents an approach for the automatic code generation of graceful degradation
mechanisms. The general concept of graceful degradation is explained in Section 2.1.5.6.
This section discusses related work on graceful degradation.
The approach presented in Section 5.9 provides code generation for graceful degradation

at the application level. However, the concept of graceful degradation may also be applied
at other system levels. For example, [20, 171] study the optimal distribution of programs
on available hardware platforms. The approaches described in [80, 82] aim to provide an
optimal utilization of computing resources in resource-limited scenarios in which multiple
hardware platforms exist. In [229], graceful degradation is applied at the system level of
commodity Linux servers to deal with memory errors. While these approaches focus on
a type of graceful degradation, they are not directly related to this thesis, as they do not
apply this concept at the application level.
Graceful degradation at the application level is the focus of several approaches [225, 226,

234]. They consider neither the modeling of graceful degradation nor its automatic code
generation, but discuss how the concept may be realized at the application level. Thus,
these approaches may serve as a basis for the target software architecture that is generated
by the approach described in Section 5.9. This thesis utilizes the software architecture
for graceful degradation described in [226], which is summarized in Section 2.1.5.6. [225]
discusses di�erent alternatives for performing the degradation step, i.e., removing compo-
nents, interfaces or bindings. Another alternative is described in [234], which proposes the
replacement of an erroneous component with another, non-erroneous component. These
alternatives in�uence the code generation approach described in Section 5.9.
A combination of graceful degradation at the application level and system level, e.g., for

energy and CPU usage, has been studied in [224]. The proposed software architecture is
similar to [225, 226], which have been discussed above. The remaining aspects, i.e., energy
and CPU usage, are out of scope for this thesis.
Several approaches consider the automatic code generation of graceful degradation at

the application level [107, 149, 194, 195]. The approaches described in [107, 194, 195] are
related and focus on fail-operational systems in the automotive domain. However, they
provide only partial code generation for graceful degradation and exclude the generation of
the actual degradation step [195]. The code generation of the degradation is classi�ed as a
further research challenge by [195]. This challenge is addressed in this thesis in Section 5.9.
Furthermore, the approaches in [107, 194, 195] also heavily rely on the AUTOSAR toolchain
that is widespread in the automotive domain. This increases the di�culty of using their
approach in other domains that usually do not use the AUTOSAR toolchain. The work
described in [149] approaches code generation of graceful degradation from a theoretical
point of view. However, according to the authors, their approach is limited to small and
medium scale applications, as the underlying theoretical problem is NP-complete.
On a broader scope, graceful degradation is a speci�c form of self-adaption, which deals

with the automatic recon�guration of systems. In contrast to graceful degradation, self-
adaption is not limited to recon�guration in case of an error, but may also happen in case
of a change in requirements, updates, etc. Furthermore, model-driven approaches to self-
adaption often consider a very large number of possible system states, e.g., [71, 169]. In
these approaches, a frequent goal is to dynamically �nd the most suitable system state out
of the many possibilities. Graceful degradation, in contrast, is usually limited to a handful
of system states at most. This follows from the application in the safety domain, where
deterministic outcomes and static analysis of the system take a much more prominent role
than in application that are not safety-critical. This is also re�ected by the safety stan-
dard IEC 61508, which discourages dynamic recon�guration of programs at runtime [116].
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Another di�erence between self-adaption approaches and graceful degradation is that self-
adaption approaches often do not consider the resource limitations of embedded systems or
do not consider safety programming standards, such as the Motor Industry Software Reli-
ability Association (MISRA) [162] standard. For example, the model-driven self-adaption
approaches described in [71, 169] assume that the hardware is capable of running a Java
Virtual Machine in order to use re�ection mechanisms for self-adaption. Embedded sys-
tems typically do not provide the required computing resources for this. Furthermore, the
use of re�ection mechanisms usually requires dynamic memory allocation, which is also
discouraged by MISRA [162] and IEC 61508 [116].

2.2.4 Conclusions for this Thesis

This section summarizes the related work from Sections 2.2.1 to 2.2.3 and highlights the
research gaps that are addressed by this thesis. Section 2.2.1 presents several approaches
to automatic code generation, most prominently MDD as the basic methodology used in
this thesis. While it identi�es several tools capable of generating code from UML diagrams,
none of these tools are capable of generating safety mechanisms by a built-in mechanism.
Section 2.2.2 makes similar observations for other modeling languages than UML and their
associated tools.
Section 2.2.3 presents related work for improving the development of safety-critical sys-

tems. It describes approaches that are orthogonal to the approach presented in this thesis,
e.g., those that focus at the system level or on other lifecycle phases than the realization
of the system. Furthermore, it presents related approaches that describe model represen-
tations and software architectures of safety mechanisms. Most of these approaches do not
consider automatic code generation. Thus, they only provide model representations with
insu�cient detail or a software architecture that is unsuited for automatic code generation.
In summary, this thesis addresses the following research gaps:

� Model representations for safety mechanisms that are su�ciently detailed for auto-
matic code generation.

� Software architectures for safety mechanisms that may be integrated with existing
applications without requiring manual developer actions for this integration.

� Model transformations between the aforementioned model representations and soft-
ware architectures to automatically generate source code for the safety mechanisms.
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This chapter presents an overview of the approach for the automatic generation of safety
mechanisms, which is described in detail in Chapters 4 to 6. Section 3.1 illustrates how
the high-level concepts of the approach interact with each other, while Section 3.2 provides
a more detailed work�ow from the perspective of a developer that uses the approach.
Section 3.3 introduces an application example that is expanded upon in the remainder of
the thesis, showing how the presented concepts may be applied to it.

3.1 Overview of the Approach

This section shows how the high-level concepts presented in Chapters 4 to 6 interact with
each other. This is illustrated in Figure 3.1, which references the contributions introduced
in Section 1.1.3. The contribution C1 describes a structured way to de�ne detailed safety
requirements. This includes the name or location of the system element that should be
protected, as well as the safety mechanism and its con�guration that should be applied to
this element. These structured requirements are then used as the input for contributions
C2 and C3, which deal with the generation of software- and hardware-implemented safety
mechanisms, respectively.
For the generation of software-implemented safety mechanisms, UML stereotypes are

used to specify safety mechanisms for a software element in a UML model. Model-to-model
transformations subsequently transform this model representation into an intermediate
model that realizes the speci�ed safety mechanism. In Figure 3.1 this is illustrated by
the stereotype �RangeCheck� being applied to the attribute x of class Example. The
automated model-to-model transformations replace this attribute with an instance of the
class ProtectedAttribute, which not only contains x, but also methods for performing
the speci�ed numeric range check whenever the instance is accessed.
The generation of hardware-implemented safety mechanisms relies on a GUI tool (Pin-

Con�g tool), which is used to represent the con�guration for the respective hardware
interfaces. Figure 3.1 shows a screenshot of this GUI. From this tool, the automated code
generation process for hardware-implemented safety mechanisms may be started. The
generation process itself additionally relies on a code snippet repository in the form of a
template, which is not shown in Figure 3.1.

3.2 Developer Work�ow

This section presents a work�ow from the perspective of a developer that applies the
approach for the automatic generation of safety mechanisms. Figure 3.2 shows a UML
activity diagram for this purpose.
At the start of the work�ow, i.e., action 1, a functional model of the application is created

from the functional requirements speci�cation. This model includes the basic behavior
of the application, but does not contain any safety mechanisms yet (development artifact
(A1)). Action 2 of the work�ow speci�es a set of structured safety requirements that should
be applied to this functional application model. The requirements may be distinguished
in those that are realized entirely in software (development artifact (A2)) and those that
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Figure 3.1: Interaction of the high-level concepts presented within this thesis.

are primarily realized in hardware and only con�gured via software (development artifact
(A3)). Action 3 parses the requirements from development artifact (A2) and applies a set
of corresponding UML stereotypes to the functional application model (A1). The result
is a UML application model in which the software-implemented safety mechanisms are
modeled via UML stereotypes (development artifact (A4)).
Action 4 parses the requirements from development artifact (A3). The information is

used to con�gure the initial con�guration for hardware interfaces within the PinCon�g tool,
which is described in Chapter 6. With the help of this tool, the code that executes this ini-
tial con�guration may be generated and integrated with the UML application model. This
happens in action 5 of the work�ow and results in development artifact (A5), i.e., a UML
model that contains the necessary information for software- and hardware-implemented
safety mechanisms.
The software-implemented safety mechanisms are realized in action 6, which produces an

intermediate UML model (development artifact (A6)) that only contains UML elements for
which a 1:1 mapping to the target programming language exists, i.e., C++ in this thesis.
Due to this 1:1 mapping, action 7 is capable of generating the source code from the model
with the default code generation of common MDD tools, e.g., Rhapsody [205], Papyrus [60]
or Enterprise Architect [237]. This generated code contains the realized safety mechanisms
(development artifact (A7)). In the last action of the work�ow, action 8 compiles the
code, which results in an executable binary that contains the speci�ed safety mechanisms
(development artifact (A8)). During compilation, a template-based safety library is linked,
which includes part of the implementation for the software-implemented safety mechanisms.

3.3 Ongoing Application Example

This section introduces an ongoing application example. Chapters 4 to 6 expand upon
this application example to demonstrate the application of the concepts presented in the
respective chapter. Section 3.3.1 presents the concept of environment monitoring systems.

48



3.3 Ongoing Application Example

Figure 3.2: Work�ow for automatically generating safety mechanisms from the perspective
of a developer (UML 2.5 activity diagram notation) [100].
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The ongoing application example used in this thesis is part of this category of systems.
The actual application example is described in Section 3.3.2. Section 3.3.3 provides an
application model for this example, that is used as a basis for the generation of safety
mechanisms described in Chapters 5 and 6. Section 3.3.4 brie�y discusses hardware details
of the application example.
A condensed version of this application example and its di�erent stages in the automatic

generation process provided in Chapters 5 and 6 is published in [100, 103].

3.3.1 Environment Monitoring Systems

This section describes a category of related systems, i.e., environment monitoring systems.
The ongoing application example, i.e., a �re detection system, is part of this category.
In general, environment monitoring systems contain one or more sensors that monitor
one or more phenomena of the environment. Depending on the speci�c application, the
monitored values of the phenomena are either sent to a base station as part of a sensor
network or, in the case of non-networked systems, the phenomena are compared directly to
threshold values. If the monitored values for the phenomena are above this threshold, the
system raises an alarm. Smoke detectors, commonly found in private households, are an
example for the latter: in case the CO concentration in the air is over a certain threshold,
the smoke detector sounds an alarm. In contrast to this, large o�ce buildings usually
feature a networked �re detection system and the presence of a �re is announced centrally
via installed sirens in the building. Furthermore, the �re department may be noti�ed
automatically of the �re in this building.
While the concepts presented in this thesis are exempli�ed for a �re detection system

that may be used in private households, the concepts may be transferred easily to other
environment monitoring systems, as they operate in a similar manner. Thus, for further
illustration, the reader may consider the application of the concepts to a wide variety of
systems. Examples for this are the monitoring of diverse phenomena, e.g., radiation [45, 54],
air quality in underground mines [39, 209], forest �re detection [14, 94, 273] or tsunami
detection [36, 83, 147].
However, the approach presented in this thesis is not limited to environment monitoring

systems and may also be used for other safety-critical systems, e.g., automobiles or air-
craft. However, these systems often exhibit hard real-time characteristics, which have to
be considered in the application of the presented approach. This is further touched upon
in Sections 2.1.5.5, 2.2.3.5 and 5.8, which discuss the monitoring of timing constraints and
its automatic generation.

3.3.2 Description of the Application Example

The ongoing application example used in this thesis is a safety-critical �re detection system.
This section presents a general description of how this system operates. A �re detector
is similar to smoke detectors commonly found in private households. However, instead of
only using a single CO sensor, it employs a variety of sensors in order to reduce the number
of false alarms, e.g., due to burnt cooking. Furthermore, this built-in redundancy allows
for a partial operation of the system in case a single sensor malfunctions.
The speci�c �re detection system used as an application example in this thesis employs

three sensors: a temperature, an infrared and a CO sensor. Each second, the system
decides whether an alarm should be raised based on the values of these sensors. If at least
two sensors indicate the presence of a �re at the same time, the alarm is raised via an
acoustic warning tone. A raised alarm may be turned o� by pressing a button located on
the �re detector.
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Besides this acoustic warning tone, the �re detection system is also capable of informing
the household owner of the presence of a �re via a remote message to his smartphone.
This may be relevant when the �re detector detects the presence of a �re while the house-
hold owner is not at home. The system has two alternatives for sending the message to
the household owner's smartphone. The �rst alternative uses Wireless Local Area Net-
work (WLAN) to send a message to an accompanying smartphone app that the household
owner has installed on his phone. This alternative may fail for various reasons, e.g., the
WLAN connection of the �re detector is in�uenced by the presence of the �re or the house-
hold owner may not have internet access at his current location. When the �re detection
system notices that it cannot deliver the alarm message via WLAN, despite a �re being
detected, it attempts to send another warning message to the household owner via Short
Message Service (SMS). SMS relies on di�erent technology than WLAN and may deliver
the message even if there is no internet connection for the �re detector or the household
owner.

In case the �re detection system detects an error within its operation, e.g., via a safety
mechanism, it is also capable of signaling this error by playing an acoustic maintenance
tone and informing the household owner of this via WLAN and SMS as well.

3.3.3 Application Model

This section presents a functional UML model of the �re detection application example. It
serves as the basic model to which safety mechanisms are added automatically in Chapters 4
to 6. Figure 3.3 shows the application model.

The class FireAlarmControl is the central controlling entity of the application. It
contains compositions to the classes responsible for detecting the �re, signaling an acoustic
alarm and sending messages to the smartphone of the household owner. The class Alarm-
Buzzer is responsible for playing the acoustic warning and maintenance tones, while the
class StopAlarmButton resets the alarm once the corresponding button on the �re de-
tector is pressed. The classes HouseholdOwnerNotification and SMSService are
responsible for sending the messages to the household owner's smartphone via WLAN and
SMS, respectively. For this purpose, both of them realize the interface Notification-
Service.
The actual �re detection process is performed by the class FireDetector, which gets

its input for the detection process from the classes TemperatureFilter, Infrared-
Filter and GasFilter. These classes determine for each individual sensor whether
a �re is present according to this sensor. For this purpose, they contain a composition
relationship to the corresponding sensor classes, i.e., TemperatureSensor, Infrared-
Sensor and GasSensor. These are responsible for actually measuring the associated
physical phenomena corresponding to their sensor type (the GasSensor measures the CO
concentration in the air, among other gases).

Some of the aforementioned classes interact with the hardware of the system, e.g., the
sensors. For this purpose, sensor classes and the classes responsible for managing the
acoustic alarm are connected to a software representation of a GPIO. Furthermore, the
SMSService class is connected with a UART, as the actual process of sending the SMS is
implemented on another hardware module with which the �re detector communicates via
UART. These hardware peripherals are represented as interfaces within the application
model (IGpio and IUart) and refer to the interfaces of a HAL that is responsible for
actually communicating with the hardware.
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Figure 3.3: Functional application model of the �re detection system application example
(adapted from [100]; screenshot of the UML model created with the MDD tool
IBM Rhapsody [205]).
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Figure 3.4: Photo of the hardware setup for the application example. The picture shows
a Raspberry Pi4B and its associated breakout board, as well as the hardware
sensors and actuators used for the application example.

3.3.4 Hardware Setup

This section presents selected hardware details of the �re detection application example.
Figure 3.4 shows a picture of the hardware setup. A Raspberry Pi4B is used as a microcon-
troller on which the application is implemented. However, the application of the concept
presented in this thesis is independent of a speci�c microcontroller. Thus, the concept
may also be applied to other microcontrollers, e.g., ones that are more cost-e�cient for
commercial systems.
The Raspberry Pi o�ers 40 GPIOs, which are used to connect the individual sensors, as

well as a button and a buzzer to the system. These hardware elements have been selected
from the SunFounder Sensor Kit [246]. For the UART that connects the Pi to another
hardware module responsible for sending SMS, the internal UART0 (PL011) is used.
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Automatic Code Generation

One of the research gaps identi�ed in Section 1.1.2 (RG2) is the need for a model rep-
resentation for safety mechanisms that is suitable for automatic code generation. With
this, safety mechanisms may be modeled within the application model, which may be the
input to subsequent automatic generation steps. The concept of a model representation
for safety mechanisms necessitates that there is some form of information that describes
which safety mechanisms should be included in the application and its model. This infor-
mation usually exists in the form of a safety requirements speci�cation [116]. This chapter
provides a method to de�ne safety requirements in a structured way. Due to their speci�c
structure, these requirements may be parsed automatically and may thus be used to au-
tomate the process of modeling the safety mechanisms within the application model. As
the code generation from the application model is also automated (cf. Chapters 5 and 6),
these structured safety requirements may be seen as the �rst step in the automatic code
generation process for safety mechanisms.
Section 4.1 presents motivating examples for high-level requirements in the context of

the application example introduced in Section 3.3. Section 4.2 uses these requirements
to motivate design choices in regards to which information the structured safety require-
ments have to be able to express. Section 4.3 applies the concepts of structured safety
requirements to the high-level requirements presented in Section 4.1. This shows how the
presented approach may be applied to the ongoing application example. This chapter con-
cludes with Section 4.4, which describes a prototype implementation and tool support for
the presented approach.
This chapter presents contribution C1 of this thesis and partially addressed research gap

RG1 (cf. Section 1.1.2). An initial version of this approach has been published in [100]
and in a supervised bachelor's thesis [108] that elaborated on implementation assistance
for the concepts presented in this chapter.

4.1 High-level Requirements

The structured speci�cation of safety requirements requires an (early) model of the ap-
plication, as it references implementation entities. For this reason, they are derived from
requirements of a higher abstraction level that do not take the implementation into account.
This section presents exemplary high-level safety requirements of the �re detection appli-
cation example introduced in Section 3.3. They are examples that are intended to motivate
the design choices of Section 4.2, which describes an approach on how safety requirements
may be formulated in a structured manner that enables automatic code generation.
In terms of the safety standard IEC 61508, a �re detection system may be assigned a

Safety Integrity Level (SIL) of 2 [137, 210]. For SIL 2 systems, IEC 61508 recommends
a variety of safety mechanisms. Some examples that are used in this thesis are: fault
detection and diagnosis for software and hardware faults (cf. IEC 61508 part 3, table A.2).
The fault detection may be carried out on multiple levels, e.g., the value, time and logical
domain. Additionally, input comparison or voting are recommended for the use of sensors
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(cf. IEC 61508 part 2, table A.13). Furthermore, the system should be capable of graceful
degradation to maintain its proper operation in the case of selected errors (cf. IEC 61508
part 3, table A.2).
Based on these general recommendations, the following exemplary high-level require-

ments are de�ned for the �re detection application example:

HR1: The output of the CO sensor shall be within its speci�ed value range. Addi-
tionally, the CO sensor shall measure new values at least every second.

HR2: The output of the temperature sensor shall be within its speci�ed value range.
Additionally, the temperature sensor shall measure new values at least every
second.

HR3: The output of the infrared sensor shall be within its speci�ed value range.
Additionally, the infrared sensor shall measure new values at least every second.

HR4: The system shall check for a �re at least every second.

HR5: The output of the sensors shall be compared in a voting process that determines
the presence of a �re.

HR6: If the system is incapable of sending the household owner a message via WLAN
in case of an alarm, the system shall gracefully switch to sending an SMS instead.

HR7: The communication of the UART with the external hardware module sending
an alarm SMS shall be protected with error detecting codes.

Requirements HR1 to HR4 and HR7 may be categorized as fault detection and diagnosis
for software and hardware faults. HR1 to HR3 each target the value and time domain and
respectively monitor the operation of the CO, temperature and infrared sensor. HR4
also targets the time domain and monitors the overall timing behavior of the system.
HR7 belongs to the logical domain. It monitors any communication errors that occur in
association with the UART to the external hardware element that is capable of sending an
SMS to the household owner.
The requirement HR5 is derived from the recommendation for input comparison/voting

for sensors. HR6 re�ects the graceful degradation capability of the system. It enables the
system to inform the household owner of an alarm even in case of no internet connection
for the household owner or the �re detection system.

4.2 Structured Safety Requirements

This section presents a method for specifying safety requirements in a structured way that
enables automatic code generation. This is achieved by using sentence templates, i.e., a
�xed sentence structure with placeholder values that are replaced with actual values when
a speci�c, structured safety requirement is derived from a high-level requirement. An
example for such a placeholder is the name of the system element that should be protected
by a safety mechanism.
Section 4.1 presents example high-level requirements for a safety-critical system. From

these, the following criteria may be inferred that the sentence templates have to be able
to express:

� Requirements HR1 to HR6 describe requirements for software-implemented safety
mechanisms, while HR7 describes a requirement for a hardware-implemented safety
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mechanism. Thus, the sentence templates have to enable the speci�cation of both
types of safety mechanisms, i.e., software-implemented and hardware-implemented
mechanisms.

� The requirements HR1 to HR7 reference system elements that should be protected.
Furthermore, the type of the system element to protect may vary. For example,
HR1 refers to speci�c values measured by the sensor, i.e., an attribute in the model.
Requirement HR4, in contrast, refers to an operation in the model, i.e., checking for
�re. Thus, the sentence templates have to express the name of the system element
that should be protected, as well as its type.

� Requirement HR6 refers to the safety mechanism error detecting codes. This safety
mechanism has distinct realizations, e.g., which type of error detecting code is used.
For example, this could be a CRC, a Hamming code or a parity check. Thus, the
sentence templates have to enable the expression of speci�c types of the safety mech-
anism.

� A speci�c type of safety mechanism, e.g., CRC, may have additional con�guration
options. In the case of CRC, this could be the number of bits used for the generator
polynomial. Thus, the sentence templates have to provide the ability to express such
con�guration options for a safety mechanism.

Sections 4.2.1 to 4.2.3 propose a set of sentence templates that achieve the characteristics
presented above. In order to enable the automatic parsing process of the requirements
speci�ed according to the templates, the templates are formulated in ANTLR [192] syntax.
Section 4.2.4 discusses the expressiveness of the proposed templates.

4.2.1 Distinction between Hardware- and Software-Implemented Safety
Mechanisms

As described in Section 1.1.1, the goal of this thesis is the generation of software-implemented
safety mechanisms, as well as the automatic initial con�guration for hardware-implemented
safety mechanisms. As these two types of safety mechanisms have di�erent characteris-
tics, the sentence templates presented in this thesis distinguish between the speci�cation
of a requirement for a software-implemented safety mechanism and a requirement for a
hardware-implemented safety mechanism. This is shown in Listing 4.1, which declares
that a safety requirement may be either of these two types.

1 req : swReq | hwReq

Listing 4.1: Distinction of safety requirements depending on whether they are implemented
in software or hardware (ANTLR syntax) [100].

At the code-level, hardware-implemented safety mechanisms are often con�gured via
low-level APIs. The name of the API method indicates which property of the safety
mechanism should be con�gured, while the method parameter speci�es the intended value
for this property. Thus, the con�guration of hardware-implemented safety mechanisms
follows a key-value approach. The sentence template for hardware-implemented safety
mechanisms is provided in Section 4.2.2.
Software-implemented safety mechanisms, on the other hand, have no such clear struc-

ture in regards to their implementation or con�guration. Thus, there exists a greater deal
of variety for these than for hardware-implemented safety mechanisms. This increased vari-
ety is re�ected by a di�erent structure for the sentence template for software-implemented
safety mechanisms, as compared to the sentence templates for hardware-implemented
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safety mechanisms. The structure for software-implemented safety mechanisms is described
in Section 4.2.3.

4.2.2 Sentence Templates for Hardware-Implemented Safety Mechanisms

This section describes sentence templates for safety requirements that enable the automatic
con�guration of hardware-implemented safety mechanisms. As described in Section 4.2.1,
such a con�guration follows a key-value approach. Thus, the sentence template re�ects
this approach while also specifying the name of the hardware interface that provides the
hardware-implemented safety mechanism. The basic structure of this sentence template is
shown informally in Listing 4.2.

1 The hardware element <Name of the hardware interface to be protected> shall be protected
with the configuration <key> as <value>.

Listing 4.2: Sentence template for a hardware-implemented safety requirement. The angle
brackets indicate a placeholder [100].

The<key> and<value> elements of this template may be used multiple times, separated
with a comma. This enables the speci�cation of multiple key-value pairs for a single
hardware interface. Listing 4.3 shows the (formal) ANTLR grammar for this sentence
template.

1 hwReq : ’The hardware element ’ hwId ’ shall be protected with the configuration ’
hwConfig ’.’;

2 hwId: QSTRING;
3 hwConfig : hwConfigEntry ((’, ’ | ’ and ’) hwConfig)* ;
4 hwConfigEntry : QSTRING ’ as ’ QSTRING;

Listing 4.3: ANTLR grammar for a hardware requirement [100]. The QSTRING lexer rule
refers to a rule that can parse strings surrounded by quotes.

Line 1 of Listing 4.3 provides the basic structure of the sentence template. The hardware
interface that should be protected is given by hwID in line 2 and may be an arbitrary string.
The key-value con�guration is achieved by lines 3 and 4 of Listing 4.3. The hwCon�g rule
provides the basic recursion that enables the use of multiple key-value pairs, while the
hwCon�gEntry rule represents a speci�c key-value con�guration for the speci�ed hardware
interface. The arguments given for the name of the hardware interface and key-value
pairs have to be valid values for the given microcontroller that is used for development.
The validity of these arguments is checked during the automated integration of the safety
requirements for hardware-implemented safety mechanisms in the PinCon�g tool. This is
described in detail in Chapter 6.

4.2.3 Sentence Templates for Software-Implemented Safety Mechanisms

This section describes sentence templates for safety requirements that enable the automatic
generation of software-implemented safety mechanisms. Listing 4.4 shows the (informal)
structure of this template.

1 The <model element to be protected> <general safety mechanism type> <general
configuation>. <specific safety mechanism to be applied> <specific configuration>.

Listing 4.4: Sentence template for a software-implemented safety requirement [100]. The
angle brackets indicate a placeholder.

The template begins with the name of the system element that should be protected by
a software-implemented safety mechanism. It continues with the speci�cation of the type
of safety mechanism that should be used and its con�guration. This part of the template
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is further split into a general con�guration and a speci�c con�guration. As shown by
the requirements HR1 to HR3 presented in Section 4.1, multiple safety mechanisms may
be applied to the same system element. These multiple safety mechanisms may share
some con�gurations, e.g., the method of error handling once an error has been detected.
Thus, the sentence template enables developers to express that a system element should be
protected by a certain category of a safety mechanism, followed by a general con�guration
that should be applied to all speci�c safety mechanisms of this category. Then, the speci�c
safety mechanisms that should be applied may be stated and con�gured. The second
sentence of Listing 4.4 may be repeated multiple times to apply several safety mechanisms
from the same category to the system element. Listing 4.5 shows the (formal) ANTLR
grammar for this sentence template.

1 swReq : introReq (addReq)*
2 introReq : ’The ’ location ’ shall be ’ introHow ’ with ’ swSharedConfig ’.’ ;
3 addReq : ’The ’ type ’ shall be applied’ (’ to the ’ location)? ’ with ’ swConfig ’.’ ;
4

5 location : locationType SPACE locationPath ;
6 locationType : ’class’ | ’attribute’ | ’operation’ | ’association with’ :
7 locationPath : QSTRING ;
8

9 introHow : ’automatically checked on access’ | ’periodically checked every TIME_UNIT ’ |
’used for voting’ | ’monitored regarding its runtime’ | ’gracefully degrading’ ;

10 swSharedConfig : swSharedConfigEntry ((’, ’ | ’ and ’) sharedConfig)* ;
11

12 type: TYPE_CHECKS | TYPE_VOTING | TYPE_TIMING_MONITORING | TYPE_GRACEFUL_DEGRADATION ;
13 swConfig : swConfigEntry ((’, ’ | ’ and ’) swConfig)* ;

Listing 4.5: ANTLR grammar for a software requirement (adapted from [100]). The
QSTRING lexer rule refers to a rule that can parse strings surrounded by
quotes. The parser rules swConfig and swSharedConfig are not de�ned
in the listing, but further described in the main text. The same applies to
the lexer rules TYPE_CHECKS, TYPE_VOTING, TYPE_TIMING_MONITORING
and TYPE_GRACEFUL_DEGRADATION.

Line 1 of Listing 4.5 provides the basic structure that initially names a system element
that should be protected along with a category of safety mechanisms (introReq), before
an arbitrary number of speci�c mechanisms follow (addReq). These two parts are further
re�ned in lines 2 and 3.
The system element that should be protected is a UML element in this thesis, as the code

generation approach for software-implemented safety mechanisms described in Chapter 5
relies on UML as a cornerstone. Line 5 of Listing 4.5 further describes the type of the
protected UML element, e.g., a class, and the full path to the element in the application
model.
The general category of safety mechanism that should be applied to the speci�ed model

element is de�ned in line 9. It provides a sentence fragment to represent one of the safety
mechanism categories for which Chapter 5 presents a code generation approach. The
sentence fragment is de�ned in a way that indicates the type of category that should be
used. Furthermore, it �ts into the (natural) grammar of the sentence template.
Line 10 of Listing 4.5 de�nes the con�guration that is applicable for all safety mechanisms

that belong to the same category (swSharedCon�g), while line 13 de�nes those that are
speci�c to a single safety mechanism (swCon�g). For brevity, the speci�c de�nitions of
swSharedCon�g and swCon�g are not shown in Listing 4.5, as they contain an entry for each
con�guration value of the safety mechanisms presented in Chapter 5. They are sentence
fragments that �t grammatically in the sentence structure and contain information about
a con�guration value. An example for this is the sentence fragment �with a duration of
1000ms� that is used at the end of requirement DR2 described in Section 4.3. It con�gures
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the check to signal an alarm if a time limit of 1000ms has passed without updating the
sensor value.
Line 12 of Listing 4.5 furthermore de�nes the type parser rule, which resolves into mul-

tiple lexer rules that indicate a group of safety mechanisms. Each of these lexer rules
represents one speci�c safety mechanism that may be applied to the protected model ele-
ment. The names of these safety mechanisms correspond to the names of UML stereotypes,
which are introduced as part of the UML pro�les presented in Chapter 5. Thus, while the
type rule speci�es the stereotype that should be applied to a model element, the swShared-
Con�g and swCon�g rules de�ne the tagged values of the stereotypes.
The addReq rule de�ned in line 3 of Listing 4.5 also provides the option of specifying ad-

ditional locations in the model, besides the initial model element speci�ed in introReq. This
is necessary when a code generation approach requires multiple stereotypes or references
more than one location, e.g., in case associations to other classes are involved as inputs.
An example for this is the safety mechanism voting, whose code generation approach is
described in Section 5.7.

4.2.4 Expressiveness of the Sentence Templates

This section discusses the expressiveness of the structured sentence templates introduced
in Sections 4.2.1 to 4.2.3 in regards to their ability to describe safety requirements with
the intent of automatic code generation. There are two aspects that are relevant for this:

1) The degree to which safety requirements may be modeled with the templates.

2) The su�ciency of the templates in regards to automatic code generation.

These aspects are discussed in Sections 4.2.4.1 and 4.2.4.2, respectively.

4.2.4.1 Expressing Safety Requirements

The sentence templates introduced in Sections 4.2.1 to 4.2.3 may be used to derive detailed
safety requirements suitable for automatic code generation from more general high-level re-
quirements. This section discusses the extent to which this is possible and for which types
of high-level requirements no corresponding detailed requirement may be derived. Require-
ments for hardware- and software-implemented safety mechanisms are discussed separately,
as their corresponding sentence templates di�er from each other (cf. Sections 4.2.1 to 4.2.3).
One aspect that applies to both types of requirements is that a single high-level require-
ment may be mapped to an arbitrary number of detailed requirements, i.e., it is possible
to create two or more detailed requirements for a single high-level requirement.

Expressing safety requirements for hardware-implemented safety mechanisms: The
sentence templates for hardware-implemented safety mechanisms (cf. Section 4.2.2) con-
tain the name of the hardware interface that should be protected, as well as an arbitrary
number of key-value pairs to describe the con�guration of the hardware interface. Thus,
the expressiveness of the proposed approach is limited to those hardware interfaces that
may be con�gured via a key-value approach. This includes at least the hardware interfaces
for which Chapter 6 provides a code generation approach, i.e., GPIO, UART, ADC and
PWM. Moreover, many other hardware interfaces, e.g., Serial Peripheral Interface (SPI),
also adopt a key-value approach at the source code level for con�guration, with a speci�c
bit in a speci�c register indicating the use of a speci�c function of the respective hard-
ware interface. Thus, as most source code for initializing hardware interfaces follows a
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key-value approach, using a key-value approach for the requirements allows for express-
ing most safety requirements for hardware-implemented safety mechanisms. There may
be exceptions to this for specialized, custom hardware interfaces, for which no adequate
requirement may be expressed via a key-value approach. However, for the microcontrollers
studied in Chapter 6, no such exception exists. As these microcontrollers are chosen from
a variety of manufacturers, this implies that the occurrence of a hardware interface, whose
initialization does not follow a key-value approach, is rare.

Expressing safety requirements for software-implemented safety mechanisms: The
sentence template for software-implemented safety mechanisms (cf. Section 4.2.3) contains
the name of an application model element that should be protected, as well as a sentence
fragment indicating the category of safety mechanism that should be used, followed by the
name and con�guration of one or more safety mechanisms from this category. While this
enables the construction of requirements that read like natural language, this comes with
the following limitations regarding the expressiveness for the templates:

� While auxiliary model elements may be referenced in the con�guration of the safety
mechanism, e.g., requirement DR5 in Section 4.3, the requirements are ultimately
limited to safety mechanisms that mainly protect one model element. Safety mecha-
nisms that may not be mapped to a speci�c model element, e.g., the use of stateless
software design, as recommended by IEC 61580 for applications with a SIL of 3 and
above, may not be expressed with the proposed sentence templates. From the per-
spective of the research goals in this thesis, i.e., the automatic code generation of
safety mechanisms, this is only of limited importance, as such safety requirements
not only apply to the generated code for safety mechanisms, but also the application-
speci�c code manually written by developers. Thus, the generation of such safety
requirements, which may not be mapped to a speci�c model element, may be con-
sidered out of scope in this thesis, as their ful�llment depends predominantly on the
manually written code of the developers and not the automatic code generation of
safety mechanisms.

� In order to maintain sentence structures that read like natural sentences, sentence
fragments speci�c to a category of safety mechanisms are required (cf. rule �in-
troHow� in Listing 4.5 ). This implies that the ANTLR grammar specifying the
sentence template has to be extended by a new, suitable sentence fragment each
time a new category of safety mechanisms should be expressed by the requirements.
The ANTLR grammar is constructed in a way to make this task as simple as pos-
sible, e.g., by specifying another alternative terminal value in the rule �introHow�
that �ts the new safety mechanism category. For the sake of this thesis, the ANTLR
grammar presented in Section 4.2.3 contains all necessary sentence fragments for the
software-implemented safety mechanisms for which Chapter 5 presents an automatic
code generation approach.

4.2.4.2 Suitability for Code Generation

The sentence templates introduced in Sections 4.2.1 to 4.2.3 are intended as the basis
for the automatic code generation approach of safety mechanisms. This section discusses
the extent to which this is possible and what type of actions may potentially still require
manual actions by a developer. Requirements for hardware- and software-implemented
safety mechanisms are discussed separately, as their corresponding sentence templates di�er
from each other (cf. Sections 4.2.1 to 4.2.3)

61



4 Structured Safety Requirements

Suitability for code generation of the sentence templates for hardware-implemented
safety mechanisms: The key-value con�guration from the sentence templates for hardware-
implemented safety mechanisms (cf. Section 4.2.2) contains all necessary information to
describe the con�guration of a hardware-implemented safety mechanism. However, di�er-
ent microcontrollers may utilize di�erent code statements to actually execute this con�g-
uration. Examples for this are:

� The use of di�erent registers for a speci�c con�guration option of a speci�c hardware
interface.

� The use of di�erent driver APIs. In the simplest case, this only a�ects method names,
e.g., the names of methods between the di�erent drivers of two microcontrollers may
di�er. In more advanced cases, the method parameters may di�er. For example,
consider a microcontroller that uses multiple methods that each contain a single
method parameter with a primitive data type to con�gure a hardware interface.
Another microcontroller may only provide a single method for the con�guration of
the entire hardware interface and utilize a struct as a method parameter that
contains all con�guration options.

These examples show that the key-value con�gurations expressed by the sentence tem-
plates for hardware-implemented safety mechanisms require a mapping to microcontroller-
speci�c code statements for automatic code generation. Such mappings have to be de�ned
manually once per microcontroller. Once such a mapping exists all necessary information
for automatic code generation is present. Chapter 6 presents a proof-of-concept for such
an automatic code generation approach.

Suitability for code generation of the sentence templates for software-implemented
safety mechanisms: As described in Section 4.2.4.1, the sentence templates for software-
implemented safety mechanisms use sentence fragments that are speci�c to categories of
safety mechanisms. The exact content of these safety fragments re�ects the necessary
values from the code generation process for software-implemented safety mechanisms (cf.
Chapter 5), i.e., there exists a direct correspondence between key words in the sentence
fragments and the tagged values of UML stereotypes used as part of the code generation
process to specify safety mechanisms in the application model. Thus, there exists a tight
coupling between the UML stereotypes proposed in Chapter 5 and the sentence fragments
of the ANTLR grammar proposed in Section 4.2.3. Changes to one of these, e.g., the
introduction of a new tagged value in a UML stereotype to re�ect a novel con�guration
option, necessitate changes in the other as well, e.g., modifying the sentence fragment of
the ANTLR grammar to include this con�guration option.
Besides this coupling between the ANTLR grammar and the UML stereotypes that

represent safety mechanisms in the application model, there is also a coupling between
the UML stereotype and the actual code generation process. This is further described
as part of the proof-of-concept code generation described in Chapter 5. Nevertheless the
ANTLR grammar ultimately contains all necessary information about the con�guration of
software-implemented safety mechanisms to enable the code generation process described in
Chapter 5 for the following categories of safety mechanisms: error detection for attributes,
voting, timing constraint monitoring and graceful degradation. In order to provide a code
generation approach that starts from safety requirements for other categories of safety
mechanisms, the ANTLR grammar presented in Section 4.2.3 has to be extended with
suitable sentence fragments that correspond to the UML stereotype(s) that represent this
novel category of safety mechanisms.
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4.3 Derived Safety Requirements

This section demonstrates how the sentence templates that enable the automatic code
generation of safety mechanisms may be applied to the high-level requirements and ap-
plication example introduced in Sections 4.1 and 3.3. Figure 4.1 shows the structured
safety requirements that have been derived from the high-level requirements based on the
concepts presented in Section 4.2.
The derived requirements DR1 to DR7 correspond to the high-level requirement with the

same number. The requirements DR1 to DR6 demonstrate structured safety requirements
for software-implemented safety mechanisms, while DR7 represents a requirement for a
hardware-implemented safety mechanism. The text for DR5 and DR6 is longer than for
the other requirements, as they reference external classes, i.e., inputs to the voting process
and the available providers for degradation. For each such reference to an external class,
an additional sentence is added to the requirement. The requirements DR1 to DR3, on the
other hand, are examples for applying multiple safety mechanisms to the same element,
i.e., a numeric range check and a time-based check. For each such additional mechanism,
a sentence is added to the requirement as well.

4.4 Prototype

This section presents a prototype that enables developers to specify structured sentence
requirements according to the concepts presented in Section 4.2. The prototype is imple-
mented in Java. Figure 4.2 shows a screenshot of the GUI of this prototype.
On the left side of the GUI, high-level safety requirements are shown, e.g., as presented

in Section 4.1. An import button enables developers to import multiple high-level require-
ments from an external document, e.g., a safety requirements speci�cation as recommended
by the safety standard IEC 61508 [116]. In the central compartment of the GUI, the full
text of the high-level requirement is shown. Below, the category of safety mechanism that
should be used to ful�ll this safety requirement may be chosen from a drop down menu.
The text of the corresponding structured safety requirement is displayed in another

text �eld further below. This text �eld is manually editable by the developers, who may
manually write the text of the derived requirement. A label below the text �eld indicates
if the syntax of the derived requirement conforms to the ANTLR grammar presented in
Section 4.2.
Besides writing the derived requirements manually, the prototype also enables developers

to provide the necessary values in the right panel of the GUI. The elements shown in
this panel are dynamically updated according to the category of safety mechanism that is
chosen in the central panel of the GUI. Once a value in the right panel has been selected or
modi�ed, the text for the derived requirement in the central panel is updated accordingly.
Thus, it is also possible for developers to create the derived requirements that enable
automatic code generation without having to know the ANTLR grammar presented in
Section 4.2.
The GUI of the prototype contains a second tab, Compare and Export. In this tab,

developers may export the derived safety requirements to the application model, which is
the �rst step in the automatic code generation process of the safety mechanisms. Before
the actual export, developers are shown a list of di�erences between the current speci�ca-
tion according to the derived requirements and any information about safety mechanisms
already contained in the model. This makes it easier for developers to verify the conse-
quences of any changes in the application model when a safety requirement is changed at
a later stage in the development process.
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Figure 4.1: Safety requirements that enable the automatic generation of safety mecha-
nisms (adapted from [100]). They are derived from the exemplary high-level
requirements presented in Section 4.1 according to the principles introduced in
Section 4.2.
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Figure 4.2: Screenshot of the prototype for specifying and parsing structured safety re-
quirements [100].

The derived safety requirements may be parsed automatically by the ANTLR framework,
as they conform to a valid ANTLR grammar. The corresponding values of the parsed
requirements are stored in Java objects Oi. They contain the name of the system element
that should be protected according to the derived safety requirement. Furthermore, they
contain a list of all safety mechanisms and their con�guration that should be applied to
this system element. The Java objects Oi serve as the input for the code generation process
for software- and hardware implemented safety mechanisms described in Chapters 5 and 6.
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Software-Implemented Safety

Mechanisms

This chapter presents a model-driven approach for the automatic code generation of software-
implemented safety mechanisms. Section 5.1 presents the high-level concept of this ap-
proach. The concept may be applied in two di�erent ways, depending on the extent to
which MDD is incorporated into the development process of the respective system. These
two usage types are discussed in Section 5.2. Section 5.3 shows how the presented approach
in this chapter may be integrated with the structured safety requirements introduced in
Chapter 4.
Section 5.4 presents a basic work�ow on how to achieve the automatic code generation of

software-implemented safety mechanisms. Each step of the work�ow is a design challenge
that needs to be addressed by the approach presented in this thesis. Section 5.5 provides
the fundamental concepts used in this thesis to solve these design challenges. Sections 5.6
to 5.9 use these concepts to provide a prototypical realization of these concepts for four
di�erent software-implemented safety mechanisms, i.e., error detection for attributes (cf.
Section 5.6), voting (cf. Section 5.7), timing constraint monitoring (cf. Section 5.8) and
graceful degradation (cf. Section 5.9).
Section 5.10 presents a prototypical implementation of the concepts introduced in Sec-

tions 5.5 to 5.9 that is integrated in the MDD tool IBM Rhapsody [205]. Section 5.11
uses this prototype to generate software-implemented safety mechanisms for the ongoing
application example initially introduced in Section 3.3.
This chapter provides contribution C2 of this thesis and addresses the research gaps RG1

to RG3 in the context of software-implemented safety mechanisms (cf. Section 1.1.2). The
concepts described in this chapter are the subject of previous publications [100, 101, 102,
103, 104, 105].
As this chapter focuses on software-implemented safety mechanisms and does not con-

sider hardware-implemented safety-mechanisms, the pre�x �software-implemented� is omit-
ted in the remainder of Chapter 5, i.e., the term �safety mechanisms� refers to software-
implemented safety mechanisms unless explicitly stated otherwise.

5.1 High-level Concept

This section presents an overview of the high-level concepts used to automatically generate
software-implemented safety mechanisms. A slightly modi�ed version of this overview is
published in [105]. The general idea is to represent safety mechanisms via UML stereotypes
in the application model. Model-to-model transformations are used to transform the model
elements marked with such a stereotype. The results of these transformations are new or
modi�ed model elements that actually realize the safety mechanisms. Figure 5.1 shows an
illustration of this concept. Figure 5.1(a) shows the general concept, while Figure 5.1(b)
shows the application of this concept to a simpli�ed version of the application example
introduced in Section 3.3.
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Figure 5.1: High-level concept for the generation of software-implemented safety mecha-
nisms via MDD (adapted from [105]). Vertical arrows show transitions from
one code generation step to another. Horizontal arrows indicate the use of
additional, external elements that are not part of the UML application model,
e.g., because they are requirements.
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In step (A1) of Figure 5.1(a), a functional UML model of the application is created
based on a functional requirements speci�cation. In most cases, this is a UML class
diagram supplied with additional information, e.g., statecharts or activity diagrams to
model the dynamic behavior of the application. However, the behavior of the operation
may also be speci�ed in textual form for each operation via the opaque behavior property
of UML operations. In step (A2) of Figure 5.1(a), UML stereotypes are applied to the
functional application model. Each of these stereotypes models a safety mechanism that
the application has to contain according to the safety requirements speci�cation. For
brevity, these stereotypes are referred to as safety stereotypes in the remainder of this thesis.
The safety requirements speci�cation is an artifact of step nine of the safety development
lifecycle (cf. Section 2.1.3) and is available at the realization phase of the system. While
the safety stereotypes may be applied manually by a developer, they may also be applied
automatically in case the safety requirements speci�cation is created according to the
concepts presented in Chapter 4.
In step (A3) of Figure 5.1(a), automatic model-to-model transformations are performed

on the functional application model that is the result of step (A2). These model transfor-
mations modify and add UML elements to the application model in order to realize the
safety mechanisms that have been modeled with the safety stereotypes in step (A2). For
this, the stereotypes in the model are parsed and subsequently the safety mechanisms are
realized. The result is an intermediate model that contains all the relevant information
for code generation, including the safety mechanisms. Code generation itself is achieved
via model-to-text transformations in step (A4). As the intermediate model created in step
(A3) already contains all information for the safety mechanisms, the default code gener-
ation capabilities from common MDD tools, e.g., IBM Rhapsody [205], Papyrus [60] or
Enterprise Architect [237], may be used. Finally, the actual executable binary is produced
in step (A5) of Figure 5.1(a), by compiling the generated code. Depending on how the
safety mechanisms are realized, additional source code for the safety mechanisms has to
be linked during compilation.
Figure 5.1(b) shows how the previously described concept may be applied to an appli-

cation example. In step (B1), the functional application model of a �re detection system
is created. In the abbreviated version of the system in Figure 5.1(b), this is the FireDe-
tection class with the coVal attribute. The coVal attribute contains the currently
measured value of the CO sensor of the system. In step (B2) of Figure 5.1(b), the safety
requirements speci�cation indicates that the measured CO value should be the subject of
a sanity check that monitors whether the CO sensor is working correctly. For this purpose,
the �RangeCheck� stereotype is applied to the attribute. The �RangeCheck� stereotype
models a safety mechanism that checks an attribute whenever it is accessed in regards to
whether the attribute is within a speci�ed numeric range. In step (B3) of Figure 5.1(b),
automatic model-to-model transformations are applied to the model and realize the range
check within the model. In this example, the primitive coVal attribute is replaced by a
wrapper class (ProtectedAttribute in Figure 5.1(b)). This wrapper class is respon-
sible for performing the range check at the appropriate times. Step (B4) of Figure 5.1(b)
uses the code generation features from MDD tools to create the source code for the inter-
mediate model that has been created in step (B3). The binary executable is compiled in
step (B5) of Figure 5.1(b).

5.2 Usage Types

Section 5.1 presents the high-level concept for the model-driven code generation of software-
implemented safety mechanisms. This section describes two di�erent ways as to how these
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concepts may be integrated into an MDD process. The �rst usage type A assumes that
MDD is used for full code generation from the application model, while the second usage
type B uses MDD only for the generation of skeleton code, e.g., method declarations
without their implementation. Figure 5.2 shows the development process for both of these
usage types.

Usage type A: Full MDD process: Figure 5.2(a) shows how the approach summarized
in Section 5.1 may be used in a development process in which the behavior of the appli-
cation is speci�ed within the UML model, e.g., by using the opaque behavior property of
operations (alternative A). Developers create and maintain a functional application model
that contains the structural and behavioral information of the model (A1 in Figure 5.2(a)).
They apply a set of safety stereotypes to this model (A2 in Figure 5.2(a)). The model with
the safety stereotypes is automatically transformed into an intermediate model via model-
to-model transformations (A3 in Figure 5.2(a)). This intermediate model contains the full
behavioral information of the application, i.e., all method de�nitions, including the infor-
mation for the safety mechanisms. The source code is generated automatically from this
intermediate model (A4 in Figure 5.2(a)). In case the generated source code does not meet
the developers expectations, e.g., because it contains bugs, developers may either change
the model in A2 or A3 of Figure 5.2(a). As model A3 may be generated automatically
from model A2, this choice depends on the preference of the developer. Changing model
A2 enables developers to work with a more abstract model, which describes safety mech-
anisms as UML stereotypes. Changing model A3 allows developers to work with a more
concrete model, in which the safety mechanisms are already realized within the model,
e.g., as speci�c classes and operations.

Usage type B: Partial MDD process: Figure 5.2(b) shows how the approach summarized
in Section 5.1 may be used in a development process in which only structural UML models,
e.g., class diagrams, are used to generate code skeletons (alternative B). The method
de�nitions are implemented manually after code generation. In this alternative, developers
begin their development process by creating a structural application model, i.e., a UML
class diagram (B1 of Figure 5.2(b)). In contrast to alternative A, developers do not de�ne
the behavior of the application within this model. In the next step, developers apply
the safety stereotypes to the structural application model (B2 of Figure 5.2(b)). From
this model, the intermediate model in which the safety mechanisms are realized is created
via model-to-model transformations (B3 of Figure 5.2(b)). In contrast to alternative A,
this intermediate model only contains the behavioral information for the automatically
generated safety mechanisms. The behavioral information for the rest of the application is
still missing. The intermediate model is used for automatic code generation, which creates
a method stub for each operation, i.e., a declaration for the method, but not its de�nition
(B4 in Figure 5.2(b)). An exception to this are the methods automatically added for the
safety mechanisms, as their behavioral information has been added automatically to the
model in step B3. Finally, developers may manually implement the method de�nitions
for the automatically generated method stubs (B5 in Figure 5.2(b)). In case debugging is
required, developers stay at the manually implemented code level instead of returning to
the model level.

Discussion of usage types: Besides the di�erence in development methodology, the al-
ternatives A and B also di�er regarding their consistency between source code, model and
requirements. In alternative A, there are no consistency problems between the source code
and the model, as any changes to the application are made in the model and the source
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Figure 5.2: Alternative usage types for the automatic code generation of software-
implemented safety mechanisms. The rectangles indicate which development
artifacts exist at a certain point in time, while the solid arrows describe the
necessary actions to create the next set of development artifacts. The dashed
arrows indicate an iterative process, e.g., revising the previous development
artifacts for debugging purposes.
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code is automatically generated. In alternative B, manual changes in the source code are
not re�ected in the model a priori. In order to transfer these changes to the model, the
reverse engineering functionality by the employed MDD tool needs to be used. Another
type of consistency problem in alternative B arises when the requirements speci�cation
changes and these changes should be re�ected in the model, as well as the source code. For
this purpose, the changes may either 1) be made in the source code and transferred to the
model via reverse engineering, or 2) be made in the model and the subsequently generated
code has to be merged with the existing source code, e.g., via version control systems like
GIT [37].
Both alternatives A and B face the same consistency problems in regards to the con-

sistency between the model and safety requirements. With the approach described in
Chapter 4, the safety stereotypes for each safety mechanism may be applied automatically
to the model based on the requirements speci�cation (cf. Section 5.3). Thus, there are
no initial consistency problems between the safety requirements and the model. However,
developers may change the model manually. This may lead to inconsistencies between the
requirements and the model. The prototype tool described in Section 4.4 enables devel-
opers to view any such inconsistencies and automatically update the model based on the
current requirements, or vice versa.
In summary, in alternative A developers de�ne the behavioral information within the

UML application model, e.g., by using statecharts, activity diagrams or manually inserting
the code via the opaque behavior property of operations. In alternative B, developers
only use a structural UML model for the generation of programming stubs. They have
to manually implement these stubs at the code-level, instead of the model-level as in
alternative A. In both cases, developers bene�t from the automatic generation of the safety
mechanisms, e.g., increased productivity and less manual implementation errors.

5.3 Automatically Applying Safety Stereotypes to the
Application Model

Section 5.1 presents an overview for the approach to automatically generate software-
implemented safety mechanisms. This approach includes the application of UML stereo-
types to model elements in order to represent these safety mechanisms. In case the safety
requirements speci�cation for the system is created according to the principles presented
in Chapter 4, the application of these stereotypes to the application model may be auto-
mated. For this purpose, the export functionality of the prototype presented in Section 4.4
may be used.
The prototype parses the safety requirements with the ANTLR framework and creates

a map data structure M . The keys of this map are the UML elements to which a safety
stereotype should be applied. The value to each key is a list which contains information
about the safety mechanisms and their con�gurations that should be applied to this UML
element.
Based on this map, this thesis introduces a plugin for the MDD tool IBM Rhapsody [205].

When the plugin is executed, it takes the map M as its input and attempts to �nd each
UML element contained in the key set of M in the application model. For each successfully
located element, it is checked whether a safety stereotype is already applied to it. Every
di�erence, e.g., a missing stereotype or di�erent tagged values, is stored temporarily in a
list A until all elements in M have been processed. Subsequently this process is reversed.
The plugin iterates through the entire application model, taking note of all those UML

elements to which a safety stereotype is applied. The information from these stereotypes
is compared with the information inside M and any di�erences are stored temporarily
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Figure 5.3: Work�ow for creating a system capable of generating software-implemented
safety mechanisms from UML stereotype model representations (adapted
from [102]; notation UML 2.5 activity diagram)

in a list B. Examples for such di�erences are that no corresponding requirement to a
safety stereotype exists in M or that the tagged values of the stereotype di�er from the
con�guration speci�ed by the requirement.
The di�erences stored in the lists A and B are shown to the developer in the �Compare

and Export� tab of the GUI introduced previously in Figure 4.2. In this tab, developers
may review the di�erences. If they approve of any changes, they may click a button to au-
tomatically update the model according to the requirements or modifying the requirements
to re�ect the state of the application model.

5.4 A Work�ow for Generating Software-Implemented Safety
Mechanisms

The overall research challenge of this thesis is to develop an approach for the automatic
code generation of safety mechanisms (cf. Section 1.1.2). This section presents a work�ow
for how this may be achieved for software-implemented safety mechanisms, by outlining the
necessary steps required to create a system capable of this. Thus, the work�ow serves as a
blueprint for the design challenges that need to be solved in order to provide the automatic
generation of software-implemented safety mechanisms described in Sections 5.5 to 5.9.
Section 5.4.1 presents an overview of the work�ow, while Section 5.4.2 presents detailed

information for each action in the work�ow. Initial versions of this work�ow have been
published in [102, 105].

5.4.1 Overview of the Work�ow

This section presents an overview of the work�ow for automatically generating software-
implemented safety mechanisms. The work�ow is not concerned with speci�c generation
steps, but rather intended to provide an overview of the general challenges that need
to be solved when creating a system capable of automatic code generation for software-
implemented safety mechanisms. Section 5.4.2 discusses each of the steps in the work�ow
in more detail. Figure 5.3 shows a UML activity diagram of the work�ow.
At the start of the work�ow, a safety mechanism suitable for code generation has to be

identi�ed (cf. action 1 in Figure 5.3). The criteria for this sort of suitability are described in
Section 5.4.2. Once a suitable safety mechanism has been identi�ed, information regarding
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Figure 5.4: Basic concept for generating software-implemented safety mechanisms. The
notation is based on a UML 2.5 class diagram with additional non-UML sym-
bols indicating transformation steps and �les. The rectangles at the bottom
indicate di�erent snapshots of the application in the transformation process.

existing model representations and software architectures for this safety mechanism has
to be researched (cf. action 2 in Figure 5.3). Certain key points that are relevant for
this research are described in Section 5.4.2. The researched information is subsequently
used to design a model representation and a software architecture, both of which have to
be suitable for code generation (cf. actions 3 and 4 in Figure 5.3). The characteristics
of such a model representation and software architecture are discussed in Section 5.4.2.
Both steps may be carried out concurrently, as the model representation may in�uence
the software architecture and vice versa. In the last step of the work�ow (cf. action
5 in Figure 5.3), model transformations have to be designed and implemented, which
automatically transform the model representation of action 3 into the software architecture
of action 4.
In summary, actions 1 and 2 are concerned with researching information about safety

mechanisms, while actions 3 to 5 correspond to the research gaps RG1 to RG3 identi�ed
in this thesis (cf. Section 1.1.2). The basic idea for solving these challenges in the context
of software-implemented safety mechanisms is shown in Figure 5.4. Safety mechanisms are
modeled in the application model via UML stereotypes (cf. stereotype �CheckedSensor�
applied to class COSensor in snapshot (II) of Figure 5.4). The design of these stereo-
types is part of action 3 of the work�ow shown in Figure 5.3. Automated model-to-model
transformations are used to realize the safety mechanisms by adding new classes to the
model and/or modifying existing model elements (cf. class SensorCheck added to the
model in snapshot (III) of Figure 5.4). The design of the software architecture for the
safety mechanisms, e.g., the class SensorCheck in Figure 5.4, is part of action 4 of the
work�ow shown in Figure 5.3. The model transformations, which integrate SensorCheck
and other necessary classes in the model, are part of action 5 of the work�ow shown in
Figure 5.3. Finally, source code for the safety mechanisms and the remainder of the appli-
cation model is generated by the built-in capabilities of the MDD tool (cf. snapshot (IV)
of Figure 5.4).

5.4.2 Work�ow Details

This section describes the work�ow presented in Section 5.4.1 in more detail, providing
additional information on how each step may be achieved.

Action 1: Identifying a safety mechanism suitable for automatic code generation: In
the �rst step of the work�ow, a safety mechanism for which the automatic code generation
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should be provided has to be identi�ed (cf. action 1 in Figure 5.3). Such a safety mechanism
may be found among the following sources:

� Safety standards, e.g., IEC 61508 [116] or ISO 26262 [118], describe common error
types in safety-critical systems, as well as mechanisms to prevent these errors. Safety
mechanisms that are recommended by a safety standard are one candidate for auto-
matic code generation. The safety standards often only provide the name and a brief
description of a safety mechanism, whereas detailed information has to be gathered
from other sources.

� Some academic sources, e.g., conference or journal publications, also describe safety
mechanisms. In contrast to safety standards, they often provide more in-depth dis-
cussions about the speci�c functionality and implementation of the respective safety
mechanism.

� Collaboration with industry may also lead to the identi�cation of safety mechanisms,
e.g., mechanisms that are originally intended to mitigate a speci�c hazard in a speci�c
application. These mechanisms may potentially be generalized to be applicable for
a broader range of applications and/or hazards.

The sources described above provide a variety of safety mechanisms. However, not all
of these are suitable for automatic code generation. Whether a given safety mechanism
may be automatically generated depends on the speci�c inner workings of that mechanism.
However, the characteristics described in the subheadings for actions 3 and 4 are a good
initial indicator whether a safety mechanism is suitable for code generation.

Action 2: Researching relevant information: The second step of the work�ow is to �nd
more information on the selected safety mechanism for which code generation should be
provided (cf. action 2 in Figure 5.3). This information is necessary to design a model
representation and a software architecture for the safety mechanism. Some examples for
relevant information concerning the automatic generation of the safety mechanism are
listed in the following:

� Existing model representations. For some safety mechanisms, there already exist
model representations in the literature. An example for this are the model repre-
sentations for voting mechanisms described in [25, 26, 268, 276]. However, existing
model representations often do not consider code generation and therefore have to
be modi�ed to be suitable for automatic code generation, e.g., [25, 26, 268, 276]. In
essence, existing model representations may serve as an inspiration for designing a
new model representation in action 3 of Figure 5.3.

� Existing design patterns and software architectures. Similar to existing model repre-
sentations, there may also exist design patterns and/or software architectures for the
selected safety mechanism. An example for this are the design patterns for graceful
degradation described in [226]. For automatic code generation, a key feature of the
software architecture is that it may be transparently added to an existing system
(cf. Section 5.4.2). In case an existing software architecture does not exhibit this
characteristic, it has to be modi�ed accordingly.

� Con�guration parameters of the safety mechanism. Many safety mechanisms may
be con�gured in some fashion. The model representation and software architecture
designed in actions 3 and 4 of Figure 5.3 have to re�ect the con�guration possibilities
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of the selected safety mechanism. This is especially important, as these con�gurations
do not only in�uence the safety of the system, but also the memory and/or runtime
overhead of the mechanism. An example for this is the M-out-of-N pattern, which
uses N replicas of data to detect errors. For this pattern, the parameters M and N
have to be con�gured.

� Variants of the safety mechanism. Some safety mechanisms are part of an abstract
group of safety mechanisms. While con�guration parameters are often simple key-
value pairs, variants of a safety mechanism express larger di�erences between the
variants. An example for a safety mechanism with variants is voting. This safety
mechanism may utilize di�erent voting strategies, e.g., majority voting, average vot-
ing or maximum likelihood voting. While the speci�c voting process di�ers between
these variants, the general principle, i.e., multiple data inputs which are compared to
estimate the ground truth, remains the same. The model representation and software
architecture, as well as the model transformation between the two, are often similar.
Thus, code generation approaches for safety mechanisms may often be designed for
a whole family of related safety mechanisms.

Action 3: Designing a model representation suitable for code generation: The third
step of the work�ow is to design a model representation for the selected safety mechanism
that is suitable for automatic code generation (cf. action 3 in Figure 5.3). This thesis uses
UML stereotypes for such model representations. The reasons for this are as follows:

� Modeling safety mechanisms as separate classes does not allow for the con�guration
of the mechanisms on a per-applied-element basis. This would require the use of
objects. However, including objects inside a UML class diagram may quickly blur
the line between class- and object-level for developers. Moreover, the Non-Functional
Property (NFP) safety would be represented with the same concepts as the functional
aspects of the application.

� Modeling safety mechanisms with UML comments provides the necessary con�gura-
tion capabilities on a per-element basis. However, UML comments are free-form text
that is not directly machine-readable. This requires elaborate parsing programs that
also have to implement their own form of type checking.

� UML o�ers a standardized way to extend the UML metamodel in the form of UML
stereotypes. This enables developers to assign new semantic meaning to UML ele-
ments, e.g., an attribute with a safety stereotype no longer represents a primitive
data type, but rather a value of a primitive data type that is also checked for errors
before each access. Stereotypes may be con�gured on a per-element basis via their
tagged values. Moreover, they provide type safety and are machine-readable via the
APIs of MDD tools or model transformation languages. Furthermore, their purpose,
assigning new semantic meaning to UML elements, aligns naturally with the purpose
of the model representation: to represent additional safety mechanisms that a UML
element is capable of. Thus, UML stereotypes are used for the model representation
of software-implemented safety mechanisms in this thesis.

When a UML stereotype is designed to represent a safety mechanism, two key aspects
need to be considered: 1) how to express con�guration possibilities and 2) to which model
element the stereotype should be applied. These two aspects are discussed in the following:

1) Simple con�guration parameters of the safety mechanism may be modeled with the
tagged values of the stereotype, i.e., key-value pairs. This applies to numeric data
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and simple strings that only change a single parameter in the code generation process.
Larger variations, e.g., because the safety mechanism has a number of variants, may
be expressed by using stereotype inheritance. A top-level stereotype may be used to
model the tagged values common to all variants of the safety mechanisms, while the
speci�c variants inherit from this top-level stereotype. While tagged values are used
for all safety mechanisms for which Section 5.5 provides a code generation approach,
examples for stereotype inheritance are provided in Sections 5.6, 5.7 and 5.8.

2) As a rule-of-thumb, the UML model element which represents the data that should
be protected is a good candidate to which the stereotype representing the safety
mechanism may be applied. For example, in case a variable inside the program should
be protected, the UML attribute that represents this variable is a good candidate to
which the UML stereotype may be applied. For some safety mechanisms, more than
one stereotype is required to model the safety mechanism. This is the case when the
safety mechanism expects multiple inputs, each of which containing con�guration
possibilities. As an example, consider a safety mechanism which protects a class A
that has association relationships to several other classes Bi. Each of those other
classes Bi provides input data to A. The safety mechanism may assign each input a
speci�c weight, which has to be modeled per input. In this case, two UML stereotypes
are necessary. One stereotype x that is applied to the class A, that models the input-
independent con�guration parameters of the safety mechanism. The other stereotype
y is applied to the association between A and each input Bi and models the input-
dependent con�guration parameters. Sections 5.7 and 5.9 present examples for the
use of multiple stereotypes to model a safety mechanism.

Action 4: Designing a software architecture suitable for code generation: The fourth
step of the work�ow is to design a software architecture for the selected safety mechanism
that is suitable for automatic code generation (cf. action 4 in Figure 5.3). The di�erence
between actions 3 and 4 is that action 3 models the safety mechanism with one or more
UML stereotypes. Action 4, in contrast, is more concerned with the code-level and how
the safety mechanism may actually be realized in source code. There are several aspects
that need to be taken into account for this, which are described in the following:

� Minimizing manual developer actions: In an optimal case, developers only have to ap-
ply the respective UML stereotype for a safety mechanism and con�gure the appropri-
ate tagged values. The actual generation of the safety mechanism is fully automatic,
i.e., no other developer actions are required for code generation. Sometimes, such a
fully-automated approach is not possible, due to inherent application-speci�c char-
acteristics of a safety mechanism. In these cases, the software architecture should al-
ready provide prede�ned insertion points, where developers may provide the required
application-speci�c code. This helps to minimize the number of manual developer
actions, which in turn improves productivity.

� Localized changes: The code generation process described in action 5 of Figure 5.3
changes the application model via model-to-model transformations. An arbitrary
change in the model may require additional, subsequent changes in the model, which
in turn may require further additional changes. For example, if the number of con-
structor parameters of a class A is changed, the entire application model has to be
scanned for invocations of this constructor and the additional parameters need to be
added to the constructor invocation. This might entail even more changes, as the
constructor parameters for A might have to be initialized by the instantiating class
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B. As such chains of changes quickly become di�cult to manage, it is important that
the changes to the application model are limited to a localized part of the application
model.

� Low overhead : Safety-critical systems often function as an embedded system, where
memory and runtime constraints are common. Therefore, the software architecture
should aim to minimize the memory and runtime overhead that is caused by the
safety mechanism.

� Adherence to programming standards in safety domains. The safety standard IEC
61508 [116] recommends the use of programming standards and language subsets
for the development of safety-critical systems. The software architecture for the
generated safety mechanism should conform to such standards. While some of these
restrictions may be applied after the initial design of the software architecture, some
restrictions in�uence the software architecture to a greater degree and have to be
considered from the very beginning. For example, the MISRA-C++ standard [162],
prohibits the use of dynamic heap memory allocation, which has consequences for
the software architecture.

Action 5: Designing model transformations for automatic code generation: The �fth
and last step of the work�ow for generating software-implemented safety mechanisms is
to design model transformations that transform the model representation of action 3 into
the software architecture designed in action 4 (cf. action 5 in Figure 5.3). In general,
these model transformations may be implemented directly as model-to-text transforma-
tions (variant A) or via model-to-model transformations that are subsequently followed by
model-to-text transformations (variant B)1. This thesis uses variant B, as variant A often
includes a substantial number of implicit model-to-model transformations before the actual
code generation is executed. In variant B, these implicit model-to-model transformations
are made explicit and the resulting intermediate model may be reviewed by developers for
debugging purposes. An example for such implicit model transformations is the addition
of classes that perform the actual behavior of the safety mechanism, e.g., as proposed in
Section 5.5. In variant B, these added classes are visible in the intermediate model, while
in variant A, these added classes only exist in the generated source code.
The model transformations for variant B consist of three main steps:

1. Parsing the application model with the UML stereotypes that represent the safety
mechanisms and temporarily storing this information.

2. Performing model-to-model transformations that modify existing model elements and
create new ones depending on the speci�c safety mechanisms used. The result is an
intermediate model.

3. Performing model-to-text transformations on the intermediate model that generate
the source code for the safety mechanisms and the rest of the model.

Steps 1 and 2 may be implemented in a general manner that allows for the inclusion
of new safety mechanisms in the generation process without having to modify the core
framework that takes care of the parsing process and executes the model-to-model trans-
formations. This is explained in detail in Section 5.10, which provides a prototype imple-
mentation of these concepts.

1The identi�ers A and B are used in a standalone fashion and do not refer to the usage types described

in Section 5.2.
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In the third step, model-to-text transformations create the actual source code from the
intermediate model. While these may be implemented manually, the use of appropriate
model-to-model transformations in the second step allows for the application of the default
model-to-text transformations provided by common MDD tools, e.g., IBM Rhapsody [205]
or Papyrus [60].

5.5 Model Representation and Code Generation for
Software-Implemented Safety Mechanisms

The main research challenge of this thesis is to develop an approach for the automatic,
model-driven code generation of safety mechanisms. This section presents the general
concepts on how this may be achieved for software-implemented safety mechanisms. The
design challenges for this are discussed in Section 5.4. The model representations uti-
lize UML pro�les. An overview of how these di�erent pro�les interact with each other
is given in Section 5.5.1. Alternative error handling strategies, in response to an error
detected by an automatically generated safety mechanism, are discussed in Section 5.5.2.
Section 5.5.3 provides a general proof-of-concept for solving the research gaps RG1 to RG3
(cf. Section 1.1.2) in the context of software-implemented safety mechanisms. For this,
Section 5.5.3 introduces a model representation and software architecture, as well a high-
level description of model transformations between them, which are further re�ned and
adapted for speci�c safety mechanisms in Sections 5.6 to 5.9.

5.5.1 Overview of the Model Representation

As described in Section 5.4, the automatic code generation approach presented in this
thesis relies on UML stereotypes for a model representation of safety mechanisms. UML
stereotypes may be organized in UML pro�les. This section presents an overview of how
the di�erent UML pro�les introduced in this thesis interact with each other. These re-
lationships are shown in Figure 5.5. The upper left of Figure 5.5 shows an example of a
UML model to which the stereotypes introduced in this thesis should be applied (package
name �ExampleProject�). The stereotypes may be utilized in the �ExampleProject� pack-
age by applying the �SafetyGen� pro�le (shown in the upper right of Figure 5.5). This
pro�le is a wrapper that contains other UML pro�les. These other pro�les each provide
a model representation for a speci�c safety mechanism. In Figure 5.5, these pro�les are
�AttributeCheck�, �Voting�, �TimingMonitoring� and �GracefulDegradation�, each of which
is imported by the �SafetyGen� pro�le. This enables developers to use all the stereotypes
imported by the �SafetyGen� pro�le within their project, instead of being required to apply
an individual pro�le for each safety mechanism they want to use. New safety mechanisms
may be added by importing their corresponding UML pro�le in the �SafetyGen� pro�le.
The �SafetyGen� pro�le itself does not introduce any new stereotypes besides those it
imports.

The pro�les that represent a speci�c safety mechanism (�AttributeCheck�, �Voting� and
�TimingMonitoring� and �GracefulDegradation� in Figure 5.5) import stereotypes from the
pro�le �SafetyGenBasic�. It contains stereotypes that are useful for a variety of safety mech-
anisms, which may be utilized in the pro�les that describe a speci�c safety mechanism, e.g.,
by using inheritance. The �SafetyGenBasic� pro�le is further described in Section 5.5.3.1.
The pro�les �AttributeCheck�, �Voting�, �TimingMonitoring� and �GracefulDegradation�
are described in Sections 5.6 to 5.9.
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Figure 5.5: Overview of the interaction between the UML pro�les for the automatic gen-
eration of safety mechanisms (adapted from [100]; notation UML 2.5 package
diagram).

5.5.2 Error Handling

Before the UML pro�les for speci�c safety mechanisms and the �SafetyGenBasic� pro�le
are discussed in Sections 5.5.3 to 5.9, this section presents some general observations on
error handling that a�ect each of those mechanisms. There are two types of software-
implemented safety mechanisms for which this thesis provides a code generation approach.
The �rst type of mechanism is capable of detecting errors within the system. The second
type is responsible for handling the errors that are detected by the �rst type of mechanism.
In this thesis, the term �error handling� is used as an umbrella term (hypernym) for all types
of approaches that may be executed in response to an error. This includes error correction,
error recovery and other types of behavior, e.g., fail-stop behavior. This thesis di�erentiates
three types of error handling, depending on the way they are generated: 1) error handling
that is executed by the error detection mechanism (EH1), 2) error handling executed by
separate safety mechanisms (EH2) and 3) manually-implemented error handling (EH3).
These are discussed in the following:

EH1: Error handling executed by the error detection mechanism. Some error detection
mechanisms contain built-in error handling mechanisms, e.g., correcting the mal-
formed bits with a CRC or using replicas of a protected variable. In case an error
detection mechanism detects an error, this type of error handling uses the built-in
mechanisms to handle the error.

EH2: Error handling executed by separate safety mechanisms. There are safety mechanisms
whose sole purpose is error handling, e.g., graceful degradation or rollbacks [116].
Similar to error detection mechanisms, these error handling mechanisms may also be
generated automatically. Section 5.9 presents such a code generation approach for
the error handling mechanism graceful degradation.
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Figure 5.6: Runtime behavior of the error handling process (adapted from [100]; notation
UML 2.5 activity diagram).

EH3: Manually-implemented error handling. In some cases, the code for error handling
may not be generated automatically, as it requires application-speci�c knowledge.
For example, in case a fail-stop behavior is desired, i.e., the application should stop
in case of an error, application-speci�c actions for safely shutting down the appli-
cation may be required. These actions may di�er from application to application
and thus may not be generated by a generic code generation process. However, it
is possible to automatically generate the infrastructure around the manually imple-
mented error handling. This way, developers only have to implement the actual error
handling actions, while the automatically generated code is responsible for executing
the error handling actions at the appropriate time. This thesis presents two alter-
natives where developers may specify their manual error handling actions. The �rst
type functions in a local scope, i.e., a manually-implemented operation inside the
class in which an error is detected. The second type functions at a global scope and
may, therefore, perform more error handling actions than the previously described
local error handling. This is realized via a global singleton class, whose details are
described in Section 5.5.3.2.

From a safety perspective, developers should be able to specify which type of error
handling is executed in response to an error. Thus, the model representation and automatic
code generation approach has to enable developers to achieve this. Nevertheless, the three
categories of error handling described above di�er in whether they are part of the error
detection mechanism (EH1) or whether they are standalone mechanisms (EH2 and EH3).
Thus, this thesis proposes an error handling sequence that re�ects this di�erence. Figure 5.6
shows a UML activity diagram of the automatically generated error handling process at
runtime. This process consists of two phases.
In case an error has been detected by an error detection mechanism, the detection

mechanism itself may be able to correct the error (EH1; cf. action 1 in Figure 5.6).
This type of error handling may fail, e.g., in case there are more bits corrupted than
may be restored by a CRC. In this case a second error handling process is executed,
which may either be a separate safety mechanism (EH2) or manually implemented error
handling actions (EH3) (cf. action 2 in Figure 5.6). If the error handling speci�c to the
detection mechanism succeeds in correcting the error, this second phase of error handling
is not executed and the normal control �ow of the application is resumed (action 3 in
Figure 5.6). In case the second type of error handling is executed, the normal control
�ow is also resumed afterwards. This implies that the second phase of error handling has
succeeded in restoring the system to a safe state. In the context of this thesis, developers
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Figure 5.7: The �SafetyGenBasic� pro�le, which provides the �ErrorDetector� stereotype
from which speci�c safety mechanisms that focus on error detection may inherit
(adapted from [100]; notation UML 2.5 pro�le diagram).

have to ensure that the system is in a safe state once the second phase of error handling
ends. This is necessary, as the normal control �ow is resumed afterwards (cf. action 3 of
Figure 5.6).
The term �normal control �ow� is used to refer to the control �ow of the application

that would exist if no safety mechanisms were present in the system. The convergence
to the normal control �ow is necessary for an automated approach to the model-to-model
transformations. A non-temporary deviation from the normal control �ow would require
additional, manual changes in the application model. These changes would be required in
order to account for the deviation in the application's behavior after the model transforma-
tions. Such a potentially large number of changes in the application model after the model
transformations would violate the recommendation for localized changes during automatic
code generation discussed in Section 5.4.2.
Developers may specify which type of error handling is executed in the second error

handling phase (cf. action 2 of Figure 5.6). This is con�gured via the appropriate tagged
values of the relevant UML stereotypes, which are presented in Section 5.5.3.1. The code
generation process shows developers a warning in case no error handling mechanism is
con�gured for the second phase.

5.5.3 Basics for the Model Representation and Code Generation of Safety
Mechanisms

This section presents the �SafetyGenBasic� pro�le, which introduces stereotypes that may
be utilized by other UML pro�les that model a speci�c safety mechanism (cf. Sec-
tion 5.5.3.1). The pro�le enables developers to specify di�erent types of error handling.
Section 5.5.3.2 introduces a software architecture that may be transparently added to an
existing application which executes the di�erent types of error handling. Section 5.5.3.3
focuses on how this software architecture may be automatically generated with the help of
the stereotypes introduced in the �SafetyGenBasic� pro�le.

5.5.3.1 Model Representation

This section presents a partial proof-of-concept for a UML pro�le that enables the model
representation of safety mechanisms with code generation in mind. The pro�le only con-
tains elements that are independent of speci�c safety mechanisms. The proof-of-concept
is continued in Sections 5.6 to 5.9, which inherit from certain elements in this pro�le to
provide UML pro�les describing speci�c safety mechanisms. Thus, this section partially
addresses research gap RG1 of this thesis (cf. Section 1.1.2).
Figure 5.7 shows the �SafetyGenBasic� pro�le, which provides a stereotype (�ErrorDe-

tector�) from which other stereotypes representing safety mechanisms may inherit. By
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de�ning this stereotype in its own pro�le, it may be imported into other pro�les. Thus,
the stereotype becomes reusable for a variety of safety mechanisms. Furthermore, in com-
bination with the enumeration ErrorHandlingType, which is shown in Figure 5.7, the
tagged values of the �ErrorDetector� stereotype enable developers to de�ne the error han-
dling process that is executed once a speci�c error detection mechanism has detected an
error.
The enumeration ErrorHandlingType enables developers to indicate which type of

error handling mechanism they want to use for a given error detection mechanism. The
enumeration values belong to two of the three types of error handling introduced in
Section 5.5.2, i.e., EH2 and EH3. The values Local and Global refer to two types
of manually-implemented error handling that both belong to EH3. The value Grace-
fulDegradation represents a dedicated error handling mechanism that may be auto-
matically generated and belongs to EH2.
The third type, error handling executed by the error detection mechanism (EH1), depends

on the speci�c error detection mechanism. Thus, the usage of this third type is con�gured
by the speci�c model representation for an error detection mechanism, e.g., as shown
in Sections 5.6 to 5.8, and not within the �SafetyGenBasic� pro�le. The values of the
ErrorHandlingType enumeration are:

� Local: This value indicates that the error should be handled locally, i.e., inside
the class A to which the error detection mechanism is applied. This is achieved
by calling a method from A which is manually implemented by developers. The
speci�c method to call is indicated by the tagged value �localErrorHandlingOp� in the
�ErrorDetector� stereotype. This value belongs to the error handling typeManually-
implemented error handling (EH3) described in Section 5.5.2.

� Global: This value indicates that the error should be handled by a global error
handling operation. This global error handling operation has to be implemented
manually by developers. However, the process of invoking that operation at the
appropriate time is generated automatically. The speci�c class that executes the
global error handling is speci�ed via the tagged valued �globalErrorHandlingClass�
inside the �ErrorDetector� stereotype. This value belongs to the error handling type
Manually-implemented error handling (EH3) described in Section 5.5.2.

� GracefulDegradation: This value indicates that the error should be handled by
graceful degradation, which is a separate safety mechanism focused solely on error
handling. The mechanism and its automatic generation are described in Section 5.9.
This value belongs to the error handling type Error handling executed by separate
safety mechanisms (EH2) described in Section 5.5.2.

As described above, the ErrorHandlingType enumeration only supports a single
safety mechanism that speci�cally focuses on error handling (GracefulDegradation).
Future work may introduce more safety mechanisms that belong to the error handling
type Error handling executed by separate safety mechanisms. In this case, these novel
safety mechanisms may be integrated in the existing model representation by adding a
corresponding enumeration value to ErrorHandlingType.
The stereotype �ErrorDetector�, shown in Figure 5.7, functions as an abstract top-level

stereotype from which other safety mechanisms that speci�cally focus on error detection
should inherit. While the speci�c method of error detection varies greatly between in-
dividual safety mechanisms, all have in common that they have to react to the error in
an appropriate fashion. By inheriting from the stereotype �ErrorDetector�, these speci�c

83



5 Software-Implemented Safety Mechanisms

error detection mechanisms are capable of specifying which types of error handling mech-
anisms should be executed once they detect an error. The tagged values of the stereotype
�ErrorDetector� enable developers to customize the error handling process. They are:

� �errorId�: This value enables developers to specify a unique id for the element which
this safety mechanism protects. This id enables developers to determine which ele-
ment is erroneous in case global error handling is used.

� �errorHandling�: This value enables developers to specify which type of error han-
dling should be executed in the second phase of error handling, i.e., the error handling
mechanisms that are independent of the speci�c error detection mechanism that has
detected the error. It may be one of the values from the enumeration ErrorHan-
dlingType.

� �localErrorHandlingOp�: This value enables developers to specify the name of an op-
eration that is contained in the class to which the safety mechanism is applied. In case
the Local enumeration value is speci�ed within the �errorHandling� tagged value,
the operation speci�ed by �localErrorHandlingOp� is invoked for error handling. If no
operation is assigned to this value, even though the tagged value �errorHandling� is
set to the Local enumeration value, a corresponding error message is shown to the
developers during automatic code generation. Furthermore, if �localErrorHandlin-
gOp� contains a value, while �errorHandling� is not set to Local, a corresponding
error message is shown to the developers during automatic code generation as well.

� �globalErrorHandlingClass�: This value enables developers to specify the name of a
globally accessible class, which provides error handling at a global level. In case the
Global enumeration value is speci�ed within the �errorHandling� tagged value, the
error handling of this globally accessible class is triggered in case the error detection
mechanism detects an error. The speci�ed class has to implement the ErrorHan-
dler interface (cf. Section 5.5.3.2), as a method from this interface is invoked to
execute the error handling process. If no class name is assigned to �globalErrorHan-
dlingClass�, even though the tagged value �errorHandling� is set to the Global
enumeration value, a corresponding error message is shown to the developers during
automatic code generation. Furthermore, if �globalErrorHandlingClass� contains a
value, while �errorHandling� is not set to Global, a corresponding error message is
shown to the developers during automatic code generation as well.

Figure 5.8 shows example con�gurations of the �ErrorDetector� stereotype to specify
each of the three error handling strategies provided by the ErrorHandlingType enu-
meration. Note that Figure 5.8 only serves as an example. As described above, the �Er-
rorDetector� stereotype is not intended to be applied directly to a model element. Instead,
stereotypes inheriting from �ErrorDetector� should be applied.

5.5.3.2 Software Architecture

Research gap RG2 of this thesis (cf. Section 1.1.2) is concerned with the de�nition of a
software architecture for safety mechanisms that is suitable for automatic code generation.
This section presents such an architecture in a partial proof-of-concept. Its aim is to
provide a guideline for the automatic code generation of error detection mechanisms, as
well as enabling the error handling process described in Section 5.5.2. For this purpose,
the software architecture re�ects many concepts for which Section 5.5.3.1 has introduced
a model representation. The proof-of-concept is continued in Sections 5.6 to 5.9, which
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Figure 5.8: Specifying di�erent error handling strategies via the �ErrorDetector� stereo-
type (notation UML 2.5 class diagram).

Figure 5.9: A proof-of-concept for a software architecture that shows how error detection
and error handling mechanisms may be transparently added to previously exist-
ing classes (adapted from [100]; notation UML 2.5 class diagram with blue text
color indicating placeholders and model elements whose names may be changed
by developers). In order to improve the legibility of the �gure, no �use� re-
lationships regarding the DetectionStatus enumeration are shown. This
enumeration is used as a method parameter by the classes/interfaces Protect-
edClass, ErrorDetector, ErrorHandler, GlobalErrorHandlerSin-
gleton and as a template parameter in LocalErrorHandler.
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extend the software architecture introduced in this section with safety mechanism speci�c
additions. A UML class diagram of the software architecture is shown in Figure 5.9, which
is explained in the following:

Error Detection: The class ProtectedClass in Figure 5.9 represents a class of the
application that should be protected by an error detection mechanism. Its name is only
a placeholder and may be chosen arbitrarily by developers. In order to generate the error
detection mechanism, a class representing the mechanism is added to ProtectedClass
(ConcreteErrorDetector in Figure 5.9). The use of a composition for this purpose
enables the addition of the error detection mechanism and its subsequent error handling
capabilities to ProtectedClass without interfering with the remainder of the class.
This way, the only changes required for existing methods in ProtectedClass are those
that deal with the issue of when the error detection check should be performed. As the
timing of this check depends on the speci�c error detection mechanism, this is discussed
in the respective sections that describe the automatic code generation of error detection
mechanisms, i.e., Sections 5.6 to 5.8. Figure 5.9 provides an abstract representation of
these speci�c error detection mechanisms (ConcreteErrorDetector), which has to be
replaced by the actual error detection mechanisms.

Error Handling: The class representing the error detection mechanisms, ConcreteEr-
rorDetector in Figure 5.9, contains a method for performing the error detection check,
as well as for performing error handling measures that may be executed directly by the
error detection mechanisms. These methods belong to the ErrorDetector interface,
which is realized by ConcreteErrorDetector. In order to enable the remaining error
handling types described in Section 5.5.2, ConcreteErrorDetector contains a com-
position relationship with a realization of the ErrorHandler interface. The speci�c
type that should be instantiated by ConreteErrorDetector is speci�ed via a template
parameter, TErrorHandler. At the programming level, this allows the declaration of
a ConcreteErrorDetector instance x inside ProtectedClass, while the template
parameter TErrorHandler determines which type of error handling x uses.
The di�erent error handling types in Figure 5.9 are each represented by a class that real-

izes the ErrorHandler interface. The LocalErrorHandler class contains a function
pointer (TLocalErrorHandling) to the operation in ProtectedClass which should
be executed in case of an error. The GlobalErrorHandler and GDErrorHandler
classes both defer error handling to a global singleton class, GlobalErrorHandlerS-
ingleton and Assessor, respectively. As both of these are error handling approaches
with a global scope, they are represented by globally accessible classes. The intermediary
classes GlobalErrorHandler and GDErrorHandler are required in order to provide a
uniform way in which the error handling type may be speci�ed (i.e., as a template param-
eter whose type is instantiated in ConcreteErrorDetector). Note that the class name
GlobalErrorHandlerSingleton is only a placeholder, the speci�c class name for this
error handling type is speci�ed via the TGlobal template parameter of the GlobalEr-
rorHandler class.
In order to provide the speci�ed error handling mechanism with information, the han-

dleError() operation in the ErrorHandler interfaces accepts two method parameters.
The �rst parameter represents a unique identi�er which informs the error handler in which
class the error occurred. The second method parameter is of type DetectionStatus
that indicates which type of check failed for the protected class. This enables a more �ne
grained error handling in case a class is protected by several error detection mechanisms.
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In reference to Section 5.5.2, which introduces three error handling strategies, the method
handleErrorByMechanism() in the class ErrorDetector realizes error handling
strategy EH1, i.e., error handling executed by the error detection mechanism. An example
for strategy EH2 is realized by the class GDErrorHandler, i.e., error handling executed
by a separate safety mechanism. This safety mechanism is graceful degradation. The
strategy EH3 is realized by the classes GlobalErrorHandler and LocalErrorHan-
dler, which respectively provide manually implemented error handling in a global or local
manner.

Integrating new safety mechanisms: With the previously described software architec-
ture, new error detection mechanisms may be added by creating a class for this mechanism
that realizes the ErrorDetector interface (cf. Sections 5.6, 5.7 and 5.8 for examples).
A new error handling approach may be integrated by creating a class that realizes the
ErrorHandler interface (cf. Section 5.9 for an example of how this is realized for grace-
ful degradation). Mechanism-speci�c error handling strategies may be added by providing
an appropriate implementation of handleErrorByMechanism() when the speci�c er-
ror detection mechanism is implemented. Application-speci�c error handling may either
be implemented in a local scope (localErrorHandling() in ProtectedClass) or a
global scope (via GlobalErrorHandler). For this type of manually implemented error
handling, the respective classes may be generated automatically, while the body of the
error handling methods has to be implemented manually.

5.5.3.3 Model Transformations

Research gap RG3 (cf. Section 1.1.2) is concerned with model transformations that actu-
ally realize safety mechanisms in the application based on a prior model representation.
Section 5.5.3.1 provides UML stereotypes that may be used as the basis for modeling
safety mechanisms for automatic code generation. Section 5.5.3.2 describes a software
architecture that enables the automatic addition of such safety mechanisms to existing
source code. This section provides a proof-of-concept for how the software architecture
from Section 5.5.3.2 may be automatically generated from the model representation in
Section 5.5.3.1.
As Sections 5.5.3.1 and 5.5.3.2 only provide partial proofs-of-concept, which focus on

safety-relevant information that is independent of a speci�c safety mechanism, the model
transformations described in this section serve a similar role, i.e., they need to be adapted in
the context of the generation of speci�c safety mechanisms, e.g., as presented in Sections 5.6
to 5.9. The relationship between these sections is illustrated in Figure 5.10.
At the start of the model transformations, the entire application model is parsed. Each

model element is checked whether a stereotype from the �SafetyGen� pro�le (cf. Sec-
tion 5.5.3.1) is applied to it. If this is the case, it is further checked whether this stereo-
type inherits from the �ErrorDetector� stereotype. This enables the inclusion of other
stereotypes in the �SafetyGen� pro�le that support, but do not trigger the model transfor-
mations. For each stereotype where both of the above conditions are ful�lled, the following
model transformations are executed:

� A class that represents the safety mechanism modeled by the stereotype is added to
the model (cf. ConcreteErrorDetector in Figure 5.9).

� One or more classes that represent the error handler that is used by the safety mech-
anism are added to the model (cf. ErrorHandler and its interface realizations

87



5 Software-Implemented Safety Mechanisms

Figure 5.10: Relationship between the sections that focus on providing a code generation
approach for safety mechanisms. Rectangles represent sections, while the dot-
ted arrows refer to the work�ow between the development artifacts presented
in each section. The solid arrows indicate the relationship between the sec-
tions from the perspective of the reader, i.e., Sections 5.5.3.1 to 5.5.3.3 being
used as a blueprint for Sections 5.6 to 5.9.

in Figure 5.9). In case the speci�ed error handler is a standalone safety mecha-
nism that also may be generated automatically, e.g., graceful degradation, the model
transformations for this safety mechanism are also executed.

� An instance of the created ConcreteErrorDetector class is added to the pro-
tected class, i.e. ProtectedClass in Figure 5.9. In case the model element to
which the safety stereotype is applied is not a class, e.g., in case it is applied to
an attribute, the instance of ConcreteErrorDetector is added to the class that
contains this model element, e.g., the class that contains the attribute. Concre-
teErrorDetector uses template parameters to re�ect the con�guration options
of the tagged values of the safety stereotypes. Thus, these template parameters also
have to be set accordingly.

� Dependencies for the added classes have to be added to the protected class, e.g., a
dependency from ProtectedClass to ConcreteErrorDetector.

� Depending on the speci�c safety mechanism to be generated, one or more methods
of the protected class have to be modi�ed to execute the error detection check at
appropriate times by invoking the check() method of the ConcreteErrorDe-
tector instance. The term �appropriate times� is mechanism-speci�c. It is de�ned
more accurately in Sections 5.6 to 5.9 which describe the generation of speci�c safety
mechanisms.

Note that for all additions to the model, it is necessary to check whether the model
element that should be added already exists within the model. In this case, the generated
model element is only added once.
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5.6 Code Generation for the Safety Mechanism: Error
Detection for Attributes

This section provides a proof-of-concept approach for the automatic code generation of er-
ror detection mechanisms that monitor attributes in some way. Thus, this section addresses
research gaps RG1 to RG3 (cf. Section 1.1.2) for a group of related safety mechanisms.
From a technical perspective, the values of non-constant attributes are stored in Random

Access Memory (RAM). RAM is susceptible to radiation-induced soft errors. Therefore,
the safety standard IEC 61508 [116] recommends some form of memory protection for
the RAM. This section presents a software-based approach for the memory protection of
attributes. Related approaches are described in Section 2.2.3.3, while background on the
employed techniques is described in Section 2.1.5. Besides memory protection, attributes
are also used to store and retrieve data, e.g., representing values measured by a sensor.
These values may be used to infer whether the corresponding sensor still functions correctly,
e.g., by checking whether the value of the attribute is within the measurement range of
the sensor, or whether the value is updated with the speci�ed frequency. These checks
in the value and time domain belong to the category of �fault detection� in terms of IEC
61508. This section presents an approach for the automatic generation of such checks. It
utilizes the same technical realization as the software-based memory protection approach
mentioned above. The design challenges for such a code generation approach are discussed
in the previous Section 5.4.
Section 5.6.1 focuses on a suitable model representation for the automatic code gen-

eration of the aforementioned checks. This addresses research gap RG1 in the context
of attribute monitoring error detection mechanisms. Section 5.6.2 introduces a software
architecture for these checks, which may be integrated automatically with an existing
software architecture. This addresses research gap RG2 in the context of attribute moni-
toring error detection mechanisms. Research gap RG3 is addressed in the same context by
Section 5.6.3, which describes the model transformations that enable the automatic gener-
ation of the software architecture presented in Section 5.6.2 from the model representation
described in Section 5.6.1.
Initial ideas towards this approach have been published in [99, 101, 103]. This sec-

tion re�nes these ideas and integrates them within the general architecture described in
Section 5.5.3.

5.6.1 Model Representation

This section presents a model representation that enables the automatic code generation
of error detection for attributes. Thus, it provides a proof-of-concept for how to address
research gap RG1 of this thesis for this particular group of safety mechanisms (cf. Sec-
tion 1.1.2). The model representation is a UML pro�le, which is shown in Figure 5.11.
The pro�le is named �AttributeCheck�. Its general structure is described in Section 5.6.1.1.
Section 5.6.1.2 provides a more detailed description of this pro�le and explains the tagged
values of each stereotype.

5.6.1.1 Structure of the Pro�le

This section provides an overview of the general structure of the �AttributeCheck� pro�le
introduced in Figure 5.11. At the center of the pro�le is the stereotype �AttributeCheck�,
which may be applied to the metaclass �Property�. As described in Section 2.1.1.1, UML
attributes are properties, i.e., the stereotype �AttributeCheck� may be applied to at-
tributes. Furthermore, the stereotype is meant to be applied to attributes only instead of
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Figure 5.11: The �AttributeCheck� pro�le, which provides a model representation for
the automatic code generation of error detection mechanisms for attributes
(adapted from [103]; notation UML 2.5 pro�le diagram). The �ErrorDetec-
tor� stereotype has been initially introduced in Section 5.5.3.1.

other properties. However, UML pro�le diagrams o�er no modeling concepts to re�ect this
constraint, as attributes, i.e., member variables inside classes, are technically identical to
other properties in the UML standard.

The �AttributeCheck� stereotype inherits from the �ErrorDetector� stereotype, which
has been previously introduced in the �SafetyGenBasic� pro�le described in Section 5.5.3.1.
This inheritance provides the �AttributeCheck� stereotype with tagged values to con�g-
ure the error handling process in case an error for the attribute has been detected (cf.
Section 5.5.3.1 for the con�guration possibilities).

The �AttributeCheck� stereotype is an abstract stereotype that is not directly applied
to attributes. Instead, multiple stereotypes inherit from �AttributeCheck�, i.e., �CRC-
Check�, �MNCheck�, �RangeCheck� and �UpdateCheck� in Figure 5.11. The stereotypes
that inherit from �AttributeCheck� each represent a concrete type of error detection that
is applicable to attributes. In the scope of this thesis, it is these stereotypes that should
be applied to an attribute.

The tagged values of the �AttributeCheck� stereotype represent information that is
common among all the error detection mechanisms that inherit from �AttributeCheck�.
This not only eliminates redundancy in the pro�le, but is also bene�cial when multiple
stereotypes from the pro�le are applied to the same attribute. For an example, consider
an M-out-of-N-check with M = 2 and N = 3, i.e., triple modular redundancy. Further-
more, consider a numeric range check that employs a replica of the protected attribute for
error correction purposes. If both of these checks were to be represented by independent
stereotypes, i.e., not inheriting from the same stereotype, one of them would specify the
use of two replicas, while the other speci�es only a single replica. In this situation it is
unclear whether both checks receive independent replicas, thereby increasing the memory
overhead, or whether the higher number encapsulates the lower number of replicas. These
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issues may be avoided by including a tagged value for the number of replicas inside a par-
ent stereotype, i.e., �AttributeCheck� in Figure 5.11. This way, the number of replicas is
only speci�ed once per attribute, as the tagged value only exists once for the respective
attribute.

5.6.1.2 Tagged Values

This section provides a more detailed description of the �AttributeCheck� pro�le shown
in Figure 5.11. As described in Section 5.6.1.1, the �AttributeCheck� stereotype contains
tagged values that are common among all speci�c error detection mechanisms. This in-
cludes the number of replicas of the protected variable (�nrReplicas�), as well as the number
of replicas that have to agree with each other in case of mechanism-speci�c error handling
(�restoreThreshold�). In order to detect stuck-at errors, the replicas may be stored with
inverted bits (�inverted�) [53]. Furthermore, the tagged values include the timing of the
check, i.e., whether the attribute is checked periodically (�checkPeriodic� and �periodicIn-
terval�) or on access (�checkOnAccess�). For mechanism-speci�c error handling, a safe
default value (�safeDefaultValue�) may be speci�ed.
The speci�c error detection mechanisms modeled in the �AttributeCheck� pro�le are

�CRCCheck�, �MNCheck�, �RangeCheck� and �UpdateCheck�, whose tagged values are
described in the following. The underlying concepts of each type of check are described in
Section 2.1.5.

� �CRCCheck�, which uses a CRC checksum for the protected attribute. A stored
checksum may be compared to the current checksum of the protected attribute in
order to detect errors, e.g., spontaneous bit �ips caused by environmental circum-
stances [19]. The tagged values de�ne the number of checksums (�nrChecksums�),
as well as the number of these checksums that have to agree with each other for
the check to be passed (�votingThreshold�). The remaining values indicate the num-
ber of bits of the checksum (�nrBits�), as well as whether the implementation type
should use a lookup table to optimize runtime by incurring a higher memory overhead
(�useLookupTable�). In this thesis, the �CRCCheck� stereotype is representative for
all types of checks that employ error detecting codes. For example, IEC 61508 [116]
also recommends Hamming codes [88] besides CRCs. As the concept of including
error detecting codes in the approach presented in this thesis is similar for di�erent
codes, only a CRC is shown in this thesis.

� �MNCheck�, which represents an M-out-of-N type of check, e.g., triple modular re-
dundancy. The tagged value �nrAgreements� indicates the value of theM parameter,
i.e., how many versions have to agree with each other for the check to be passed. The
number of versions, i.e., the N parameter, is modeled by the �nrReplicas� parameter
which �MNCheck� inherits.

� �RangeCheck�, which represents a numeric range check by indicating a numeric lower
(�lowerBound�) and upper (�upperBound�) bound for the protected attribute. In case
a numeric attribute is larger than the upper bound or lower than the lower bound,
an error is detected. The �RangeCheck� stereotype is an example for the category
of sanity checking mechanisms described in Section 2.1.5.

� �UpdateCheck�, which de�nes a duration t. When the attribute is checked, the
attribute has to be updated within the previous t, else the check fails. For example,
for t = 500ms, the variable has to be updated within the previous 500ms before
the attribute is checked. This type of check may be used to detect that the module
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responsible for updating the protected variable is still operational. Similar to the
�RangeCheck� stereotype, this mechanism is an example for sanity checking.

New types of error detection for attributes may be added to the pro�le by constructing
an appropriate stereotype that inherits from the �AttributeCheck� stereotype.

5.6.2 Software Architecture

While Section 5.6.1 presents a model representation suitable for the automatic generation
of error detection mechanisms for attributes, this section presents a software architecture
that may be automatically generated from this model representation. Thus, it provides
a proof-of-concept for how to address research gap RG2 of this thesis for this particular
group of safety mechanisms (cf. Section 1.1.2).
The general idea of the software architecture is to provide a wrapper class for the at-

tribute that should be protected. Whenever the attribute is accessed, error detection checks
are automatically performed by the wrapper class. Section 5.6.2.1 shows how this concept
may be integrated into the overall software architecture for generating safety mechanisms
described in Section 5.5.3.2. Section 5.6.2.2 discusses mechanism-speci�c error handling
for this safety mechanism and Section 5.6.2.3 provides information about the behavior at
runtime.

5.6.2.1 General Architecture

This section discusses how the error detection for attributes via wrapper classes may be
integrated into the overall software architecture for generating safety mechanisms described
in Section 5.5.3.2. Figure 5.12 shows a UML class diagram of this architecture. It assumes
that the attribute x, which should be protected, resides in the class EnclosingClass.
The name EnclosingClass is only a placeholder and may be chosen arbitrarily by
developers. EnclosingClass does not contain the primitive member variable x directly,
but instead contains an instance of the wrapper class ProtectedAttribute. Whenever
the corresponding getter and setter methods for x are invoked in EnclosingClass,
these calls are deferred to the ProtectedAttribute instance and its getProtected()
and setProtected() methods. Respectively, these two methods are responsible for
performing the error detection check and updating mechanism-speci�c information. The
runtime behavior of the wrapper class is further discussed in Section 5.6.2.3.
The error detection performed by ProtectedAttribute is executed by one or more in-

stances of the AttributeCheck interface. The speci�c realizations of AttributeCheck
that should be executed are speci�ed via template parameters in the declaration of the
ProtectedAttribute instance (TFirstAC). It is also possible to include multiple types
of checks for the same attribute, e.g., a numeric range check for sanity checking and a CRC
for memory protection. For this reason, there exist multiple versions of the class Pro-
tectedAttribute. They contain additional template parameters (e.g., a TSecondAC
and TThirdAC template parameter) and a corresponding number of AttributeCheck
instances.
The use of template parameters to con�gure the checks executed by ProtectedAt-

tribute provides the advantage that new checks may be introduced by providing a
corresponding realization of the AttributeCheck interface without having to modify
the class ProtectedAttribute. As part of this thesis, four realizations of the At-
tributeCheck are provided (CRCCheck, RangeCheck, UpdateCheck and MNCheck).
These realizations correspond to the safety mechanisms and their stereotypes described in
Section 5.6.1.2.
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Figure 5.12: Software architecture for the error detection of attributes that may be au-
tomatically generated (adapted from [103]; notation UML 2.5 class diagram
with blue text color indicating placeholders and model elements whose names
may be changed by developers).

In general, the con�guration values of the error detection mechanisms in the software
architecture re�ect the tagged values of the respective UML stereotypes described in Sec-
tion 5.6.1. As described in Section 5.6.1, multiple error detection mechanisms may share
some con�guration parameters, e.g., the number of replicas for error correction, or an id
for error identi�cation. In order to avoid unnecessary memory overhead by duplicating
these values for each check, the relevant con�guration values are stored inside Protecte-
dAttribute. These include an error identi�er (errId), the number and usage of repli-
cas (replicas, TNrReplicas and TRestoreThreshold), the type of the protected
attribute (TVar) and information on error handling (TDefaultValue, TProtected-
Class and TErrorHandler). The con�guration values that are speci�c to each error
detection mechanism are template parameters of the speci�c mechanism, e.g., the lower
and upper bound of a numeric range check (TLowerBound and TUpperBound of class
RangeCheck in Figure 5.12).
These con�guration values are speci�ed as template parameters, as this enables their

con�guration when they are declared as part of the ProtectedAttribute instance dec-
laration. Mechanism-speci�c constructors for these checks are no viable alternative for this
con�guration, as the implementation of ProtectedAttribute has no knowledge of the
speci�c realizations of the AttributeCheck interface it contains. Thus, ProtectedAt-
tribute can only invoke constructors or methods with a standardized set of parameters
that are applicable to each check.
The protection of attributes adheres to the general software architecture for error de-

tection previously described in Section 5.5.3.2. The class ProtectedAttribute real-
izes the ErrorDetector interface and contains an instance of a speci�c error handler
(ErrorHandler in Figure 5.12) that is used for error handling. The realizations of the
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ErrorHandler interface are not shown in Figure 5.12. They may be seen in Figure 5.9,
which is introduced in the previous Section 5.5.3.2.

5.6.2.2 Mechanism-speci�c Error Handling

This section describes the mechanism-speci�c error handling process for the safety mech-
anism error detection for attributes (cf. error handling strategy EH1 in Section 5.5.2).
There exist two mechanism-speci�c error handling strategies for this safety mechanism:

1. Correcting the error with replicas: In case ProtectedAttribute (cf. Figure 5.12)
includes any replicas, a voting process between all versions of the attribute may
be conducted. If at least TRestoreThreshold versions agree with each other, the
value of the protected attribute may be restored to the value upon which the versions
agree.

2. Using a safe default value: For some applications there may exist a safe default value
for an attribute. In case of an error, the value of the attribute may be set to this
default value. As an example, consider a stationary machine in a manufacturing
process. The machine may have some part that is moving, e.g., an edge to cut
packaging material. The target movement speed for this edge may be represented
as an attribute within the control program of the machine. A safe default value for
this attribute is a target movement speed of zero, i.e., the edge stops its movement,
thereby no longer posing a threat to any operators in the vicinity.

Both mechanism-speci�c error handling strategies may be deactivated by leaving the
respective value of the tagged value empty. In case both strategies are active, error correc-
tion via replicas is executed before a safe default value is used. If these mechanism-speci�c
error handling approaches are unable to correct the error, external error handling is used
(cf. Section 5.5.2).

5.6.2.3 Timing of Checks

This section discusses the runtime behavior of the safety mechanism error detection for
attributes. The novelties in this section are mainly an integration of the error handling
process in the runtime behavior. The error handling is a novel contribution of this thesis.
Furthermore, it provides additional information on the required modi�cations for periodic
checks to avoid synchronization issues.
The runtime behavior of the safety mechanism error detection for attributes depends

on the timing when the error detection checks are performed. Previous research has
identi�ed two alternatives for the timing of the error detection checks. One approach
is periodic [245], while the other approach performs its checks before every access of the
protected variable [30]. Both strategies o�er a trade-o� between runtime overhead and
safety. Checking before every access of the protected variable incurs a runtime overhead
of the check each time the variable is accessed. However, it also provides only a very brief
time window in which an undetected error may occur, i.e., the brief time between the check
and the actual usage of the variable. While this approach o�ers a high degree of safety, the
runtime overhead may be too large if the variable is accessed frequently. For frequently
accessed variables, a periodic check may be more suitable. In such an approach, the run-
time overhead is only incurred in certain, periodic intervals. However, the time window for
an undetected error increases with the length of the check interval. There is another use
case for periodic checks in case the protected variable is accessed very infrequently. Some
error correction approaches, such as CRCs, may only correct errors for a certain number
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Figure 5.13: UML 2.5 sequence diagram for updating the protected variable.

of erroneous bits. A periodic error detection check for infrequently accessed variables may
detect errors before the number of erroneous bits becomes too large for error correction.
The choice between the two timing alternatives depends on the requirements of the spe-
ci�c application. The realization of both alternatives, as part of the software architecture
described in Section 5.6.2.1, is discussed in the following two subheadings:

Performing error detection before every access: This subheading describes an approach
for performing error detection before every access of the protected variable. It employs the
getter and setter of a wrapper class for performing the checks as introduced in Listing 5.2.
The important challenge here is the transparent modi�cation of the getter and setter, i.e.,
that the control �ow of the program ultimately operates like in the case of conventional
getters and setters. The approach employs the software architecture shown in Figure 5.12,
i.e., it uses the class ProtectedAttribute as a wrapper class which contains one or
more instances of the AttributeCheck interface for error detection.
The control �ow for updating the protected variable is shown in Figure 5.13. The class

EnclosingClass contains a variable with the name example, which should be set to
the value val by the class ExampleClass. As described previously, the call to the setter
of the protected variable is delegated to the setter of the wrapper class, i.e., setEx-
ample(val) calls setProtected(val) inside ProtectedAttribute. There, each
instance of the AttributeCheck interface is called to update its own internal redundancy
mechanisms. For example, a CRC-based checksum mechanism may calculate a new check-
sum based on the new value of val. Afterwards, the value of the protected variable inside
the wrapper class, as well as any replicas, are updated. Then, the control �ow returns to
the originator of the setter call, ExampleClass. This is the same as for a conventional
setter. Thus, the update process behaves transparently, i.e, the control �ow resumes like
a conventional setter.
Figure 5.14 shows the control �ow for accessing the protected variable. This time, the

ExampleClass instance calls the respective getter operation in the EnclosingClass
class. As described previously, the call to the getter of the protected variable (val) is dele-
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Figure 5.14: UML 2.5 sequence diagram for accessing the protected variable.

gated to the getter of the wrapper class (getProtected() in ProtectedAttribute).
This getter calls the error detection checks of each AttributeCheck instance contained
in the wrapper class. These return one of several possible enumeration values, indicat-
ing whether the check is successful, or which check failed (cf. Figure 5.9 for the possible
enumeration values). After every AttributeCheck instance in the wrapper class has
returned, the results are checked. If one or more checks failed, automatic error correction
approaches are employed via the respective ErrorHandler instance (cf. Section 5.5.2).
After error correction, or in case all checks were successful, the value of the protected
variable is returned. As the value is returned in all cases, the check is executed transpar-
ently and the modi�ed getter behaves like a conventional getter from the perspective of
the developer.

Performing error detection periodically: In order to periodically check the protected
attribute for errors, the process for modifying the protected attribute is the same as in the
previous subheading. Accessing the protected variable, on the other hand, now operates
like a conventional getter, without any error detection checks. Instead, a periodic error
detection check is executed by a separate timer task, which may be invoked during ini-
tialization of the wrapper class (i.e., ProtectedAttribute in Figure 5.12). This task
periodically executes the check() operation of each AttributeCheck instance in the
wrapper class, thus performing error detection. If at least one check fails, error handling
is performed.
In order to avoid synchronization issues, a mutex lock for the update() and check()

methods in every AttributeCheck interface realization is required. Both methods obtain
this lock upon method entry, and release it once their method body has reached its end.
For example, without a mutex lock a CRC checksum may be updated by the main task,
while the timer task performs the error detection check concurrently. In such a case, the
CRC checksum may already be updated, while the value of the protected variable has not
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been updated yet. Such a situation would lead to the detection of an error where none is
present.
The process of automatically adding a timer task that executes the check() method

is similar to the process of adding such a timer task for timing constraint monitoring. In
order to avoid redundancy, this process is only described in Section 5.8, which discusses
the automatic code generation of timing constraint monitoring.

5.6.3 Model Transformations

This section describes model transformations that automatically generate the software
architecture presented in Section 5.6.2 from the model representation presented in Sec-
tion 5.6.1. Thus, this section provides a proof-of-concept for how to address research
gap RG3 of this thesis for those safety mechanisms that focus on the error detection for
attributes (cf. Section 1.1.2). Section 5.6.3.1 discusses the general concept of the transfor-
mations, while Section 5.6.3.2 presents an example transformation.

5.6.3.1 General Concept

This section describes the general concept of the model transformations. The input of
these transformations is a UML class diagram which contains one or more attributes, to
which a stereotype from the UML pro�le shown in Figure 5.11 is applied, i.e., a stereotype
inheriting from the �AttributeCheck� stereotype. Figure 5.15 shows the model-to-model
transformations that are applied to each such attribute. The output of these transforma-
tions is an intermediate UML class diagram in which the error detection mechanisms are
realized as part of wrapper classes. Then, automatic code generation engines from common
MDD tools, e.g., [60, 205], may be employed to generate the corresponding source code.
Section 5.6.3.2 shows an example for the source code generated by these transformations.
The individual actions of Figure 5.15 are described in the following:

� Action 1 : At the beginning of the model transformations, the tagged values of the
stereotype that are applied to the attribute (var) are parsed and the information is
stored temporarily.

� Action 2 : After parsing the stereotype information, a getter and setter with default
method declaration for the respective attribute is created in the class in which the
attribute resides (EnclosingClass).

� Action 3 : Besides adding getters and setters, it is also necessary to include the
dependencies (include statements) to the utilized classes, such as to the wrapper
class (cf. class ProtectedAttribute in Figure 5.12). Furthermore, Enclosing-
Class must contain a constructor for initializing the value of the protected variable
inside the instance of the wrapper class. As a stereotype from the �AttributeCheck�
pro�le may be applied to multiple attributes inside the same class, this action is only
performed in case the required dependencies or the constructor do not exist yet.

� Action 4 : In this step, the stereotyped attribute is deleted from EnclosingClass.
The information from the tagged values of the stereotype is still accessible due to
action 1.

� Action 5 : An instance of the wrapper class is added to EnclosingClass, with the
same name as the attribute that is deleted in action 4. The template parameters
of the instance declaration may be inferred from the tagged values of the stereotype
stored in action 1. For example, the template parameter for the required number of
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Figure 5.15: Model transformations for replacing an attribute with a wrapper class that
performs error detection checks on that attribute (notation UML 2.5 activity
diagram).

replicas in ProtectedAttribute has the same value as the tagged value �nrRepli-
cas� in the �AttributeCheck� stereotype. Furthermore, for each stereotype from the
�AttributeCheck� pro�le applied to the variable in question, a corresponding template
parameter is passed to ProtectedAttribute.

� Action 6 : The constructor of EnclosingClass is updated to initialize the created
ProtectedAttribute instance. The initial value of the protected variable is set,
as well as the error identi�er.

� Action 7 : The opaque behavior of the getter and setter created in action 2 is modi-
�ed to return the results of getProtected() and setProtected() of the Pro-
tectedAttribute instance created in action 5 respectively.

In order to achieve transparent model transformations for the replacement of the original
protected variable with the wrapper class, the wrapper class contains a getter and a setter
by which the protected variable may be accessed or updated. In general, replacing a vari-
able var with a class requires changes to the enclosing class. For example, statements that
reference the variable directly, such as �int x = var++�, may no longer be employed,
as var is now a class instance instead of a primitive data type. In order to still achieve
transparent model transformations, the approach presented in this thesis makes use of the
widespread information encapsulation principle promoted by object-oriented programming
methods [30]. This principle advocates the use of speci�c getter and setter methods to ac-
cess a variable inside a class. In case this principle is adhered to in the whole program,
i.e., any references to the protected variable are made via the respective getter or setter
of the enclosing class, transparent model transformations may be achieved by calling the
getter or setter of the wrapper class inside the getter or setter of the enclosing class, respec-
tively. An alternative solution could replace statements that reference variables directly
with equivalent getter and setter method calls as part of the model transformations.
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Figure 5.16: Simpli�ed example for the concept of transparently generating error detection
mechanisms via MDD (adapted from [103]). Each of the sub�gures is in
UML 2.5 class diagram notation, while the arrows between them indicate
transformation steps. Blue text color indicates names that may be changed
by developers.

5.6.3.2 Example Model Transformations

This section presents an example for the model transformations described in Section 5.6.3.1.
Figure 5.16 shows how an attribute marked with one of the stereotypes of the �Attribute-
Check� pro�le may be transformed into an error detection mechanism.
In Figure 5.16(a), a class representing a CO sensor is shown. It contains an attribute

(currentCO) that represents the CO level measured by the sensor during the last mea-
surement. The class also contains a setter and a getter for this attribute. In Figure 5.16(b),
a developer applies the �RangeCheck� stereotype to the currentCO attribute to detect
when the hardware sensor returns values outside its speci�cation range. The stereotype
may either be applied manually or automatically using the structured safety requirements
presented in Chapter 4.
The speci�ed range check is generated automatically by replacing the currentCO at-

tribute with an instance of the wrapper class ProtectedAttribute. This is shown in
Figure 5.16 (c). The wrapper class ProtectedAttribute contains an integer (pro-
tectedVar), which represents the value of the previous currentCO variable. The type
of protectedVar is given by a template parameter to enable its usage for di�erent data
types. The speci�c error detection checks may now be performed by ProtectedClass
on protectedVar. The type of error detection check performed is given via a template
parameter (TFirstAC).

1 class COSensor{
2 private:
3 int currentCO;
4 public:
5 int getCO(){return currentCO;}
6 void setCO(int x){currentCO = x;}
7 }

Listing 5.1: Enclosing class before replacement (implementation for Figure 5.16(a)).
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1 //Include Dependencies: Action 3
2 #include "ProtectedAttribute.h"
3 #include "RangeCheck.h"
4 class COSensor{
5 private:
6 //Delete original attribute: Action 3. Add wrapper instance: Action 5
7 ProtectedAttribute<int, RangeCheck> currentCO;
8 public:
9 //Update constructor of enclosing class: Actions 3 and 6
10 ProtectedAttribute() : currentCO(this, 9, "COSensor"){}
11 //Update Getter and Setter: Actions 2 and 7
12 int getCO(){return currentCO.getProtected();}
13 void setCO(int x){currentCO.setProtected(x);}
14 }

Listing 5.2: Enclosing class after replacement (implementation for Figure 5.16(c)). For
simplicity, some template parameters of ProtectedAttribute have been
omitted. The actions referenced in the comments refer to the model transfor-
mation actions shown in Figure 5.15.

Listings 5.1 and 5.2 show the generated code for the COSensor example. The primitive
currentCO variable in line 3 of Listing 5.1 has been replaced by an instance of a wrapper
class (ProtectedAttribute) in line 7 of Listing 5.2. Lines 12 to 13 of Listing 5.2 show
how transparency is achieved. Instead of updating or accessing currentCO directly, as in
lines 5 to 6 of Listing 5.1, the variable is only accessed via the respective getter and setter
of the wrapper class. The template parameters shown in Listing 5.2 determine the type of
the protected variable inside the wrapper class, as well as the type of the employed error
detection check (RangeCheck). For legibility purposes, the other template parameters
of ProtectedAttribute and RangeCheck shown in Figure 5.12 are omitted from the
listing.

5.7 Code Generation for the Safety Mechanism: Voting

This section provides a proof-of-concept approach for the automatic code generation of
software-implemented voting mechanisms. Thus, this section addresses research gaps RG1
to RG3 (cf. Section 1.1.2) for a speci�c category of safety mechanisms. The safety standard
IEC 61508 [116] recommends the concept of redundancy for many system elements, e.g.,
heterogeneous redundancy among sensors. The outputs of these redundant elements have
to be compared to each other and the system has to decide which of these values it assumes
to be correct. Then, the system may proceed with its operation based on this value.
Background on voting mechanisms is described in Section 2.1.5.4, while Section 2.2.3.4
presents related work on voting mechanisms. The design challenges for the development
of a code generation approach are discussed previously in Section 5.4.
An initial version of the approach described in this section has been published in [102].

It is modi�ed in this section to integrate it with the general architecture described in
Section 5.5.3.

5.7.1 Model Representation

This section presents a model representation for voting mechanisms that facilitates auto-
matic code generation. Thus, it provides a proof-of-concept for how to address research
gap RG1 in the context of voting mechanisms (cf. Section 1.1.2). Section 5.7.1.1 discusses
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Figure 5.17: Concept of modeling voting mechanisms for automatic code generation
(adapted from [102]; notation UML 2.5 class diagram with blue text color
indicating placeholders and model elements whose names may be changed by
developers).

the general concept of this model representation, while Section 5.7.1.2 presents a UML
pro�le that shows the details of the model representation.

5.7.1.1 Concept for the Model Representation of Voting Mechanisms

This section provides an overview of the model representation for voting mechanisms
that facilitates automatic code generation. Related work, which is summarized in Sec-
tion 2.2.3.4, describes model representations for voting mechanisms without the intent of
code generation. For example, most of these approaches model the existence of a voter,
while neglecting the actual voting method used. This is su�cient for their intended pur-
poses, i.e., dependability modeling. However, for automatic code generation, such addi-
tional information, e.g., the speci�c voting method to be used, is required. Therefore,
this section is inspired by some of the modeling approaches from existing research and
further re�nes these model representations to facilitate automatic code generation. The
following modeling approaches are adopted from existing research (cf. Section 2.2.3.4 for
the respective references):

� The voter is modeled as a dedicated class that is responsible for conducting the voting
process. Each input for this voter is modeled by a separate class. Each consumer
that depends on the voting result is also modeled by a dedicated class.

� A UML stereotype indicates that the class is responsible for conducting the voting
process. (For automatic code generation, more than one stereotype is required. This
is further described below.)

Figure 5.17 shows the model representation for the voting process. As stated above, a
dedicated class is used to represent the voter (class Voting in Figure 5.17). A stereotype
indicates which type of voting should be generated for this class. In Figure 5.17 this is
indicated by the �MajorityVoter� stereotype, which indicates that majority voting should
be generated (other types of voting may also be speci�ed, cf. Figure 5.18 below). In
line with related work, the consumer of the voting result (Consumer in Figure 5.17) and
the inputs to the voting process (V1, V2 and V3 in Figure 5.17) are modeled as separate
classes. For brevity, the input classes are referred to as Vi for the remainder of this section.
There exists an association between each class Vi and the class Voting. This enables the
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Voting class to access the public operations of each Vi, due to which the input values
to the voting process may be obtained. The associations between each Vi and Voting
contain the stereotype �VotingInput�, which indicates that these classes should be used as
inputs for the voting process. This enables Voting to also contain associations to other
classes that do not participate in the voting process. The output of the voting process is
used by Consumer, which starts the voting process by calling the votingProcess()
method.
Each of the aforementioned classes has to be added manually to the application model

by the developer. The input classes Vi and the Consumer class have to be implemented
manually, as they are highly application dependent. The following two examples illustrate
this. In the �rst example, a �re detection system, the input values for the voting process
originate from relatively simple sensor hardware, e.g., a temperature-, humidity- and a
CO-sensor. In the second example, autonomous driving, multiple complex sensor types
exist, e.g., ultrasonic sensor, radar, cameras and Light Detection And Ranging (LiDAR).
Before these sensor values may be used in a voting process, complex preprocessing is
required. Thus, the type and amount of preprocessing required for each voting input is
highly application-speci�c and may not be generated automatically. This also applies for
the Consumer class. In the �re detection example, the output of the voter is a boolean
value that indicates whether a �re has been detected. When a �re has been detected,
the Consumer class is responsible for sounding an alarm. This is a relatively simple
and straightforward action. In the autonomous driving example, on the other hand, the
output of the voter may be the distance to the car in front. Depending on the distance, a
variety of complex actions may have to be executed, ranging from keeping the speed of the
vehicle constant, to the activation of emergency brakes and potentially the airbag. While
the voting inputs and the consumer are highly application-dependent, the actual voting
process is largely application-independent. The process compares a set of inputs of the
same data type and produces an output of the same data type. The actual voting strategy,
e.g., majority voting, does not require any application speci�c information. Therefore, the
approach presented in this section provides automatic code generation for the Voting
class.

5.7.1.2 A UML Pro�le for Modeling Voting Mechanisms Suitable for Automatic
Code Generation

This section presents the UML pro�le �Voting�, which provides stereotypes for the auto-
matic code generation of voting mechanisms. Figure 5.18 shows the pro�le. On the top
right of Figure 5.18 is the �Voter� stereotype. It inherits from the stereotype �ErrorDetec-
tor�, which is introduced in Section 5.5.3.1. Due to this inheritance, the �Voter� enables
the speci�cation of error handling procedures in case the voting process fails. As discussed
in Section 5.7.1.1, the �Voter� stereotype may be applied to classes to indicate that this
is the class that should perform the voting process. An inheritance hierarchy models the
di�erent types of voting that may be applied to a class. These are split into two categories,
represented by the stereotypes �AgreementVoter� and �CalculationVoter�. Voters based
on calculation perform some kind of arithmetic operation on their inputs and return this
result, e.g., calculating the arithmetic mean. Agreement voters, on the other hand, com-
pare their inputs and return the value that is agreed upon by the inputs. In contrast to
calculation voters, agreement voters may fail, e.g., in case there is no majority in majority
voting. This has consequences for automatic code generation (cf. Section 5.7.2) and is also
the reason why the model representation presented here di�ers from the taxonomy sum-
marized in Section 2.1.5.4. This di�erence concerns the median voter, which, according to
the taxonomy presented in [144] is a selection-type voter, belonging to the same category,
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Figure 5.18: The �Voting� pro�le, which provides a model representation for the automatic
code generation of voting mechanisms (adapted from [102]; notation UML 2.5
pro�le diagram).

as e.g., majority voting. While this is true, a median voter always returns a result, unlike
majority voting. For this reason, Figure 5.18 groups the median voter along with the other
voters that always return a result, e.g., average voting.
The �Voter�, �AgreementVoter� and �CalculationVoter� stereotypes ful�ll a role similar

to abstract classes, i.e., they should not be applied directly to a class. Instead, only the
stereotypes at the lowest level of inheritance, i.e., those inheriting from �AgreementVoter�
and �CalculationVoter�, should be applied to classes. As UML does not provide a model
representation for abstract stereotypes, they are nevertheless shown as concrete stereotypes
in Figure 5.18.
The �Voter� stereotype introduces a tagged value for setting a custom name for the

method inside the Voting class that should perform the voting process (�voteMethod�).
The �AgreementVoter� stereotype introduces the �deltaAgreement� tagged value. It may
be used to specify a range in which the input values may di�er from each other, but
are still counted as agreeing with each other, e.g., for the comparison of �oating point
numbers. The tagged value �revoteAfterErrorHandling� further re�nes the error handling
process for agreement voters. In case no agreement is found, error handling is executed (cf.
Section 5.7.2). The value �revoteAfterErrorHandling� de�nes an upper limit for how often
the voting process should be repeated after error handling is �nished. This is necessary,
because in some constellations error handling may never result in the necessary number of
voters agreeing with each other. This may result in a potential in�nite loop that repeats
the sequence of a voting process with no agreement and subsequent error handling that
fails to create a system state in which the voters agree with each other. Therefore, in
order to avoid potential in�nite loops, �revoteAfterErrorHandling� may be used to specify
the maximum number of times how often the voting process should be repeated until the
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application resumes without re-voting. This tagged value is not applicable to calculation
voters, as they always generate a result and no error handling is necessary. The tagged
value threshold in the �PluralityVoter� stereotype represents the number of inputs that
need to agree with each other for the voting process to be successful.
Besides the inheritance hierarchy based on the �Voter� stereotype, Figure 5.18 also

displays the �VotingInput� stereotype. It may be applied to associations. As shown in
Figure 5.17, the stereotype may be used to indicate the input classes for the voting process.
The tagged values of the �VotingInput� stereotype indicate the name of the method that
may be used to obtain the current value of the voting input (�inputMethod�), as well as
a weighting factor (�weight�) that should be applied to this input value. The weighting
factor is used by some voting mechanisms, e.g., weighted average voting. For voting types
that do not use a weighting factor, an error message during code generation is shown to
the developers, which warns them that they set a value that is never used.
The �Voting� pro�le may be extended by creating a stereotype that represents a new

voting mechanism and by integrating it within the inheritance hierarchy based on the
�Voter� stereotype. The tagged values of this new stereotype may be used to specify any
kind of additional information that the new voting process requires.

5.7.2 Software Architecture

This section presents a proof-of-concept software architecture for the safety mechanism
voting. Thus, it addresses research gap RG2 in the context of voting mechanisms (cf.
Section 1.1.2). The software architecture may be automatically generated from the model
representation introduced in Section 5.7.1. The software architecture is embedded in the
overall software architecture for generating safety mechanisms described in Section 5.5.3.2.
In the following, the structure and the runtime behavior of the architecture are described.

Architecture structure: As shown in Figure 5.17, which is described in Section 5.7.1, the
automatic code generation approach assumes that a dedicated class is responsible for the
voting process (Voting in Figure 5.17). This class has access to a set of other classes,
which contain the voting inputs (V1, V2 and V3 (abbreviated as Vi) in Figure 5.17). The
input classes Vi have to be implemented manually by a developer. The class Voting,
whose name is only a placeholder and may be chosen arbitrarily by developers, has to be
added manually to the model by the developer. However, the voting process that happens
in this class is generated automatically. Figure 5.19 shows a proof-of-concept for such an
automatic generation.
The class Voter is added to the application and an instance of this class is added to

Voting. Voter is responsible for conducting the actual voting process. It ful�lls the role
of a ConcreteErrorDetector as described in Section 5.5.3.2. As such, it implements
the ErrorDetector interface and contains a speci�c ErrorHandler instance for error
handling purposes. The vote() method conducts the voting process and also the error
handling process. The actual voting does not require state information, therefore these
methods are implemented in a separate class, VotingImplementations. The speci�c
voting method that should be executed by Voter is passed via the TVotingPointer
template parameter. The TResult template parameter indicates the datatype of the
voting inputs. The TRevotes parameter is used to specify the maximum number of
re-votes after error handling. The static methods in VotingImplementations have
an additional output parameter (success). This boolean value indicates whether an
agreement was found during agreement voting strategies, while the return value is the
value upon which the most inputs agreed. In case success indicates no agreement was
found, error handling is executed. The voting mechanism has no mechanism-speci�c error
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Figure 5.19: Software architecture for automatically generating voting mechanisms
(adapted from [102]; notation UML 2.5 class diagram with blue text color
indicating placeholders and model elements whose names may be changed by
developers).
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Figure 5.20: The runtime behavior of the automatically generated voting process (adapted
from [102]; notation UML 2.5 sequence diagram).

handling strategies, therefore, the general error handling strategies as indicated by the
ErrorHandler interface are executed (cf. Section 5.5.2 for a description of the error
handling process). New voting strategies may be included within the software architecture
by implementing a corresponding static method in the class VotingImplementations
and passing a function pointer to the Voter class.

Runtime behavior: Figure 5.20 shows a UML sequence diagram that illustrates how the
actual voting process is performed. It starts with a call to the method votingProcess()
from the consumer of the voting output to the class Voting, which is responsible for the
voting process. The Voting class subsequently obtains the current values of the voting
inputs and delegates the actual voting process to the class Voter. This class conducts the
voting process by calling the speci�ed static voting method from VotingImplementa-
tions.
For agreement voters, this result is additionally checked in regards to whether the re-

quired number of inputs agree with each other concerning the result. If this is not the case,
error handling is executed by using the handleError() method of the respective Er-
rorHandler instance (not depicted in Figure 5.20). In case the voting process has been
repeated less than TRevote times, the voting process is repeated. Once no error has been
detected (or TRevote re-votes have been executed), the result of the voting is passed to
the initial caller, Consumer. The Consumer class may now perform application-speci�c
actions based on the voting result.

5.7.3 Model Transformations

This section describes a proof-of-concept for model-to-model transformations that enable
the automatic code generation of the voting software architecture described in Section 5.7.2
from the model representation described in Section 5.7.1. Thus, this section addresses
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Figure 5.21: Model transformations for generating voting mechanisms (notation UML 2.5
activity diagram).

research gap RG3 in the context of voting mechanisms (cf. Section 1.1.2). Section 5.7.3.1
discusses the general concept of the transformations, while Section 5.7.3.2 presents an
example transformation.

5.7.3.1 General Concept

This section describes the general concept of the model transformations that automati-
cally generate voting mechanisms. Figure 5.21 shows a UML activity diagram of these
transformations. The actions of this activity diagram are explained in the following:

� Action 1 : One input for the model transformation activity is a UML class (Voting)
to which a stereotype inheriting from �Voter� (cf. Figure 5.18) is applied. Another
input are those associations of Voting to which the �VotingInput� stereotype is
applied, as well as the classes on the other side of this association (Vi). In this
action, the tagged values of these stereotypes are parsed and stored temporarily.

� Action 2 : The model consistency is checked. This includes whether the input method
speci�ed in the �VotingInput� stereotypes exists in each respective Vi. Additionally,
all these methods have to return the same data type. This data type also has to be
the same as the method parameters and the return type of the method designated
by the tagged value �voteMethod� of the �Voter� stereotype. In case the method
name indicated by �voteMethod� does not yet exist in Voting, a respective method
is created with the appropriate method signature.

� Action 3 : The class Voter and its dependencies are generated and added to the
model. This step is omitted in case the respective classes already exist in the model,
e.g., due to multiple voting mechanisms being generated.

� Action 4 : An instance of Voter is added to the class Voting. The template pa-
rameters of Voter are used to specify which type of voting should be executed.
This is achieved by setting the function pointer template parameter to the respective
method of the class VotingImplementations. Additionally, in case the stereo-
type applied to Voting is a subclass of �AgreementVoter�, an attribute re�ecting
the �deltaAgreement� tagged value is added to Voting. Further attributes are added
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to Voting in case a �VotingInput� stereotype speci�es a weight that di�ers from 1.
If no value is set for the tagged value �weight�, then a weight of 1 is assumed.

� Action 5 : The code for the method, whose name is speci�ed by the tagged value
�voteMethod�, is generated. Here, the inputs from the classes Vi are obtained by
using the method calls speci�ed in the �VotingInput� stereotype. These inputs,
along with the speci�ed weights, are used to call the vote() method from the
generated Voter class. The result of vote() is then used as the return value for
the generated method.

5.7.3.2 Example Transformations

This section presents an example for the model transformations described in Section 5.7.3.1.
Figure 5.22 shows how a class marked with a voting stereotype is transformed.
Figure 5.22(a) shows the class Voting, which receives input data from three other

classes (V1, V2 and V3). This represents the developer model before any actual imple-
mentations of safety mechanisms are included, as Voting only contains an empty method
(votingProcess()) at this point in time. Figure 5.22(b) shows the application of the
�MajorityVoter� and �VotingInput� stereotypes to the model. These stereotypes indicate
that the class Voting, whose name is only a placeholder and may be chosen arbitrarily,
should be used for a voting process to determine the ground truth of the input values.
Figure 5.22(c) shows the model after the automated model-to-model transformations that
realize the voting mechanism. The class Voting contains an instance of the class Voter
that realizes the voting process. For this, it uses a static implementation of the majority
voting mechanism located in the class VotingImplementations. Furthermore, the im-
plementation of the votingProcess() operation is updated to return the result of the
majority voting process.

5.8 Code Generation for the Safety Mechanism: Timing
Constraint Monitoring

Many safety-critical systems are subject to timing constraints, i.e., they have to react
within a certain time frame to an external event. For example, a �re detection system
should signal the occurrence of a �re as soon it starts instead of waiting until the �re is out
of control. The safety standard IEC 61508 [116] recommends checks in the time domain to
ensure that the system is capable of meeting its timing constraints. This section presents
a novel approach for the automatic code generation of timing constraint monitoring by
introducing a suitable model representation and subsequent model transformations that
generate the speci�ed monitoring mechanisms. Thus, this section addresses research gaps
RG1 to RG3 (cf. Section 1.1.2) for a speci�c category of safety mechanisms. As explained
in Section 2.1.5.5, the presented approach focuses on the timing monitoring of runnables,
which correspond to operations/methods at the software level. This excludes latencies
between individual runnables or tasks from the generated monitoring. However, the ap-
proach detects when an individual runnable violates its timing constraint. Background on
timing constraint monitoring is described in Section 2.1.5.5, while related work on timing
constraint monitoring is presented in Section 2.2.3.5. The design challenges for the code
generation approach are discussed in the previous Section 5.4.
Initial ideas of this approach have been published in [105]. This section re�nes these

ideas and integrates them within the general architecture described in Section 5.5.3. The
author of this thesis supervised a bachelor's thesis [266] that provided implementation
contribution for the concepts presented in this section.
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Figure 5.22: Simpli�ed example for the concept of transparently generating voting mecha-
nisms via MDD. Each of the sub�gures is in UML 2.5 class diagram notation,
while the arrows between them indicate transformation steps. Blue text color
indicates names that may be changed by developers.
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Figure 5.23: The �TimingConstraintMonitoring� pro�le, which provides a model represen-
tation for the automatic code generation of timing constraint monitoring for
operations (adapted from [105]; notation UML 2.5 pro�le diagram).

5.8.1 Model Representation

This section presents a proof-of-concept model representation for specifying timing con-
straints of operations in UML class diagrams. This model representation may be processed
by the model transformations described in Section 5.8.3 to automatically generate the soft-
ware architecture described in Section 5.8.2. Thus, this section addresses research gap RG1
in the context of timing monitoring mechanisms (cf. Section 1.1.2).

Figure 5.23 shows the model representation in the form of a UML pro�le, i.e., the novel
�TimingConstraintMonitoring� pro�le. The stereotype �TimingMonitoring� inherits from
the stereotype �ErrorDetector�, which has been previously described in Section 5.5.3.1.
This inheritance enables the speci�cation of the error handling process in case the violation
of a timing constraint has been detected. The �TimingMonitoring� stereotype additionally
introduces tagged values for specifying the maximum time limit before the timing constraint
is violated (�maxLimit�), as well as the unit in which this time limit is speci�ed (�unit�).
The stereotype may be applied to operations in a UML class diagram, thereby specifying
the maximum execution time of the operation.

The stereotype �TimingMonitoring� is not intended to be applied directly to opera-
tions. Instead, the stereotypes at the bottom of the inheritance hierarchy in Figure 5.23
should be applied to operations. These are the �DeadlineSupervision�, �TM_Concurrent�,
�TM_HWTimer� and �TM_HWWatchdog� stereotypes. While the �DeadlineSupervi-
sion� stereotype inherits directly from �TimingMonitoring�, the other three stereotypes in-
herit from an intermediate stereotype, �WatchdogMonitoring�, and are inspired by watch-
dog mechanisms. The di�erence between the �DeadlineSupervision� stereotype and the
stereotypes inheriting from �WatchdogMonitoring� is that �DeadlineSupervision� is only
capable of detecting timing constraint violations at the end of the operation. The stereo-
types inheriting from �WatchdogMonitoring�, on the other hand, may detect timing con-
straint violations as soon as they occur. This provides an increase in safety, as endless
loops in operations do not prevent the detection of timing constraint violations, as well as
a more timely response to the violation. A disadvantage of the watchdog mechanisms is
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that they are more complex than classic deadline supervision (cf. Section 5.8.2). Further-
more, depending on the actual realization of the watchdog, the probe overhead is larger
than for deadline supervision (cf. Section 7.2.2).
The stereotypes inheriting from �WatchdogMonitoring� di�er in their actual realiza-

tion of the watchdog mechanism. The �TM_Concurrent� stereotype speci�es a watchdog
based on threads and concurrency o�ered by the operating system. The �TM_HWTimer�
stereotype schedules a watchdog based on the use of hardware timers and interrupts, while
�TM_HWWatchdog� stereotype relies on dedicated watchdog hardware, e.g., as provided
by the Aurix Tricore microcontroller [111].
The stereotype �WatchdogMonitoring� introduces an additional tagged value (�concur-

rentErrorHandlingOp�) that may be used to specify a method for concurrent error handling.
It is executed as soon as the watchdog detects a timing violation, even in case the moni-
tored operation has not yet �nished its execution. The tagged value �errorHandling� in the
�ErrorDetector� stereotype, in contrast, is used to specify a method for sequential error
handling, that is only executed once the monitored operation is �nished. This is explained
in detail in Section 5.8.2.3.

5.8.2 Software Architecture

This section presents a proof-of-concept software architecture for the timing constraint
monitoring of operations that may be automatically added to existing classes. Thus, it
addresses research gap RG2 in the context of timing monitoring mechanisms (cf. Sec-
tion 1.1.2). The architecture is described in Section 5.8.2.1, while Section 5.8.2.2 presents
the runtime behavior of the safety mechanism. Section 5.8.2.3 discusses mechanism-speci�c
error handling.

5.8.2.1 Description of the Architecture

Figure 5.24 shows a software architecture for timing constraint monitoring that may be au-
tomatically added to an existing class whose name may be chosen arbitrarily by developers.
In Figure 5.24, this existing class is represented by the class EnclosingClass, whose
name is only a placeholder and may be chosen arbitrarily by developers. Enclosing-
Class contains the operation monitoredOperation(). In the context of this section,
monitoredOperation() is the operation whose timing constraints should be monitored
and its name may be chosen arbitrarily by developers. As an example, the stereotype
�TM_Concurrent� is applied to this operation, representing one of the stereotypes for
specifying timing constraint monitoring introduced in Section 5.8.1. The software archi-
tecture described in this section is largely independent of the speci�c stereotype applied
to the operation, only di�ering in a single class at the bottom of the inheritance hierarchy
(which is further explained below).
Except for EnclosingClass, the classes shown in Figure 5.24 may be generated au-

tomatically. The interfaces ErrorDetector and ErrorHandler are described in the
previous Section 5.5.3.2. The abstract class TimingConstraintMonitor (or rather its
derived classes) ful�lls the role of a ConcreteErrorDetector in terms of the basic soft-
ware architecture described in Section 5.5.3.2. TimingConstraintMonitor contains a
set of template parameters that are common to all derived monitoring approaches, i.e.,
the maximum time limit for the operation, as well as the type of the protected class and
the method of error handling that should be employed in case the operation violates its
timing constraint. Furthermore, TimingConstraintMonitor contains several abstract
methods that have to be implemented by the derived classes. These include a method
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Figure 5.24: Software architecture for the timing constraint monitoring of operations
(adapted from [105]; notation UML 2.5 class diagram with blue text color
indicating placeholders and model elements whose names may be changed by
developers).
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for starting and stopping the monitor, as well as a method for mechanism-speci�c error
handling.
The derived classes of TimingConstraintMonitor may be divided into two cate-

gories, similar to the categories introduced in the model representation in Section 5.8.1:
deadline supervision and watchdog-inspired variants. They are described in the following.

Deadline supervision: Deadline supervision works as follows: in the start() operation,
the current time ts is measured and stored temporarily. The stop() method measures
the time once again (te). Subsequently, the elapsed time td is calculated (td = te − ts).
In case the elapsed time td is larger than the time speci�ed by the template parameter
TTime, the attribute status is set to false. Else, the attribute is set to true. The
check() method of the ErrorDetector interface may be used by EnclosingClass
to determine whether the operation has violated its timing constraint based on the value
of the status attribute. As deadline supervision works completely sequentially, no extra,
mechanism-speci�c error handling is used for this approach. Instead, the standard error
handling capabilities from the ErrorHandler interface are used.

1 void monitoredOperation(){
2 monitorInstance.start(); //Automatically generated
3

4 /*
5 * User-defined operation body
6 */
7

8 monitorInstance.stop(); //Automatically generated
9 if(monitorInstance.check() != SUCCESS){ //Automatically generated

10 errorHandlingInstance.handleError(); //Automatically generated
11 } //Automatically generated
12

13 return;
14 }

Listing 5.3: Modi�cation of the monitored operation.

Listing 5.3 shows how the code of a user-de�ned operation is modi�ed to include the
previously described process. At the beginning of the operation, the start() method of
the monitor instance, i.e., an instance of a derived class of TimingConstraintMonitor,
is called to activate the monitor (cf. line 2 in Listing 5.3). Afterwards, the user-de�ned
operation is executed except for any return statements (cf. lines 4-6 in Listing 5.3). Be-
fore a return statement, the monitor is stopped and the result is checked (cf. lines 8-9
in Listing 5.3). In case the timing constraint has been violated, sequential error handling
is performed (cf. line 10 in Listing 5.3). Programming standards for safety-critical sys-
tems, e.g., MISRA C++ [162], often mandate only a single return statement in a method.
Therefore, the code for stopping the monitor exists only once per operation in most cases.
However, the approach is also suitable for operations with multiple return statements. In
this case, the code from lines 8-11 has to be included before every return statement of
the operation. The code for the timing monitoring may be automatically added to the
operation. This process is explained in detail in Section 5.8.3.

Watchdog variants: The watchdog variants of the timing constraint monitor in Fig-
ure 5.24 (ConcurrentWatchdog, HWTimerWatchdog, HWWatchdog) do not inherit di-
rectly from TimingConstraintMonitor. Instead, they inherit from the abstract class
Watchdog, which in turn inherits from TimingConstraintMonitor. The Watch-
dog class implements mechanism-speci�c error handling, i.e. the method handleError-

113



5 Software-Implemented Safety Mechanisms

ByMechanism() from the ErrorDetector interface, in order to provide a concurrent
error handling mechanism. The reason for this is further described in Section 5.8.2.3.
The watchdog variants operate similarly by detecting a timing violation as soon as it

occurs. They achieve this by concurrently monitoring the timing constraint. The ex-
act runtime behavior of the watchdog variants is explained in Section 5.8.2.2. While the
watchdog variants operate in a conceptually similar fashion, they di�er in their technical
realization, i.e., relying on the operating system and threads (ConcurrentWatchdog),
hardware timers and interrupts (HWTimerWatchdog), and dedicated watchdog hardware
(HWWatchdog). The method for starting and stopping these watchdogs may depend on
the system hardware. For example, the ConcurrentWatchdog requires the use of di�er-
ent thread classes, depending on the operating system. For the HWTimerWatchdog, the
API for invoking interrupts and working with timers may di�er between di�erent micro-
controllers. Furthermore, the HWWatchdog requires di�erent method calls for individual
controllers, as the programmatic way in which hardware watchdogs are accessed may de-
pend on the exact microcontroller. Therefore, the implementation of these classes may
require changes for di�erent underlying hardware. This may be solved by implementing
the start- and stop-mechanism for each employed hardware separately, or by using ab-
straction mechanisms that enable the reuse of these classes for di�erent types of hardware.
For example, the thread abstraction mechanism by the MDD tool IBM Rational Rhap-
sody [205] enables the use of the ConcurrentWatchdog class for multiple operating
systems. The HWTimerWatchdog, on the other hand, may utilize a hardware abstraction
layer, e.g., as proposed in Chapter 6, in order to abstract the use of timers and interrupts.
In theory, a similar approach may also be used for the HWWatchdog class, which makes
use of dedicated watchdog hardware. However, the variability among hardware watchdogs
of di�erent microcontrollers is larger than for timers and interrupts. Therefore, such a
hardware abstraction layer may be more di�cult to create (and to the best of the author's
knowledge, does not exist at the time this thesis is written).

5.8.2.2 Runtime Behavior of the Watchdog Variants

This section describes the runtime behavior of the timing constraint monitoring mecha-
nisms presented in Section 5.8.2.1 that operate in a watchdog-like manner (�TM_Con-
current�, �TM_HWTimer� and �TM_HWWatchdog�). Figure 5.25 shows a UML ac-
tivity diagram for this purpose. At the start, the program runs (cf. action 1 in Fig-
ure 5.25), while the watchdog waits until it is activated (cf. signal reception 7 in Fig-
ure 5.25). Depending on the type of the watchdog, this waiting occurs concurrently
(�TM_Concurrent�), interrupt-based (�TM_HWTimer�) or in parallel on extra hard-
ware (�TM_HWWatchdog�). From a high-level perspective, i.e., as shown in Figure 5.25,
these di�erent types operate similarly. Thus, the remaining description of Figure 5.25
refers only to the concurrent variant.
The main thread continues its control �ow until an operation marked with a stereotype

representing a timing constraint is invoked (cf. action 2 in Figure 5.25). At the beginning
of this operation, the boolean status �ag for the operation is set to true. Subsequently,
the watchdog corresponding to this operation, i.e., the respective Watchdog instance from
Figure 5.24, is activated (cf. signal 3 in Figure 5.25). From here on, the main thread and
the watchdog execute concurrently. In the following, the watchdog thread is described
�rst, before the behavior of the main thread is described.
Once the watchdog is activated, it waits for a stop-signal from the main thread, which

signals that the operation has �nished in time (cf. signal 8 in Figure 5.25). If this signal
does not reach the watchdog within the time speci�ed by the timing constraint (cf. time
signal 9 in Figure 5.25), a boolean status �ag in the main thread is set to false, which
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Figure 5.25: Runtime behavior of the watchdog variants of the timing constraint monitor-
ing architecture (adapted from [105]; notation UML 2.5 activity diagram).
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indicates that the operation has violated its timing constraint (cf. signal 10 in Figure 5.25).
Afterwards, concurrent error handling is executed (cf. action 11 in Figure 5.25), i.e., the
method speci�ed by the �concurrentErrorHandlingOp� tagged value of the �Watchdog-
Monitoring� stereotype. Once the concurrent error handling is �nished, the watchdog
waits again for its activation. In case signal reception 8 in Figure 5.25, i.e., the end of the
operation, occurs within the speci�ed timing constraint, the watchdog simply returns to
its waiting stage without any error handling (cf. signal reception 7 in Figure 5.25).
Concurrently to the watchdog, the main thread executes the operation body that was

manually implemented by a developer (cf. action 4 in Figure 5.25). The watchdog is
informed by the main thread once the end of the operation body is reached (cf. signal
5 in Figure 5.25). Afterwards, the boolean status �ag is checked. In case the �ag is
false, sequential error handling is executed (cf. action 6 in Figure 5.25), i.e., the method
speci�ed by the �errorHandling� tagged value of the �ErrorDetector� stereotype. Once this
sequential error handling is �nished, the program continues its control �ow from the end of
the protected operation. In case status is true, the program continues this control �ow
without any error handling.

5.8.2.3 Error Handling

Error handling between deadline supervision and the watchdog variants di�ers slightly.
While both approaches utilize sequential error handling (cf. Listing 5.3 and Figure 5.25),
the watchdog approaches o�er an additional form of error handling that is executed concur-
rently to the protected operation as soon as a timing violation is detected. The sequential
error handling, in contrast, only occurs once the protected operation has �nished executing
its manually implemented behavior. Therefore, the concurrent error handling may o�er a
crucial timing advantage, especially when the protected operation requires a lot of time
to �nish, or in case it runs into an endless loop. On the other hand, the concurrent error
handling may only in�uence the main thread in a limited fashion. Thus, for the watchdog
variants, both, sequential and concurrent error handling are executed. Developers may
deactivate either type of error handling by implementing only an empty method for the
type that should be deactivated.
The concurrent error handling of the watchdog variants occurs before the sequential

error handling and is speci�c to the watchdog variants. Thus, it may be classi�ed as a
mechanism-speci�c form of error handling.

5.8.3 Model Transformations

This section describes a proof-of-concept for model transformations that may be used to
automatically generate the software architecture presented in Section 5.8.2, from the model
representation described in Section 5.8.1. Thus, it addresses research gap RG3 in the con-
text of timing monitoring mechanisms (cf. Section 1.1.2). Section 5.8.3.1 discusses the
general concept of the transformations, while Section 5.8.3.2 presents an example transfor-
mation.

5.8.3.1 General Concept

This section describes the general concept of the model transformations that generate
timing constraint monitoring mechanisms. Figure 5.26 shows a UML activity diagram
of these transformations. The input of these transformations is an operation op that is
tagged with a stereotype inheriting from the �TimingMonitoring� stereotype (cf. Fig-
ure 5.23 for the relevant stereotypes), as well as the class in which this operation resides
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Figure 5.26: Model transformations for generating timing constraint monitoring for an op-
eration (notation UML 2.5 activity diagram).

(EnclosingClass). In the �rst step of the model transformations, the tagged values of
the respective stereotype are parsed (cf. action 1 in Figure 5.26). Afterwards, an instance
of a concrete realization of the abstract base class TimingConstraintMonitoring is
added to EnclosingClass (cf. action 2 of Figure 5.26). The speci�c realization of
TimingConstraintMonitoring that is added to EnclosingClass depends on the
stereotype applied to op. The possible candidates have been introduced in Figure 5.24.
The template parameters of the respective classes are set to their corresponding tagged
values that have been parsed in action 1. Next, the operation op is modi�ed in action 3-5 of
Figure 5.26. This includes activating the TimingConstraintMonitoring instance at
the start of op (cf. action 3 in Figure 5.26), stopping the instance before every return state-
ment (cf. action 4 in Figure 5.26) and adding the code for sequential error handling right
after the code for stopping the TimingConstraintMonitoring instance (cf. action 5
in Figure 5.26). The pseudo code for the resulting operation op after the modi�cations is
shown in Listing 5.3.

5.8.3.2 Example Model Transformations

This section presents an example for the model transformations described in Section 5.8.3.1.
Figure 5.27 shows how an operation marked with a stereotype for timing constraint mon-
itoring may be transformed to actually execute this type of monitoring.

In Figure 5.27(a), a class (Example) with a single operation is shown (exampleOp()).
This represents the developer model before any safety requirements are considered. A
potential safety requirement is the use of deadline supervision for exampleOp(). In
Figure 5.27(b) this operation is marked with the �DeadlineSupervision� stereotype to
represent this safety requirement. Figure 5.27(c) shows the model after the model-to-
model transformations. An instance of the class DeadlineSupervision has been added
to Example. Furthermore, the implementation of exampleOp() has been modi�ed to
call the start() and stop() methods of the DeadlineSupervision instance at the
beginning and end of the operation. Thus, the timing monitoring process is executed each
time exampleOp() is executed with a time limit of 1000ms.
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Figure 5.27: Simpli�ed example for the concept of transparently generating timing con-
straint monitoring via MDD. Each of the sub�gures is in UML 2.5 class dia-
gram notation, while the arrows between them indicate transformation steps.
Blue text color indicates names that may be changed by developers.

5.9 Code Generation for the Safety Mechanism: Graceful
Degradation

The previous sections, Sections 5.6 to 5.8, focus on the automatic code generation of fault
detection mechanisms. Once a fault has been detected, the system has to react in way
that ensures safe behavior despite the presence of the detected errors [116]. This concept
is known as fault tolerance and recommended by the safety standard IEC 61508 [116]. One
such fault tolerance mechanism is graceful degradation, which may be de�ned as �a smooth
change of some distinct system feature to a lower state as a response to errors� [226, p. 69].
This section provides a model representation and automatic code generation approach for
graceful degradation at the software application level. Thus, this section addresses research
gaps RG1 to RG3 (cf. Section 1.1.2) for a speci�c category of error handling mechanism.
The concept of graceful degradation may also be applied to other system levels, e.g., the
hardware level. These are not considered in this section. A detailed distinction of graceful
degradation between these system levels, as well as general background knowledge on
graceful degradation, is presented in Section 2.1.5. Related work on graceful degradation
is described in Section 2.2.3.6. The design challenges for the code generation approach are
discussed in Section 5.4.

A prior version of this approach utilizing UML ports has been published in [104]. As
UML ports have no 1:1 mapping in object-oriented programming languages like C++, the
approach has been modi�ed to be applicable without the use of UML ports. This increases
the applicability of the presented approach for di�erent MDD tools, as it no longer relies
on the tool-speci�c code generation for UML ports. Furthermore, the approach presented
in this section is integrated with the general architecture for generating safety mechanisms
described in Section 5.5.3.

As the concept of graceful degradation may be applied to di�erent levels of the system,
Section 5.9.1 speci�es the system model to which the graceful degradation approach is ap-
plied. Section 5.9.2 presents a model representation for graceful degradation at this system
level. Section 5.9.3 describes a software architecture that realizes graceful degradation for
this system level at the code-level. Section 5.9.4 shows how the aforementioned software
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architecture may be automatically generated with model-to-model transformations from
the model representation described in Section 5.9.2.

5.9.1 System Model for Graceful Degradation

As described in Section 2.2.3.6, the concept of graceful degradation may be applied at
several system levels, e.g., at di�erent hardware levels or the application level. This section
describes the system model to which graceful degradation is applied within the context of
this thesis, i.e., which type of graceful degradation may be automatically generated by the
approach described in this thesis.
The type of graceful degradation that may be automatically generated by the approach

presented in this thesis is focused on the software application level, i.e., the system features
whose state may be degraded are represented by object-oriented software classes. The un-
derlying system model assumes that the application consists of several components that
interact with each other to ful�ll the application's speci�cation. In the context of this sec-
tion, a component consists of one or more object-oriented classes. This thesis assumes that
there exists a dedicated class in each component, which is responsible for communication
with other components. This assumption is made because it limits the communication
abilities of a component to one class. Thus, the model transformations generating graceful
degradation may be (mostly) limited to these classes as well. In the literature, the class
responsible for communicating with other components is often referred to as an �inter-
face� [18]. However, this thesis already makes use of the term �interface� as used in the
context of object-oriented programming languages, e.g., Java, or UML. Therefore, in this
thesis, the class responsible for communicating with other components is termed service
and ful�lls the role of a facade as in the facade pattern [76].
The components within this section are divided in two categories, providers and con-

sumers. Providers are components that provide some sort of functionality that may be
used by other components. Consumers are components that use the functionality o�ered
by the providers. At the object-oriented programming level, this essentially means that
providers implement one or more interfaces, while consumers make use of these interface
implementations. Consumers and providers communicate through virtual channels called
bindings [225]. Graceful degradation at the application level may be achieved by inter-
changing one provider with another provider that implements the same interface (albeit
at a lower quality) [234] or by stopping the use of any services o�ered by an erroneous
provider [225].
For the remainder of Section 5.9, the system model assumes a software application that

runs on a single machine, i.e., the approach may not be used for distributed systems. If this
assumption holds, the automatic code generation for graceful degradation may be achieved
by representing bindings between components at the model level as UML associations and
as reference variables at the code level. The approach is discussed in detail in Section 5.9.2
to 5.9.4.
In theory, the approach presented in these sections could also be applied to distributed

systems. The main di�erence between the presented approach (approach A) and an ap-
proach suited for distributed systems (approach B) is that approach A realizes the com-
munication between components by using reference variables and method calls. Due to its
distributed nature, the communication between components in approach B is more com-
plex and requires the use of communication protocols that coordinate messages between the
components. For this communication, a wide variety of communication protocols may be
used, depending on the application scenario and the hardware constraints [176]. Automatic
code generation for approach B requires code generation for the communication between
components despite this variety in communication protocols. This may be achieved via

119



5 Software-Implemented Safety Mechanisms

an abstraction layer for these communication protocols, similar to the HAL approach pre-
sented in Chapter 6. However, to the best of the author's knowledge, such an abstraction
layer for communication protocols does not exist at the time this thesis is written. Fur-
thermore, the creation of such an abstraction layer is a non-trivial task of non-limited
scope and therefore considered out of scope for this thesis. In case such an abstraction
layer is published in the future, approach B may be adapted from approach A by replacing
the method calls for inter-component communication from approach A with the method
calls for inter-component communication provided by the hypothetical abstraction layer
for communication protocols.

5.9.2 Model Representation

This section presents a proof-of-concept model representation for specifying application-
level graceful degradation. This model representation may be automatically transformed
into the software architecture described in Section 5.9.3 by using the model transformations
presented in Section 5.9.4. Thus, this section addresses research gap RG1 in the context
of graceful degradation (cf. Section 1.1.2).
Section 5.9.2.1 discusses the use of UML class diagrams for modeling components in

the graceful degradation approach. Section 5.9.2.2 provides an overview of the model
representation and Section 5.9.2.3 presents details of this representation in the form of a
UML pro�le.

5.9.2.1 Use of Class Diagrams for the Model Representation

As stated in Section 5.9.1, graceful degradation at the application-level revolves around the
communication of di�erent components. UML o�ers dedicated component diagrams, which
may be used to specify graceful degradation. However, the use of component diagrams for
this purpose has several disadvantages, which are described in the following:

1. UML component diagrams are less known and used by developers compared to UML
class diagrams (cf. Section 2.1.1).

2. Some MDD tools only provide limited support for modeling component diagrams.
For example, IBM Rhapsody [205] provides a component diagram whose semantics
di�er signi�cantly from those of the UML component diagram.

3. In case the modeling of component diagrams is fully supported by an MDD tool, e.g.,
Papyrus [60], the automatic code generation for these diagrams is questionable. For
example, Papyrus generates a single class for a component in a component diagram.
All classes inside the component are realized as inner classes of the component.
For any non-trivial number of classes per component, this results in a single, huge
source code �le for the whole component. This drastically increases the di�culty of
debugging and maintenance tasks.

For these reasons, this thesis uses UML class diagrams for the model representation of
graceful degradation.

5.9.2.2 Overview of the Model Representation

This section discusses how graceful degradation at the application-level may be modeled
in UML class diagrams. Figure 5.28 shows this model representation. The services of
each component, i.e., the consumers and providers, are modeled as a dedicated class. The
consumer has an association to each provider that may ful�ll the service it requires. In
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Figure 5.28: Specifying the use of graceful degradation in UML class diagrams (notation
UML 2.5 class diagram with blue text color indicating placeholders and model
elements whose names may be changed by developers).

Figure 5.28 these are those classes that ful�ll the interface ExampleInterface. To show
that a consumer is capable of graceful degradation, the stereotype �GracefullyDegrading�
is applied to the consumer. In order to specify the initial provider and possible fallbacks
for this consumer, the associations to each provider may be marked with a stereotype.
The stereotype �GDInitial� speci�es that the provider at the other side of the association
should be used at the start of the application. The stereotype �GDFallback�, on the other
hand, may be used to designate the possible fallbacks in case the initial provider encounters
an error.
The model representation described above has the disadvantage, that no two objects of

the same class may be used as the initial provider and a fallback at the same time. This is
mainly due to the fact that objects are not represented in UML class diagrams. However,
this disadvantage is only small, as the de�nition of graceful degradation, as used in this
thesis, states that the degradation is accompanied by a change in system state of a lower
quality. In theory this lower quality may be expressed as di�erent con�guration values for
the member variables of two objects of the same class. However, in the spirit of heteroge-
neous redundancy, it is more likely that such di�erences in quality will be implemented as
separate classes in practice, e.g., relying on di�erent sensor/actuator hardware for the two
providers instead of using two objects of the same class that ultimately address the same
hardware.

5.9.2.3 A UML Pro�le for Specifying Graceful Degradation at the Application Level

This section formalizes the model representation for specifying graceful degradation at
the application-level as introduced in Section 5.9.2.2 by presenting a corresponding UML
pro�le. It is shown in Figure 5.29.
The �GracefullyDegrading� stereotype is applicable to the metaclass �Class� and in-

troduces tagged values for specifying additional operations that may be executed at im-
portant points in the degradation process, i.e., right before degradation (tagged value
�opPriorDegradation�) and right after degradation (tagged value �opPostDegradation�).
Additionally, it introduces a tagged value (�opNoProviderAvailable�) for specifying an al-
ternative operation that is executed by a consumer in case it has no functioning provider,
e.g., after multiple degradation steps. The tagged values represent the names of operations
that are called at the speci�ed times. The implementation of these methods within the
service of a consumer has to be written manually by developers. As explained previously,
the �GracefullyDegrading� stereotype marks a consumer class as capable of graceful degra-
dation. The last tagged value of the stereotype, �opCurrentProvider�, is used to indicate
a method within the class to which the �GracefullyDegrading� stereotype is applied. The
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Figure 5.29: The �GracefulDegradation� pro�le, which provides a model representation for
the automatic code generation of application-level graceful degradation (no-
tation UML 2.5 pro�le diagram).

speci�ed method will be used by the code generation process to communicate with the
providers.
The �GDFallback� stereotype may be applied to the metaclass �Association�. It is used

to specify the fallback providers for a consumer in case of degradation. The tagged value
�priority� is used to specify the order in which the consumer uses the fallback providers in
case of degradation. The �GDInitial� stereotype serves as similar purpose, except that it
marks the provider that should be used by the consumer at the start of the application.

5.9.3 Software Architecture

This section describes a proof-of-concept software architecture for graceful degradation that
may be automatically generated from the model representation introduced in Section 5.9.2
by applying the model transformations described in Section 5.9.4. Thus, this section ad-
dresses research gap RG2 in the context of graceful degradation (cf. Section 1.1.2). From
a high-level perspective, the software architecture adheres mostly to the design pattern
presented in [226], i.e., it utilizes noti�ers, loaders and an assessor. The pattern is summa-
rized in Section 2.1.5. The architecture is modi�ed in some points to facilitate automatic
code generation. Section 5.9.3.1 describes this modi�ed architecture, while Section 5.9.3.2
presents the runtime behavior of the degradation step. Section 5.9.3.3 discusses the trans-
parency of the approach from the perspective of a developer.

5.9.3.1 General architecture

Figure 5.30 shows the software architecture for graceful degradation that is modi�ed
from [226] in order to facilitate automatic code generation. Similar to the model rep-
resentation presented in Section 5.9.2.2, the class Consumer, whose name is only a place-
holder and may be chosen arbitrarily by developers, has one or more providers of a service.
However, the consumer does not manage the available providers by itself. Instead, this
task is delegated to the Loader class of which Consumer contains an instance. In the
constructor of Consumer, all providers are registered with the Loader instance. When
Consumer wants to access a service from the current provider, it does so by requesting
it from Loader, i.e., via the method getCurrentProvider(). This method returns a
reference to the current provider which Consumer may use.
The Loader class contains multiple template parameters for its con�guration. These

include the typename of the provider interface, as well as the consumer. The typename of
the consumer is required, as Loader may execute multiple methods inside the Consumer
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Figure 5.30: Software architecture for automatically adding graceful degradation to con-
sumers (notation UML 2.5 class diagram with blue text color indicating place-
holders and model elements whose names may be changed by developers).

class at prede�ned points of the degradation step. The function pointers to these methods
are also passed as a template parameter to Loader.

5.9.3.2 Degradation step

The actual degradation step, i.e., switching from a provider of higher quality to a provider
of lower quality, is handled by the Loader class. In response to an error in the current
provider, it subsequently returns another, non-erroneous provider when getCurrent-
Provider() is called. The degradation is triggered by a ConcreteErrorDetector,
e.g., one of the safety mechanisms described in Sections 5.6 to 5.8. In the context of the
design pattern described in [226], ConcreteErrorDetector takes the role of a noti�er.
ConcreteErrorDetector monitors a provider for errors. If such an error is detected,
it uses its associated error handler. In this section, this error handler is the class GDEr-
rorHandler, which subsequently delegates the error handling to the globally accessible
Assessor singleton.
The Assessor has references to each consumer of the application. For this purpose,

consumers have to register themselves with the assessor in their constructor. Once the as-
sessor is noti�ed of an error, it informs every consumer of the unique id of the provider that
is erroneous. Consumers delegate this information to their respective Loader instance.
The Loader instance checks whether its current provider has the same id as the erro-
neous provider. If this is the case, it marks this provider as erroneous and returns another
provider on subsequent calls to getCurrentProvider(). Similarly, fallback providers
are also checked regarding their id. If a fallback provider has the same id as the erroneous
provider, it is marked as well and will not be returned by getCurrentProvider() at a
future point in time. Non-marked fallback providers in the Loader instance are utilized in
an iterative order, depending on the order with which they are registered with the loader.
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Figure 5.31: Model transformations for automatically adding graceful degradation capabil-
ities to consumers (notation UML 2.5 activity diagram).

In order to decide whether a consumer component has been a�ected by the failure of
a provider, some sort of unique id is required for each provider. The id of the erroneous
provider may then be compared with the id of the current provider. If the two identi�ers
match, the next fallback has to be employed. The system model presented in Section 5.9.1
consists only of a single application running on a single device, thus the machine addresses
of the providers may be used as a unique id. Future work may extend this approach to
distributed systems, in which case another unique id is required. One approach for this
is to register each provider with a globally accessible assessor, that bestows each provider
with a unique id upon registration. Another alternative is the use of a Uniform Resource
Identi�er (URI).

5.9.3.3 Transparent generation

The proposed software architecture for graceful degradation may be generated transpar-
ently from the perspective of a developer. The automatic generation of the error detection
infrastructure, i.e., the noti�ers, is described in Sections 5.5.3 to 5.8. The Assessor and
Loader classes may be generated automatically (cf. Section 5.9.4). The implementation
of the getCurrentProvider() method inside the Consumer class may be generated
automatically as well. This implementation simply calls the getCurrentProvider()
method of the associated Loader instance of the consumer, thereby returning the current
provider. Thus, if developers only access providers via the getCurrentProvider()
method in the Consumer class, the generated graceful degradation process is transparent
to them.

5.9.4 Model Transformations

This section describes a proof-of-concept for model transformations that automatically
generate the software architecture described in Section 5.9.3 from the model representation
presented in Section 5.9.2. Thus, this section addresses research gap RG3 in the context
of graceful degradation (cf. Section 1.1.2). Section 5.9.4.1 describes the general concept of
the model transformations, while Section 5.9.4.2 presents an example transformation.
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5.9.4.1 General Concept

Figure 5.31 shows a UML activity diagram of the model transformations that automatically
generate graceful degradation at the application level. The actions are described in the
following:

� Action 1 : At the beginning of the model transformations, the tagged values of the
stereotypes �GracefullyDegrading�, �GDInitial� and �GDFallback� are parsed and
stored temporarily with the respective consumers (Consumer) and providers (Pi).

� Action 2 : The abstract GDConsumer class (cf. Figure 5.30) is added to the model.
Each Consumer is modi�ed to inherit from this class.

� Action 3 : The Loader class that manages the degradation status of the providers
is added to the model. An instance of this class is added to the respective Con-
sumer that is marked with the �GracefullyDegrading� stereotype. The template
parameters of the Loader class are set in correspondence to the tagged values of the
�GracefullyDegrading� stereotype.

� Action 4 : The globally accessible singleton Assessor is added to the model. It is
responsible for informing the consumers of errors in any providers.

� Action 5 : The constructor of each Consumer is modi�ed by prepending statements
to the existing constructor. This includes a statement for registering the consumer
with the Assessor. Furthermore, this also includes statements to register the fall-
back providers Pi with the loader. The order of these statements that register the
fallback providers depends on the tagged value �priority� of the �GDFallback� stereo-
types that exist for each fallback provider.

� Action 6 : The method body of the operation indicated by the tagged value �opCur-
rentProvider� is modi�ed to return the current provider as decided by the Loader
instance.

� Action 7 : Required dependencies (include-statements) are added to the re-
spective classes. The dependencies may be inferred from Figure 5.30, where each
association between classes results in a corresponding dependency in the source code.
For example, each Consumer requires a dependency to GDConsumer.

5.9.4.2 Example Model Transformations

This section presents an example for the model transformations described in Section 5.9.4.1.
In Figure 5.32(a), the class Consumer has two possible providers for an interface, Pro-
vider1 and Provider2. This represents the developer model before any safety require-
ments are considered. A potential safety requirement is that the class Consumer should
be capable of graceful degradation, i.e., switching from using Provider1 to Provider2
in case Provider1 encounters an error. Figure 5.32 models this safety requirement by
applying the �GracefullyDegrading� stereotype to the class Consumer. Furthermore, the
stereotypes �GDInitial� and �GDFallback� are used to represent the order in which the
providers are used by Consumer.
Figure 5.32(c) shows the model after the automated model-to-model transformations

that realize the graceful degradation mechanism. An instance of the Loader class has been
added to Consumer. It is responsible for managing the providers and returning the current
provider instance that should be used by the Consumer. Besides this, the class Assessor
has been added, which may trigger the degradation process for a given consumer in case any

125



5 Software-Implemented Safety Mechanisms

Figure 5.32: Simpli�ed example for the concept of transparently generating graceful degra-
dation via MDD. Each of the sub�gures is in UML 2.5 class diagram notation,
while the arrows between them indicate transformation steps. Blue text color
indicates names that may be changed by developers.
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of its providers signals an error. For implementation purposes, the Consumer has to inherit
from the base class GDConsumer in order to store the references of all consumers within
Assessor. This inheritance is also realized automatically by the model transformations.
Furthermore, the implementation of the method getCurrentProvider() in Consumer
is modi�ed to return the value of the getCurrentProvider() method of the Loader
instance. This way, developers may transparently use the getCurrentProvider() in
Consumer to always use the correct provider as determined by the degradation state.

5.10 Prototype Implementation

This section describes a prototype implementation of the model transformations described
in Sections 5.5 to 5.9. The prototype is realized for the MDD tool IBM Rhapsody [205],
which o�ers a Java API to modify the UML model created with the tool. Rhapsody
is chosen for this prototype due to its use in safety-critical industries [143]. However,
as the concepts described in Sections 5.5 to 5.9 only utilize features common in many
MDD tools, a corresponding prototype could also be realized for other MDD tools, e.g,
for Papyrus [60] in combination with the Epsilon framework [62] to implement the model
transformations. Figure 5.33 shows the software architecture of the implemented proto-
type. The prototype consists of three top-level Java packages, which are responsible for
communicating with Rhapsody (rhapsodyInternal), parsing the UML model for safety
stereotypes (parseModel) and transforming the model to generate the safety mechanisms
(transformModel). These packages are described in Sections 5.10.1 to 5.10.3.

5.10.1 Communicating with Rhapsody

Rhapsody's code generation engine is described in the background in Section 2.1.2.4. The
rhapsodyInternal package of the prototype shown in Figure 5.33 is responsible for cre-
ating a function hook that is executed each time code is generated in Rhapsody. Rhapsody's
code generation process involves two main steps, i.e., 1) model-to-model transformations
that create an intermediate model from a user model and 2) model-to-text transformations
that create source code from the intermediate model. The parsing process described in
Section 5.10.2 is executed before the initial model-to-model transformations, as it only
requires information from the user model. The generation of safety mechanisms described
in Section 5.10.3 is executed once the intermediate model has been created by Rhapsody,
i.e., after 1). The reason for this is that any changes to the model before this point in
the code generation process would have to be made to the user model, as the interme-
diate model does not exist yet. However, the concept described in Section 5.2 explicitly
applies the transformations to an intermediate model in order to provide developers with
a model representation of a higher abstraction level in the user model. Thus, the model
transformations may only be performed after Rhapsody has generated its own intermediate
model.

5.10.2 Parsing the Model

This section describes the parsing process of the UML user model by the prototype, i.e.,
the parseModel package shown in Figure 5.33. It uses Rhapsody's Java API to iterate
through every model element inside the user model. For each model element that contains a
safety stereotype, i.e., a stereotype from the �SafetyGen� pro�le described in Section 5.5.1,
the model element to which the stereotype is applied and the stereotype itself with its
tagged values are stored temporarily. The information is stored within objects of the class
SafetyStereotype. In case the model element x to which the stereotype is applied
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Figure 5.33: Prototype for the model transformations that automatically generate software-
implemented safety mechanisms (adapted from [100]; UML 2.5 notation).
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is not a class, e.g., an attribute, the owner of the model element x is also stored inside
SafetyStereotype, e.g., the class in which the attribute resides.
The class SafetyStereotype has a re�exive association that enables it to store asso-

ciated safety stereotypes that are connected with each other to model a single mechanism.
An example for this are the �VotingInput� stereotypes for the voting safety mechanism,
which are applied to the associations between a class marked with a �Voter� stereotype
and its inputs.

5.10.3 Transforming the Model

This section describes how the actual model transformation steps are implemented in the
prototype. The implementation is located in the transformModel package shown in
Figure 5.33. The central entity in this package is the class TransformCoordinator,
which is responsible for managing the transformation process. It contains a number of
SafetyStereotype objects. For each of these, it creates a corresponding instance of
a realization of the Transformer interface. This interface is responsible for executing
the transformations for a single safety stereotype. Its interface methods correspond to the
main transformation steps described in Section 5.5.3.3.
Realizations for the Transformer interface are located inside the package Safet-

yMechanisms and its subpackages, which contain the necessary transformations for gen-
erating the respective safety mechanism as described in Sections 5.6 to 5.9. The instan-
tiation of the realization of the Transformer interface is achieved via Java re�ection
mechanisms. This enables the Java runtime environment to automatically instantiate the
Transformer realization that corresponds to a given safety stereotype. For this pur-
pose, the realizations have to follow a naming convention, i.e., the class name consists
of the name of the safety stereotype followed by the word �Transformer�, e.g., Majori-
tyVoterTransformer.
New safety mechanisms may be added to the framework by creating a class inside the

safetyMechanisms package. This class has to realize the Transformer interface and
follow the naming convention described above. No further steps are necessary, as the class
is instantiated automatically by the re�ection mechanism in case a corresponding safety
stereotype is parsed from the model.
As an implementation note, consider that some of the templates presented in Sections 5.6

to 5.9 use template parameters to indicate the size of an array inside the template. Tem-
plate specializations are used for the special case where the array length is zero. In those
cases, a variant of the template is created by the transformation process that does not
include an array, in order to avoid arrays of size zero in the generated code. Another im-
plementation note concerns the regulations provided by safety standards, e.g., the discour-
agement of dynamic memory allocation by MISRA [162] and IEC 61508 [116]. While this is
considered in Sections 5.6 to 5.9, the presented UML diagrams in these sections make some
simpli�cations, e.g., using String data types. These are commonly implemented with dy-
namic memory allocation in modern programming languages, e.g., std::string in C++.
The prototype has to replace these simpli�cations with suitable alternatives, e.g., using a
char array with a template parameter for the array's length instead of std::string.

5.11 Application Example

This section applies the concepts presented in Sections 5.1 to 5.10 to the ongoing application
example initially introduced in Section 3.3. For this purpose, the ongoing application
example is combined with the structured safety requirements presented in Section 4.3.
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Figure 5.34: Model of the �re detection application with safety stereotypes applied (screen-
shot of an IBM Rhapsody class diagram). Classes that do not contain a safety
mechanism according to the requirements presented in Section 4.3 have been
omitted (adapted from [100]).

Safety stereotypes corresponding to these requirements may either be applied manually
to the model or in an automated process using the prototype described in Section 4.4.
Subsequently, automated model-to-model transformations are used to generate the safety
mechanisms. Section 5.11.1 presents the application of the stereotypes to the application
example, while Section 5.11.2 shows the realization of the safety mechanisms.

5.11.1 Applying Safety Stereotypes to the Application Example

This section applies a set of safety stereotypes to the ongoing application example based on
the requirements presented in Section 4.3. Figure 5.34 shows the application model with
these safety stereotypes applied. The following stereotypes have been applied to represent
the structured safety requirements DR1 to DR6 (cf. Section 4.3):

� The requirements DR1, DR2 and DR3 describe the protection of the hardware sen-
sors that deliver the input for the �re detection system. They are modeled with the
�RangeCheck� and �UpdateCheck� stereotypes. These are applied to the attributes
that represent the measured sensor values in the GasSensor, TemperatureSen-
sor and InfraredSensor classes.

� The requirement DR4 describes timing constraint monitoring for the main-loop of
the application. It is modeled with the �DeadlineSupervision� stereotype. It is
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applied to the checkForFire() method in the class FireAlarmControl. The
checkForFire() method contains the main-loop of the application.

� The requirement DR5 describes the use of voting mechanisms for the purpose of
determining whether a �re is detected or not based on the input data. It is modeled
with the �MajorityVoter� stereotype that is applied to the class FireDetector.
Furthermore, the �VotingInput� stereotypes are applied to the association between
FireDetector and the classes TemperatureFilter, InfraredFilter and
GasFilter. The latter classes deliver the input for the voting process, each of
which contains the information whether a single sensor has detected a �re.

� The requirement DR6 describes the graceful degradation process that allows the ap-
plication to switch from a WLAN-based noti�cation of the household owner in the
case of a �re to an SMS noti�cation. It is modeled with the �GracefullyDegrad-
ing� stereotype that is applied to the class FireAlarmControl. Furthermore,
the �GDInitial� and �GDFallback� stereotypes are applied to the associations of
the respective noti�cation providers, i.e., HouseholdOwnerNotification and
SmsService.

The requirement DR7 is not considered in this section, as it deals with a requirement
for hardware-implemented safety mechanisms, which are discussed in Chapter 6.

5.11.2 Automatically Generating Software-Implemented Safety Mechanisms
in the Application Example

This section automatically generates the safety mechanisms for the ongoing application
example based on the model with safety stereotypes shown in Section 5.11.1. Figure 5.35
shows the application model with the realized safety mechanisms. The following model-
to-model transformations have been performed:

� The attributes with the �RangeCheck� and �UpdateCheck� stereotypes are replaced
by instances of the class ProtectedAttribute. These instances perform the spec-
i�ed checks whenever the attribute is accessed.

� An instance of DeadlineSupervision has been added to the class FireAlarm-
Control. The method checkForFire() has been automatically modi�ed to start
the monitoring process at its invocation. Furthermore, it has been modi�ed to stop
this monitoring and evaluate its result at the end of the method.

� An instance of the class Voter has been added to the class FireDetector. Its
vote() method performs majority voting, which has been indicated by the Ma-
jorityVoter stereotype applied to FireDetector in Figure 5.34. The method
detectFire() has been automatically modi�ed to pass the necessary inputs to
vote() and return the value upon which the voting process agreed.

� An instance of the class Loader has been added to the class FireAlarmControl.
This instance is used by FireAlarmControl to determine the noti�cation service
that should be used in case of a �re. The class Assessor has been added to the
model as well, which can trigger the graceful degradation process.

Besides the transformations described above, classes for error handling have been added
automatically to the model. These are the GlobalErrorHandler and GDErrorHan-
dler classes. GlobalErrorHandler is used by most safety mechanisms to inform

131



5 Software-Implemented Safety Mechanisms

Figure 5.35: Intermediate model of the application example after model-to-model transfor-
mations (screenshot of an IBM Rhapsody class diagram). Classes that do not
contain a safety mechanism according to the requirements presented in Sec-
tion 4.3 have been omitted. For legibility, only selected attributes, operations,
associations and template parameters are shown (adapted from [100]).
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FireAlarmControl of an error, which in turn uses the buzzer of the system to sound
a maintenance tone. The GDErrorHandler is used by the HouseholdOwnerNotifi-
cation class and triggers the degradation process in case there is no internet connection
in the presence of a �re alarm.
The transformations described above result in an intermediate model in which the safety

mechanisms have been realized. The intermediate model contains only UML elements
which may be mapped 1:1 to the target programming language. Thus, the code generation
from the intermediate model is trivial.
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6 Code Generation for the Initialization

of Hardware-Implemented Safety

Mechanisms

The goal of this thesis is to provide a model-driven, automatic code generation approach
for safety mechanisms. As described in Section 1.1.1, safety mechanisms for embedded
systems may be implemented in hardware or software. Chapter 5 describes an automatic
code generation approach for software-implemented safety mechanisms. Chapter 6 is con-
cerned with the automatic code generation for hardware-implemented safety mechanisms.
While the generation of physical hardware is outside the scope of this thesis, the hardware
interfaces on a microcontroller often require an initial con�guration in software. Developers
usually have to manually implement low-level source code at the register-level in order to
carry out this initial con�guration. Provided that the remaining application is developed
via MDD and object-oriented principles, this is a shift in development perspective for devel-
opers. Such a shift may have negative consequences on developer productivity. Providing
an automatic code generation approach for the initial con�guration of hardware interfaces
eliminates this shift in perspective for developers and may potentially improve their pro-
ductivity. The partial automation of the con�guration process for hardware interfaces,
as proposed in this chapter, may eliminate the shift in development perspective currently
encountered by developers. This, in turn, may improve their productivity. Furthermore,
the presented approach partially automates hardware con�guration, which makes this task
less error-prone. This, in turn, increases the overall safety of the system as the probability
of implementation mistakes in the �nal product is reduced.
Some of the initial hardware con�gurations are directly related to safety mechanisms,

e.g., a UART for which a parity bit may be con�gured for error detection purposes. Thus,
an automatic code generation approach for the initial con�guration of hardware inter-
faces includes code generation for the initial con�guration of hardware-implemented safety
mechanisms. While the approach presented in this chapter only uses commodity hardware
interfaces, e.g., GPIOs and UARTs, the principle of the approach may also be used for
dedicated safety hardware, e.g., con�guring the safety watchdogs of the Aurix TC297 [111].
Background on the initial con�guration of hardware interfaces is described in Sec-

tion 2.1.4, while related work is summarized in Section 2.2.1.6. Furthermore, the term
�initial con�guration� is often abbreviated as �initialization� within the remainder of this
chapter.
The remainder of this chapter is organized as follows: Section 6.1 presents an overview

of the code generation approach for the initialization of hardware interfaces. Section 6.2
introduces a GUI tool for specifying the initial con�guration of hardware interfaces during
the development phase. This con�guration is utilized in Section 6.3, which describes the
actual code generation approach for the initialization of hardware interfaces. Section 6.4
describes how this generated code may be seamlessly integrated into MDD tools. Sec-
tion 6.5 applies the presented concepts to the ongoing application example.
This chapter provides contribution C3 of this thesis and addresses the research gaps

RG1 to RG3 in the context of hardware-implemented safety mechanisms. Initial ideas
of the contents in this chapter have been published in [100, 106]. Moreover, the author

135



6 Hardware-Implemented Safety Mechanisms

of this thesis supervised a bachelor's and master's thesis that provided implementation
contribution for the concepts presented in this chapter [189, 207].

6.1 Developer Work�ow for Automatically Generating
Initialization Code

This section presents an overview of the code generation approach for the initialization
of hardware interfaces. For this purpose, Figure 6.1 shows a work�ow that describes
the di�erent con�guration steps which have to be carried out by a developer in order
to automatically generate the initialization code. Furthermore, the work�ow shows the
di�erent sub-steps of the automatic code generation process.
The start of the work�ow (cf. (A1) in Figure 6.1) assumes that the developer has created

a development project within an MDD tool, e.g, IBM Rhapsody [205], Papyrus [60] or
Enterprise Architect [237]. The application model within this project may be empty or it
may already model some parts of the application. Via a respective button in the GUI of
the MDD tool, the developer may start the con�guration of the hardware interfaces. This
con�guration is con�gured with the help of a separate GUI tool (cf. (A2) in Figure 6.1),
which is described in Section 6.2. This tool is referred to as PinCon�g tool in this thesis,
as one of its main purposes is to con�gure the relevant pins for the respective hardware
interfaces of a microcontroller. The PinCon�g tool is a standalone application and not
directly integrated into the GUI of the MDD tool. Due to this, the PinCon�g tool is
independent of a speci�c MDD tool. It may be easily integrated with an MDD tool by
providing a new button in the GUI of the MDD tool which starts the standalone PinCon�g
tool.
The con�guration for the hardware interfaces, which the developer adjusts with the

PinCon�g tool, may be automatically exported in an XML format that describes this
con�guration (cf. (A3) in Figure 6.1). The XML format is described in Section 6.2.3.
On the basis of this XML �le, a template-based code generator is used to generate the
initialization code for the respective hardware interfaces. Furthermore, as some of the
parameters con�gured during the initialization of the hardware interfaces may be changed
later during runtime, the approach makes use of an object-oriented HAL that may be
used to access the hardware interfaces during runtime. In (A4) of the work�ow shown in
Figure 6.1, the initialization code and the object-oriented HAL exist and may be used by
the developer. The automatic code generation process that generates (A4) based on the
con�guration in (A3) is explained in Section 6.3.
While the code available in (A4) may theoretically be used for conventional, manual

programming, automatic reverse engineering may be used to make this code available in an
MDD tool (cf. (A5) in Figure 6.1). This process is described in Section 6.4. The automatic
reverse engineering and the integration of the generated code with an MDD tool is also
the reason for the use of an object-oriented HAL. The application model within the MDD
tool mainly consists of object-oriented diagrams and concepts. Therefore, integration of
the hardware interfaces within this model is more consistent for developers if the hardware
interfaces are represented in an object-oriented manner. They are no longer required to
include manual references to low-level hardware interactions at the register-level, but may
instead utilize the object-oriented interfaces provided by the HAL.
With the artifacts that exist in (A5) of Figure 6.1, the developer may develop the re-

mainder of the application. Afterwards, the automatic code generation features of MDD
tools may be used to generate the source code for the application (cf. (A6) in Figure 6.1).
As it would be redundant to generate the source code for the HAL and the initial con�g-
uration of the hardware interfaces, these parts of the model are omitted from automatic
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Figure 6.1: Work�ow for automatically generating initialization code for hardware inter-
faces (adapted from [106]). The rectangles indicate some form of development
artifact, while the arrows represent the actions required to create the next set
of artifacts.

code generation. Nevertheless, these have to be linked with the generated source code for
the application model during compilation.
It should be noted that Figure 6.1 shows a simplistic, linear view of the development

process. In practice, returning to a prior phase and using several iterations between dif-
ferent phases are often necessary. Such iterations may be carried out between arbitrary
phases, i.e., for each artifact in Figure 6.1, it is possible to return to every other previous
artifact and modify it.

6.2 PinCon�g Tool

Research gap RG1 (cf. Section 1.1.2) is concerned with a model representation for safety
mechanisms suitable for automatic code generation. In the context of hardware-implemented
safety mechanisms, this implies a model representation for the con�guration of hardware
interfaces that may subsequently be processed automatically by the next steps in the code
generation pipeline (cf. Section 6.3 for a description of these steps). Such a model repre-
sentation has to exhibit the following characteristics:

1) A de�nition of the available hardware interfaces on a given microcontroller, as well
as the con�gurable properties of the respective hardware interfaces. This prevents
developers from accidentally con�guring interfaces in a fashion that has no equivalent
on the actual hardware. Furthermore, it also saves developers' time as they can be
provided with a list of possible con�guration alternatives instead of manually looking
for this information in the microcontroller's data sheet.

2) An export format that contains the actual con�guration of a microcontroller for a
speci�c development project and which may serve as the input for the next code
generation steps. As an example, consider that characteristic 1) may de�ne that a
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Figure 6.2: Relationship between the di�erent concepts presented in this section. The rect-
angles indicate some form of development artifact, while the arrows represent
the �ow of information between these artifacts.

GPIO has an input and an output mode. In this context, characteristic 2) may de�ne
that a designated GPIO on the microcontroller should be con�gured in input mode.
Subsequent code generation steps may then generate the corresponding code that
actually con�gures the GPIO in input mode.

3) A graphical representation of the two characteristics 1) and 2) described above. With-
out the contributions of this thesis, the respective information is already accessible
in textual form, i.e., 1) in the form of data sheets and 2) in the form of manually-
written code statements in the developers' program. In order to provide a higher
level of abstraction for developers, characteristics 1) and 2) should be made avail-
able to developers in a graphical representation. Such a graphical representation also
enables developers to check the con�guration of hardware interfaces for errors and
consistency with the requirements speci�cation more easily.

This section describes a GUI tool that ful�lls the characteristics 1) to 3) described above.
It enables developers to specify the (initial) con�guration of hardware interfaces. As stated
in Section 6.1, this tool is referred to as PinCon�g tool in this thesis. Section 6.2.1 presents
the actual GUI of the tool and addresses characteristic 3). Section 6.2.2 addresses charac-
teristic 1) by describing how microcontrollers and their hardware interfaces are represented
within the tool. Section 6.2.3 introduces the XML format used to store a speci�c con�gura-
tion for a given microcontroller and thus addresses characteristic 2). Figure 6.2 illustrates
the relationship between these sections.

6.2.1 Graphical User Interface for Hardware Interface Con�guration

This section describes the GUI of the PinCon�g tool, which enables developers to con�gure
hardware interfaces at a higher level of abstraction than source code (cf. characteristic 3)
described at the start of Section 6.2). For this purpose, the GUI has to enable the selection
of the hardware interface that should be con�gured. Furthermore, the pins that should be
used by this hardware interface need to be speci�ed, as well as any additional properties,
e.g., the baudrate of a UART.
Figure 6.3 shows the main view of the GUI. On the top left side of the GUI (cf. panel

A in Figure 6.3), the name of the microcontroller that is con�gured is shown (LPC1768
in Figure 6.3), as well as the available hardware interfaces for this microcontroller. The
information concerning which hardware interfaces are available for a speci�c microcon-
troller is represented via an XML structure internally (cf. Section 6.2.2). As an example,
the hardware interface UART1, which is one of four available UARTs on the LPC1768, is
selected in Figure 6.3. Below the list of available hardware interfaces, available properties
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Figure 6.3: Screenshot of the main window of the PinCon�g tool (adapted from [106]).
The red letters (A-E) are used to reference individual parts of this GUI.

for the selected hardware interface may be set (cf. panel B in Figure 6.3). For example,
the property �rate� shown in Figure 6.3 con�gures the baudrate of the selected UART.
Each hardware interface shown in panel A of Figure 6.3 is associated with a number

of pins on the respective microcontroller. Often, the speci�c pins that are used by the
microcontroller have to be con�gured. In the middle of the GUI (cf. panel C in Figure 6.3),
these pins may be con�gured. For this, the GUI shows the pin layout of the microcontroller.
Currently, the tool supports the QFP and BGA pin layouts (cf. Section 2.1.4.2). The pins
which may be used by a hardware interface selected in panel A are highlighted with a blue
border. The pins that have been actually selected for a hardware interface are additionally
colored yellow. In Figure 6.3, the pins 62 and 63 have been con�gured to be used for
UART1. The PinCon�g tool is capable of detecting whether a pin has been assigned twice
to di�erent hardware interfaces, thereby being capable of notifying developers of a potential
safety risk.
The actual assignment of the pins to a hardware interface is con�gured in a dialog menu,

which is shown in Figure 6.4. The dialog enables the selection of a hardware interface
(UART1 in Figure 6.4). Once a hardware interface is selected, the available roles for this
hardware interface may be con�gured below, as well as the possible pins for which this
role may be con�gured. A role represents the types of functionality o�ered by a speci�c
hardware interface (cf. Section 6.2.2 for a more detailed description of the role concept).
In Figure 6.4, there exist the roles TXD1 and RXD1, which enable UART1 to transmit
and receive data over pins 62 and 63, respectively.
An overview of the con�gured hardware interfaces is shown on the right of the main view

of the PinCon�g tool (cf. panel D in Figure 6.3). In Figure 6.3, the only hardware interface
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Figure 6.4: Screenshot of the dialog menu for con�guring a speci�c hardware interface
within the PinCon�g tool.

that has been con�gured so far is UART1 for pins 62 and 63. New hardware interfaces
may be con�gured by selecting them in the list view of panel A in Figure 6.3 and starting
the dialog menu shown in Figure 6.4 for this hardware interface. Panel E in Figure 6.3 is
similar to panel B. However, instead of showing the properties of the hardware interface
selected in panel A, panel E shows the properties of the hardware interface selected in
panel D. In Figure 6.3, panel E does not show any speci�c con�guration, as no speci�c
hardware interface is selected in panel D.

6.2.2 Microcontroller Representation

As described in characteristic 1) at the start of Section 6.2, a model representation for
the con�guration of hardware interfaces should provide developers with a selection of the
available hardware interfaces and con�guration possibilities. For example, in the context
of the GUI introduced in Section 6.2.1, the pin layout, as well as the available hardware
interfaces for this microcontroller need to be known. In general, this information may
be found in the corresponding data sheet of the microcontroller. Usually, these data
sheets are provided as a .pdf -document and primarily consist of free-form text. Thus,
they are unsuited as an internal representation of a microcontroller for the PinCon�g tool.
Therefore, this section introduces an XML-based format for storing such a representation.
In contrast to .pdf -�les, XML �les have the advantage that they are machine-readable
without using sophisticated text-mining methods. However, the data sheets are still the
primary source of information for constructing the XML �le for a speci�c microcontroller.
Such an XML has to be created manually once per microcontroller and may subsequently
be reused for any number of projects that utilize this speci�c microcontroller. Figure 6.2,
which is displayed at the start of Section 6.2, shows how this XML �le �ts within the
general model representation approach for the con�guration of hardware interfaces.

The relevant information that needs to be stored within the XML �les corresponds to the
elements that are shown in the GUI presented in Section 6.2.1. This includes the hardware
interfaces on a microcontroller, as well as the pin layout and the connection between them.
For this purpose, the XML-structure introduced in this section makes use of the concepts
interfaces, pins and roles, which are explained in the following:
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� Roles represent the types of functionality that may be o�ered by hardware interfaces
and pins. For example, the previous Section 6.2.1 mentioned the roles TXD1 and
RXD1 that are o�ered by the UART1 interface for transmitting and receiving data.
In the XML-structure, roles are represented by the <role> tag and serve as a foreign
key between hardware interfaces and the pins they may utilize.

� Interfaces represent a hardware interface that is located on the microcontroller, e.g.,
a UART. In the XML-structure, they are represented by the <interface> tag. Each
interface declares a set of roles it may perform.

� Pins represent the physical pins on the microcontroller. In the XML-structure they
are represented by the <pin> tag. Each pin declares a set of roles for which it may
be used.

With these concepts, the con�guration options for a microcontroller may be stored inside
a single XML �le. The remainder of this section describes the structure of such an XML
�le, which, along with the GUI presented in Section 6.2.1, serves as a proof-of-concept for
providing a model representation for hardware interfaces (cf. research goal RG1 described
in Section 1.1.2). The XML structure is divided into four parts. The �rst part contains
general information about the microcontroller, while the remaining three parts provide tag
environments to contain the relevant information about the roles, interfaces and pins of
each microcontroller. Listing 6.1 shows the general structure of this proof-of-concept XML
�le.

1 <microcontroller id="lpc1768">
2 <info>
3 <name>LPC1768</name>
4 <pincount>100</pincount>
5 <package>LQFP</package>
6 </info>
7 <roles>
8 <!--cf. Listing 6.2-->
9 </roles>
10 <interfaces>
11 <!--cf. Listing 6.3-->
12 </interfaces>
13 <pins>
14 <!--cf. Listing 6.4-->
15 </pins>
16 </microcontroller>

Listing 6.1: Example XML structure for representing a microcontroller (adapted
from [106]).

Listing 6.1 starts with basic information about the microcontroller that is con�gured
(lines 1-6). This includes the name of the microcontroller, the number of its pins and the pin
layout. Subsequently, the roles, interfaces and pins of the microcontroller are listed in lines
7-15. Within the tags for these concepts, there a sub-tags that each represent one entity
of the respective concept. For example, the <roles> tag contains an arbitrary number
of <role> tags. The structure of the individual <role>, <interface> and <pin> tags is
described on the basis of example XML �les in Sections 6.2.2.1 to 6.2.2.3, respectively.

6.2.2.1 Roles

This section elaborates on the XML representation of the concept roles introduced at the
start of Section 6.2.2. As roles serve as a foreign key between pins and interfaces, they
require a unique id which both may reference. Furthermore, they require a description
which tells developers what type of functionality this role represents. For usability, a short
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form of this description is additionally preferable, which may be shown to developers in
the GUI presented in Section 6.2, while the longer description is only shown as a tooltip.
Besides these general features, a role may contain arbitrary properties that need to be
con�gured based on the speci�c role. They are used to account for the heterogeneity of
microcontrollers by enabling developers to provide additional information for a given role
that does not �t within the remainder of the presented XML structure. As interfaces and
pins face the same challenges in regards to the heterogeneity between microcontrollers, the
concept of properties is also used for them, as described in Sections 6.2.2.2 and 6.2.2.3.
Listing 6.2 shows an example for the internal structure of the tag <roles> based on the

concepts presented above. Line 2 de�nes a unique id for this role. Additional properties
may be speci�ed in lines 3-6, e.g., indicating that the role sets associated pins to the
output mode (cf. line 4 in Listing 6.2). Furthermore, the <note> tag may be used to
include information from the data sheet about this role (cf. line 7 in Listing 6.2), while
the <symbol> tag may be used to de�ne a short description for this role that is shown in
the GUI presented to the developer (cf. Section 6.2.1).

1 <roles>
2 <role id="txd0">
3 <props>
4 <prop name="type">O</prop>
5 <!--...-->
6 </props>
7 <note>Transmitter output for UART0.</note>
8 <symbol>TXD0</symbol>
9 </role>
10 <!-- Further roles -->
11 </roles>

Listing 6.2: Example structure of the <role> XML element (adapted from [106]).

6.2.2.2 Interfaces

This section elaborates on the XML representation of the concept interfaces introduced at
the start of Section 6.2.2. Interfaces have to reference the roles for which they are utilized.
Furthermore, they require a name that is shown to developers in the GUI, as well as a
unique id that may be used for internal handling of these entities within the PinCon�g
tool. Furthermore, interfaces may contain one or more con�guration options that need to
be con�gured, e.g., the baudrate of a UART.
Listing 6.3 shows an example of the internal structure for the tag <interfaces> based on

the concepts described above. Besides an internal id and the name of the interface shown
in the GUI (cf. lines 2 and 7 in Listing 6.3), the tag contains a set of properties that may
be con�gured for this interface (cf. lines 3-6 of Listing 6.3). For example, in Listing 6.3
line 4, a property for the baudrate of a UART is con�gured. The value for this property is
a default value which may be changed within the GUI presented in Section 6.2.1. Default
values may either be microcontroller-speci�c default values that may be taken from the
corresponding data sheet or values obtained from domain experts. Besides de�ning its
properties, the <interface> tag also references one or more roles which the interface may
ful�ll (cf. lines 8-11 of Listing 6.3). The referenced roles have to be de�ned in a separate
<role> tag in the <roles> section of Listing 6.1.

1 <interfaces>
2 <interface id="uart0">
3 <props>
4 <prop name="rate">115200</prop>
5 <!-- ... -->
6 </props>
7 <name>UART0</name>
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8 <rolesReferenced>
9 <roleReference id="txd0"></role>
10 <!--...-->
11 </rolesReferenced>
12 </interface>
13 <!-- Further interfaces -->
14 </interfaces>

Listing 6.3: Example structure of the <interface> XML element (adapted from [106]).

6.2.2.3 Pins

This section elaborates on the XML representation of the concept pins introduced at the
start of Section 6.2.2. Similar to interfaces, pins also have to reference the role for which
they are used. Moreover, they require a unique id for internal processing and a name that
is shown to developers in the model representation. Besides these, it is also necessary to
specify the position of the pin on the microcontroller, i.e., where the pin in the pin layout
is located, in order to provide developers with a graphical representation of the pin layout.
Listing 6.4 shows an example of the internal structure of the tag <pins>. Besides

specifying a unique id (cf. line 2 in Listing 6.4) and a name shown in the GUI presented
in Section 6.2.1 (cf. line 4 in Listing 6.4), the position of the pin on the microcontroller
is declared with two coordinates (cf. lines 5-8 in Listing 6.4). These coordinates represent
the row and column in which the pin is located. For example, Listing 6.4 states that pin
98 is located in the �rst column of the microcontroller and the 24th pin in this column
if counted from the top. For BGA pin layouts, where the pins are located at the bottom
of the microcontroller, an arbitrary number of rows and and columns is possible. For
QFP layouts, where pins are located at the sides of the microcontroller, there always exist
exactly two rows and two columns. However, the number of pins in a row or column may
be arbitrary. Besides the pin location, one or more roles need to be referenced for which
the pin may be used (cf. lines 9-12 in Listing 6.4). The roles referenced by the <interface>
tag have to be de�ned in a separate <role> tag in the <roles> section of Listing 6.1, as
described in Section 6.2.2.1.

1 <pins>
2 <pin id="98">
3 <props> </props>
4 <name>98</name>
5 <position>
6 <x>0</x>
7 <y>23</y>
8 </position>
9 <rolesReferenced>
10 <roleReference id="txd0"/>
11 <!--...-->
12 </rolesReferenced>
13 </pin>
14 <!-- Further pins -->
15 </pins>

Listing 6.4: Example structure of the <pin> XML element (adapted from [106]).

The concept presented in this section enables the assignment of hardware interfaces to
pins in order to accomplish a speci�c functionality (role). This is a basic concept that is
required for most hardware interfaces on most microcontrollers and it is realized via the
XML structure itself. Con�guration options that go beyond this type of assignment, e.g.,
setting the baudrate of a UART, are re�ected in the <props> (properties) section of each
segment. This enables developers to specify key-value pairs to re�ect the con�guration
of hardware interfaces. The properties that may be selected for each hardware interface
correspond to the con�guration options that are available for each hardware interface. As
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a proof-of-concept, this thesis includes the most common properties for each realized hard-
ware interface (GPIO, UART, ADC and PWM). The introduction of new properties, e.g.,
for a hardware interface with less common features, is integrated into the code generation
process and does not require changes to the source code of the code generator. The code
generator, which is described in detail in Section 6.3, utilizes a template-based code snip-
pet repository. New properties in the XML structure presented in this section are parsed
automatically and checked for corresponding terms in the code snippet repository. Sub-
sequently, the con�gured values of the new properties may be copy-pasted automatically
in the relevant places of the code snippets. Thus, the introduction of new properties only
requires additional entries in the code snippet repository, rather than changes to the code
generator itself.

6.2.3 Representation of the Con�guration of Hardware Interfaces

As described in characteristic 2) at the start of Section 6.2, the code generation process
for the initialization of hardware interfaces requires an export format that describes the
actual con�guration of hardware interfaces for a speci�c development project. Section 6.2.2
presents an XML format that describes all con�guration options for a microcontroller. The
export format may be viewed as a subset of the XML format described in Section 6.2.2, as a
speci�c con�guration of a microcontroller is a subset of all possible con�guration options.
Thus, the structure of the export format described in this section is similar to the one
presented in Section 6.2.2. The di�erence between them is that Section 6.2.2 describes a
format that contains all possible available roles, pins and interfaces of a microcontroller.
This section, in contrast, focuses on the speci�c con�guration of a microcontroller for
one speci�c development project, i.e., the XML format only contains information about
those interfaces that are actually con�gured for one speci�c development project, instead
of containing all possible available interfaces with hypothetical alternative con�gurations.
The export format presented in this section is used as the input for the initialization code
generation process described in Section 6.3. Figure 6.2, which is displayed at the start
of Section 6.2, shows how the export format �ts within the general model representation
approach for the con�guration of hardware interfaces.
The export format presented in this section reuses the role, pin and interface concepts

introduced in Section 6.2.2. However, the respective XML tags are pre�xed with the term
�con�gured_�. Listing 6.5 shows an example structure for the export format.

1 <occupancy>
2 <microcontroller>
3 <info>
4 <name>LPC1768</name>
5 <pincount>100</pincount>
6 <package>LQFP</package>
7 </info>
8 </microcontroller>
9 <configured_interfaces>
10 <configured_interface>
11 <name>UART0</name>
12 <label><!-- Label for designated use of interface --></label>
13 <props>
14 <prop name="rate">100800</prop>
15 </props>
16 <configured_roles>
17 <configured_role>
18 <props>
19 <prop name="type">o</prop>
20 </props>
21 <symbol>TXD0</symbol>
22 <configured_pins>
23 <configured_pin>
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24 <id>98</id>
25 </configured_pin>
26 <configured_pins>
27 </configured_role>
28 </configured_roles>
29 </configured_interface>
30 <!--...-->
31 </configured_interfaces>
32 </occupancy>

Listing 6.5: Example XML structure of the export format describing the hardware con�g-
urations selected by the developer (adapted from [106]).

In lines 3-7 of Listing 6.5 the basic information about the con�guration is stored, i.e., for
which microcontroller this con�guration has been created. The interfaces, which have been
con�gured for this microcontroller, follow in lines 9-31 of Listing 6.5. In the example shown
in Listing 6.5, the interface UART0 has been con�gured, whose baudrate is set to 100800
(cf. lines 13-15 in Listing 6.5). Furthermore, the pin with number 98 should be used for
transmission (cf. lines 16-28 in Listing 6.5). Line 19 in Listing 6.5 indicates via a property
that all pins associated with the role should be set to output mode. Furthermore, the
tag <label> enables developers to provide a hardware-independent alias for the hardware
interface with which the con�gured hardware interface may be accessed. Section 6.3.3
elaborates on the concept and bene�ts of aliases for hardware interfaces.
In general, the tag <con�gured_interface> describes the speci�c con�guration for an

interface. The tag <con�gured_role> describes the con�guration of a speci�c role that
the interface is con�gured for (in contrast to a possible role, which the interface may be
con�gured for, as in the <role> tag introduced in Section 6.2.2). This includes the pins
on which the role is actually performed (<con�gured_pins>).

6.3 Generation of Initialization Code for Hardware Interfaces

Research gap RG2 of this thesis (cf. Section 1.1.2) is concerned with a software architecture
for safety mechanisms that is suitable for automatic code generation. In the context
of hardware-implemented safety mechanisms, this applies to the initial con�guration of
hardware interfaces, as well as the interaction with these interfaces during runtime. This
section di�erentiates between the two concepts, as they face di�erent requirements.
The initial con�guration of hardware interfaces is executed only once at the start of

the application and developers are not required to manually interact with this type of
code if it is automatically generated. Thus, it does not provide a shift in perspective for
the developer if this code is low-level and not object-oriented. Furthermore, the speci�c
con�guration parameters and initialization steps often di�er between microcontrollers (cf.
Section 6.3.2).
Besides this initial con�guration of hardware interfaces, hardware interfaces may need

to be accessed at runtime, e.g., to get the value from a GPIO. Similar to the initial
con�guration, these runtime accesses often have to be programmed manually via low-level
code at the register level. In contrast to the initial con�guration, however, runtime accesses
may frequently occur in the application. Thus, in order to avoid a shift in perspective that
forces developers to deal with both, high-level object-oriented code and low-level code at
the register level, runtime access to the hardware interfaces should be encapsulated in an
object-oriented abstraction. Furthermore, the usage possibilities for hardware interfaces at
runtime are relatively consistent, e.g., UARTs may send or receive data (cf. Section 6.3.2),
which supports the creation of a suitable abstraction layer in the form of a HAL.
Section 6.3.1 presents an overview of the software architecture and the di�erent �les

involved in the generation process in regards to the initial con�guration of hardware inter-
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Figure 6.5: Overview of the source code artifacts used in Section 6.3.1 (adapted from [100];
notation UML 2.5 package diagram with additional non-UML symbols at the
bottom of the �gure for representing �les).

faces. Section 6.3.2 introduces an object-oriented HAL that enables developers to access
hardware interfaces at runtime in an object-oriented manner. The approach is integrated
with the code generation for the initial con�guration of the hardware interfaces (cf. Sec-
tion 6.3.3) and may also be integrated with MDD tools (cf. Section 6.4). Section 6.3.4
shows how the software architecture introduced in Sections 6.3.2 and 6.3.3 may be gener-
ated automatically from a microcontroller con�guration created with the PinCon�g tool.
Thus, Section 6.3.4 addresses research gap RG3 of this thesis in the context of hardware-
implemented safety mechanisms.

6.3.1 Overview

This section presents an overview of the approach for the generation of initialization code
for hardware interfaces. The approach uses several key concepts, e.g., a template-based
code snippet repository. These concepts are implemented in speci�c �les for the generation
process. For example, the code snippet repository is implemented in an XML �le. In order
to distinguish these concepts better, their associated �les are given a speci�c name within
the entire Chapter 6. Naturally, these �le names are only placeholders and not an inherent
part of the presented concept.
The approach distinguishes between the following concepts (implemented as �les in di-

rectories), which are illustrated in Figure 6.5:

� User-written code for an arbitrary embedded system. In Figure 6.5, this code is
represented by the package app.

� Interfaces for a HAL, which may be used by developers within the user-written
code (app directory), to access the hardware of the underlying microcontroller. In
Figure 6.5, these interfaces are represented by the interfaces package.
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� The implementation (realization) of the HAL interfaces. In Figure 6.5, these are
represented by the internal packages. Furthermore, this package includes a �le which
provides a set of abstract types that developers may use instead of being required to
use microcontroller-speci�c types, e.g., in order to query the status of a GPIO. In
the remainder of this chapter, this �le is referred to as Types.h.

� Source code that is responsible for the initial con�guration of the hardware interfaces.
In Figure 6.5, these are represented by the �les platform.h and platform.cpp, both of
which are located in the package initial_con�g.

� A template-based code snippet repository that is implemented as an XML �le. It
is used to automatically create the source code for the initial con�guration of the
hardware interfaces, i.e., platform.h and platform.cpp. In Figure 6.5, this code snippet
repository is the �le platform_template.xml and it is located in the same package as
the �les it generates, i.e., it is located in the package initial_con�g.

With the concepts described above, porting an embedded application to another micro-
controller is simpli�ed. The user-speci�c code in the app directory may remain unchanged,
as long as the included source code only interacts with the hardware via the interfaces in
the interface directory. The �les in the internal directory have to be replaced with the
HAL implementation of the microcontroller to which the application should be ported.
Furthermore, platform_template.xml has to be replaced by the version that is speci�c to
the new microcontroller. Then, the �les platform.cpp and platform.h may be generated
automatically from the updated PinCon�g tool con�guration.
The porting process described above is only applicable, if the new microcontroller, to

which the application should be ported, has similar characteristics as the microcontroller
for which the application was originally developed. In case there are larger deviations, e.g.,
the original application uses four UARTs, but the new microcontroller only provides three
UARTs, more extensive changes in the application may be necessary. For example, in the
scenario with a lower number of UARTs being available on the new microcontroller, any
references to the additional UARTs inside the app directory have to be modi�ed.

6.3.2 An Object-Oriented Hardware Abstraction Layer

This section presents a proof-of-concept for an object-oriented HAL that enables developers
to access hardware interfaces at runtime, which may also be integrated with MDD (cf.
Section 6.4). As the HAL is part of the automatic code generation approach, the proof-
of-concept addresses research gap RG2 in the context of hardware-implemented safety
mechanisms (cf. Section 1.1.2). Such a HAL has to address the following challenges:

1) Abstraction of data types: Driver implementations for di�erent microcontrollers typ-
ically introduce their own data types and constants for hardware interfaces, e.g., a
data type that may contain the values of a GPIO during runtime. The HAL has to
provide an abstraction for these data types in order to enable a usage of the HAL
that is independent of the underlying microcontroller.

2) Con�guration of HAL classes with a focus on portability: There may exist multiple
instances of a hardware interface on a microcontroller, e.g., multiple GPIOs. Thus,
an instance of a class representing a GPIO has to be con�gured in regards to which
speci�c GPIO it should read from or write to, i.e., by indicating the port and pin
of the GPIO. A key consideration for this con�guration is its portability, i.e., the
con�guration should be independent of the application-speci�c code.
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3) Synchronization between hardware and software state: By de�nition, a HAL utilizes
software constructs to interact with physical hardware interfaces. These hardware
interfaces contain state information, e.g, whether a GPIO is con�gured in input or
output mode. The software constructs used to interact with the hardware interfaces
have to accurately re�ect the state of the physical hardware. While this may be
trivial if there is only one (software) instance per hardware interface, consistency
between all software instances needs to be taken into account if there exists more
than one instance.

The design of a �complete� HAL that encompasses virtually all microcontrollers and
possible hardware interfaces is a task that is beyond the scope of this thesis. Thus, in
order to study the general feasibility of an object-oriented HAL that ful�lls the challenges
listed above in the context of automatic code generation, the presented HAL is limited to
the most common hardware interfaces, i.e., GPIO, UART, ADC, and PWM. For these
hardware interfaces, multiple microcontrollers from di�erent manufacturers are studied in
regards to their similarities and di�erences. The following manufacturers are taken into
consideration: Microchip [157], In�neon [115], NXP [178], ST Microelectronics [239] and
Espressif [63].
The choice of manufacturers and the selected microcontrollers from each manufacturer

limits the transferability of the results. The presented proof-of-concept demonstrates that
a HAL with the characteristics described above may be created for a subset of micro-
controllers and hardware interfaces. Extending the concept to other microcontrollers and
hardware interfaces is possible, as long as they contain common features in their func-
tionality, for which a suitable abstraction, as described in Section 6.3.2.1, may be created.
Microcontrollers or hardware interfaces that contain additional features on top of such a
shared subset of functionality may still be integrated into the HAL. However, in that
case only a subset of their functionality may be accessed via the HAL features, while the
remainder remains accessible via low-level programming statements on the register level.
Microcontrollers or hardware interfaces that contain less features than the subset of func-
tionality that is provided by the HAL may still be integrated into the HAL. However, this
implies that some method calls to the respective HAL interfaces do not have an equivalent
in the corresponding physical hardware. Thus, the implementation for these HAL interface
methods has to account for this, e.g., by signaling an error when they are called.
For the hardware interfaces of the studied microcontrollers, the usage possibilities are rel-

atively consistent at runtime, e.g., a UART may send or receive data. However, the (initial)
con�guration of these hardware interfaces often di�ers between di�erent microcontrollers.
This is another reason for why the code generation approach for the initialization of hard-
ware interfaces only uses the HAL concept for runtime access of the hardware interfaces. In
order to include the initialization-speci�c methods in the HAL, these interfaces would have
to be extended with controller-speci�c methods, thereby reducing the degree of abstraction
provided by them. Consequently, these initialization methods are generated automatically
and they are not part of the actual HAL.
Section 6.3.2.1 describes the structure of the HAL, while Section 6.3.2.2 provides example

listings that further clarify certain HAL concepts.

6.3.2.1 Structure of the Hardware Abstraction Layer

This section discusses the structure of a proof-of-concept HAL that ful�lls the challenges
introduced at the start of Section 6.3.2. The proposed HAL is a common result of sev-
eral research parties involved in the research project Holistic model-driven development
for embedded systems in consideration of diverse hardware architectures (HolMES) [258],
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Figure 6.6: UML 2.5 class diagram of the structure of the HAL (adapted from [106]). The
�gure contains additional non-UML symbols for representing �les (Types.h).
Three dots (...) are used as method parameters for method signatures that
are too long for the �gure. The �gure omits some template parameters (cf.
Listing 6.7 and its description in Section 6.3.2.2).

including the contributions in the context of this thesis [106]. For the sake of clarity and
further improvements, this thesis deviates in some parts from [106].

Figure 6.6 shows an excerpt of this HAL. Each hardware interface is represented by
an interface (in the context of object-oriented programming) (cf. package interfaces in
Figure 6.6). Actual implementations of these programming interfaces for a speci�c mi-
crocontroller are located inside a separate package (cf. package internal in Figure 6.6).
Developers only have to get familiar with the programming interfaces, i.e., the package in-
terfaces, as their interaction with the hardware at runtime is limited to these. Developers
do not require knowledge about the internal package to use the HAL. The programming
interfaces themselves provide the most common methods for the respective hardware inter-
face. For example, the interface IGpio provides methods for getting or setting the value
of a GPIO.

In order to solve challenge 1) introduced at the start of Section 6.3.2, the HAL intro-
duces custom data types that provide an abstraction for the di�erent states of a hardware
interface, e.g., GpioValue indicates whether the GPIO is currently set to a low or high
voltage. This necessitates a mapping between these custom data types used by the HAL
interfaces and the low-level driver data types used by the realization of the interfaces in
the internal package. For this mapping, the actual interface realizations, e.g., the class
Gpio, depend on the �le Types.h, which provides a mapping between controller-speci�c
data types and the data types of the HAL. Similar to the other content in the package in-
ternal, the �le Types.h has to be implemented, i.e., rede�ned, once for each microcontroller.
However, once such an implementation exists for a microcontroller, it may be reused for
other development projects that use the same microcontroller.
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Challenge 2) introduced at the start of Section 6.3.2 concerns the con�guration of soft-
ware instances of the HAL to address a speci�c hardware interface, e.g., by indicating the
speci�c port and pin of the GPIO the software instance represents. Often, such an initial-
ization of a class is achieved via constructor parameters. However, this would necessitate
that developers provide the port and pin of a GPIO each time they create an instance of
the software class in their application. Thus, there would be controller-speci�c code in the
application code, i.e., the package app in the overview shown in Section 6.3.1. This would
limit the portability of the application, e.g., in case a GPIO, on the microcontroller the
application is ported to, uses another pin than the GPIO on the original microcontroller.
For this reason, the con�guration of the classes in the internal package is achieved by using
non-type template parameters instead of constructor parameters. In C++, non-type tem-
plate parameters are similar to template parameters that indicate a generic type. However,
non-type template parameters do not specify a type, but rather a speci�c value of a given
data type, e.g., a template parameter with the value of an integer that speci�es the size of
an array in the template class at compile time. The use of non-type template parameters
enables the de�nition of aliases with which developers may create software instances of
these classes (cf. Section 6.3.3). This, in turn, improves the portability of the application,
as the hardware details, e.g., the speci�c port and pin of the GPIO, are encapsulated in the
�le that de�nes the aliases. It should be noted that Figure 6.6 does not show these tem-
plate parameters in order to improve the legibility of the �gure. Section 6.3.2.2 provides
examples for the template parameters.
Challenge 3) introduced at the start of Section 6.3.2 is concerned with the consistency be-

tween the state of hardware interfaces and the software objects representing them. Achiev-
ing this consistency depends on whether the HAL uses a stateful or stateless software
design. In a stateful design, using multiple instances of a class representing a hardware
interface, e.g., multiple instances of the class GPIO that operate on the same port and pin,
would require additional consistency mechanisms to keep all existing instances informed of
any state change. Conversely, using only a single instance with a stateful design necessi-
tates that this single instance is passed through several layers of nested scopes in case the
GPIO instance is needed at multiple scope levels. A stateless software design, in contrast,
may avoid these obstacles by directly querying the state of a hardware interface from the
hardware if it is relevant. As this state is not stored in the software beyond its immedi-
ate use, i.e., a local variable inside a method, no consistency issues between software and
hardware may arise. This thesis uses a stateless software design for the HAL, in order to
avoid the overhead of additional consistency mechanisms and multi-level scope passing. In
case the state of a hardware interface needs to be stored by the application's requirements,
e.g., to analyze the development of the state over time, this information may be stored in
a stateful class that uses the stateless HAL interfaces.

6.3.2.2 Examples

This section provides code examples that further illustrate the implementation of the in-
ternal package shown in Figure 6.6. As described in Section 6.3.2.1, developers do not
require knowledge of the internal package to use the HAL. For the sake of brevity, the
examples in this section only refer to the GPIO interface. Furthermore, the code exam-
ples are shown for the Aurix TC297 microcontroller [111]. However, the concepts may be
applied analogously to the other hardware interfaces shown in Figure 6.6.
The examples in this section also serve to illustrate the bene�ts of using the HAL, as

opposed to interacting with hardware interfaces in a low-level programming manner. List-
ings 6.6 and 6.7 provide abstract data types and interface methods that developers may
utilize when using the HAL. Both listings also show the equivalent, microcontroller-speci�c,
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low-level programming statements developers would have to use otherwise to achieve the
same purpose. For example, Listing 6.7 shows the method signature of a HAL inter-
face method, while also showing the realization of this method via microcontroller-speci�c
statements in the method body.

1 #ifndef HOLMES_TYPES_H
2 #define HOLMES_TYPES_H
3 namespace holmes {
4 // Gpio
5 typedef IfxPort_State GpioValue;
6 static const GpioValue GpioLow = IfxPort_State_low;
7 static const GpioValue GpioHigh = IfxPort_State_high;
8 // [...] More type definitions and constants, e.g., for input/output mode
9 }
10 #endif // #ifndef HOLMES_TYPES_H

Listing 6.6: Example for the type de�nitions in the �le Types.h used in the HAL (adapted
from [106]).

Listing 6.6 shows an example for the type abstraction of the states of hardware interfaces.
Besides some boilerplate code common to C++ programs, e.g., define statements, there
are two types of statements in Listing 6.6. The �rst type of statement may be seen in line
5 of Listing 6.6, where the GpioValue data type used in the HAL is de�ned for the Aurix
TC297. Thus, developers may use the abstract data type GpioValue when interacting
with GPIOs in their program. The use of these abstract data types simpli�es the porting of
the application to another microcontroller, as it is su�cient to modify the de�nition of the
abstract data types instead of refactoring every occurrence of microcontroller-speci�c data
types in the application's source code. This is described in more detail in Section 6.3.2.1.
The second type of statement in Listing 6.6 is concerned with the abstraction of con-

stants. Lines 6 and 7 of Listing 6.6 show the values GpioLow and GpioHigh, which
may be used by developers to set a GPIO to the respective value with the corresponding
HAL methods. In lines 6 and 7, these constant values are set to the appropriate value
for the speci�c microcontroller. In Listing 6.6, these appropriate values are constants de-
�ned by the drivers of the Aurix TC297 microcontroller, i.e., IfxPort_State_low and
IfxPort_State_high. These drivers are supplied by the manufacturer of the micro-
controller.

1 #ifndef HOLMES_INTERNAL_GPIO_H
2 #define HOLMES_INTERNAL_GPIO_H
3 namespace holmes {
4 template<uint8_t port, uint8_t pin>
5 class Gpio : public holmes::IGpio {
6 private:
7 static constexpr volatile _Ifx_P* _port = (Ifx_P*) (0xF003A000u + 0x100u * port);
8 public:
9 Gpio() {}
10 //Using the HAL, developers may call this method to set a value to the GPIO.
11 void setValue(GpioValue value) {
12 //Without the HAL, developers have to call this controller-specific driver statement
13 IfxPort_setPinState(_port, pin, value);
14 }
15 // [...]
16 }
17 }
18 #endif // #ifndef HOLMES_INTERNAL_GPIO_H

Listing 6.7: Excerpt of the implementation of the GPIO HAL interface for the Aurix TC297
microcontroller (adapted from [106]).

Listing 6.7 shows an excerpt of the class Gpio, which is a realization of the IGpio HAL
interface. The types de�ned in Listing 6.6 are used in the declaration of methods, which
override the interface methods of IGpio (cf. lines 11-14 of Listing 6.7). Furthermore,
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template parameters are used to specify compile time constants for a hardware interface.
These template parameters have been omitted in the overview of the HAL, previously
shown in Figure 6.6, in order to improve the legibility of the �gure. In Listing 6.7, the
template parameters are used to specify the pin and the port of the GPIO (cf. line 4).
In other words, the template parameters represent which speci�c hardware interface an
instance of this class reads from or writes to in case there exist multiple versions of the
hardware interface on the microcontroller. For example, the Aurix TC297 has multiple
GPIOs. The template parameters are used to indicate to which of the speci�c GPIOs
methods like setValue() should be applied. The advantage of using template parameters
for this purpose is explained in Section 6.3.2.1.

6.3.3 Hardware initialization

Section 6.2 presents an approach for the con�guration of hardware interfaces with the
PinCon�g tool. Section 6.3.2 describes a HAL to re�ect this con�guration at the code-level.
The HAL uses template parameters for con�guration, e.g., to allow developers to refer to a
GPIO on a speci�c port and pin. However, this only allows developers to interact with the
hardware interfaces during runtime by using the HAL. Often, these hardware interfaces
require an additional, initial con�guration before their �rst use, e.g., con�guring whether
a GPIO operates in input or output mode. Such initialization steps often take the form
of low-level driver statements with the correct parameters. These may not be included
as template parameters inside the HAL, as template parameters cannot contain arbitrary
code statements. While template parameters are capable of holding function pointers,
this would still require �xed data types for the return and method parameters of the
function pointer. As the data types used by low-level driver implementations of di�erent
microcontrollers may be di�erent from another, function pointers may not be used for this
purpose. Thus, this section presents a proof-of-concept for a set of source code artifacts
that enable this initial con�guration of hardware interfaces. The source code artifacts may
be generated automatically with the concepts presented in Section 6.3.4, i.e., they do not
have to be created manually by developers. Thus, the proof-of-concept presented in this
section addresses research gap RG2 of this thesis in the context of hardware-implemented
safety mechanisms, i.e, a software architecture suitable for automatic code generation (cf.
Section 1.1.2).
The source code artifacts responsible for the con�guration of hardware interfaces have

to consider the following requirements:

1) Facilitate portability of the application code to other microcontrollers: As described
in Section 6.3.1, one bene�t of the hardware abstraction proposed in this thesis is the
improved portability of the application. While the HAL described in Section 6.3.2
achieves this portability for hardware interaction during runtime, the concepts pre-
sented in this section have to facilitate portability of the application in regards to
the initial con�guration of the hardware interfaces.

2) Consider controller- and interface-speci�c initialization aspects: In the simplest case,
the con�guration of a hardware interface may be achieved with a single code state-
ment that may stand on its own, i.e., no other code statements are necessary to
complete the con�guration. However, there may be cases where multiple code state-
ments are necessary. The order of these code statements may be relevant as well, e.g.,
in case a speci�c hardware interface requires some form of setup and/or cleanup once
the initialization is complete. For example, the UART on the Aurix TC297 microcon-
troller has to be disabled for interrupts during con�guration. Once the con�guration
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is complete, the interrupts have to be enabled again in order for the UART to receive
any messages. Another example is acquiring a lock on a concurrent resource before
starting the con�guration and releasing the lock once the con�guration is complete.

Section 6.3.3.1 provides an overview of the underlying approach, while the concept is
described in more detail in Section 6.3.3.2. Section 6.3.3.3 provides example listings that
serve to further clarify this concept.

6.3.3.1 Overview

This section provides an overview of the code generation process for the initialization
of hardware interfaces. The generation process is displayed in Figure 6.7. The input
for the generation process are two XML �les. The �rst �le contains the project-speci�c
con�guration of a microcontroller and may be automatically exported from a con�guration
of the PinCon�g tool (cf. Section 6.2.3). The second �le is a template-based code snippet
repository (platform_template.xml). It contains low-level code snippets that are speci�c to
a speci�c type of microcontroller. Thus, platform_template.xml has to be created manually
by developers once per microcontroller. It may be reused for other development projects
that utilize the same microcontroller. The code snippets in platform_template.xml are
ultimately used to initialize the hardware interfaces at the code-level. The code snippets
contain placeholders which are replaced with values from the export �le of the PinCon�g
tool. This replacement process is further described in Section 6.3.4.
The generation process automatically creates two �les, platform.h and platform.cpp.

Both �les together provide the generated code that is capable of initializing the hardware
interfaces as speci�ed in the PinCon�g tool. The �les platform.h and platform.cpp are
described in detail in Sections 6.3.3.2 and 6.3.3.3.

6.3.3.2 Concept

This section describes the source code artifacts that are used to execute the initial con�gu-
ration of hardware interfaces. Section 6.3.4 describes how these artifacts may be generated
automatically from a given con�guration of a microcontroller in the PinCon�g tool. The
artifacts themselves take the form of a C++ header and implementation �le. They are
referred to as platform.h. and platform.cpp in this chapter, respectively. The header �le
is responsible for addressing requirement 1) introduced at the start of Section 6.3.3, i.e.,
facilitating the portability of the application. The implementation �le, on the other hand,
provides the actual con�guration of the hardware interfaces and addresses requirement 2)
introduced at the start of Section 6.3.3, i.e., considering controller-speci�c initialization
aspects.

Requirement 1: Facilitating the portability of the application: Requirement 1) is ad-
dressed by providing a set of aliases for the hardware interfaces in the header �le platform.h.
These aliases enable developers to refer to hardware interfaces in their application code
without having to specify hardware details, e.g., the port and pin of the GPIO they wish
to use. Instead, developers may simply refer to the alias. The name of this alias may be
con�gured by developers in the PinCon�g tool, from which the �le platform.h is ultimately
generated automatically. From a technical perspective, these aliases are realized via type
de�nitions in platform.h. These type de�nitions are discussed in detail in Section 6.3.3.3.
For an example on how aliases may improve the portability of the application, consider

that a GPIO x is con�gured for the use of a Light-Emitting Diode (LED) z on a micro-
controller A. Without an alias, developers would have to specify the speci�c pin and port
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Figure 6.7: Overview of the generation process for the initialization of hardware interfaces.
Rectangles indicate development artifacts, with the generation process illus-
trated as an ellipse. The arrows show the direction of input and output �les
for the generation process.
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of x each time they use the LED z in their program. In case the application is ported to
another microcontroller B, a GPIO y from B has to be con�gured to use the LED z. Due
to various reasons, e.g., a di�erent number of pins or di�erent pin layouts between A and
B, the port and pin of y may di�er from x. Thus, if x is accessed without an alias in the
original application, each reference to x has to be modi�ed to the corresponding pin and
port of y in the ported application. This results in an arbitrary number of changes in the
program that depends on how often the LED z is accessed. However, if an alias is used,
as proposed in this section, only a single change is necessary, i.e., modifying the de�nition
of the alias for the LED-accessing GPIO in the �le platform.h. Moreover, as platform.h is
ultimately automatically generated from the PinCon�g tool, developers may complete the
porting process in this example entirely at the model-level in the PinCon�g tool. Further-
more, besides improved portability, aliases also aid in program comprehension, as the alias
of the respective hardware interface may re�ect its usage, e.g., in case a GPIO is used as
an LED.

Requirement 2: Controller-speci�c initialization aspects: Requirement 2) is addressed
by de�ning several placeholders in the implementation �le platform.cpp, which are auto-
matically replaced with the corresponding lines of code from a code snippet repository
during the automatic generation from the PinCon�g tool. The code snippet repository is
discussed in Section 6.3.4, while the interaction of these elements in the generation process
is described in Section 6.3.3.1. The placeholders for the con�guration are divided into
di�erent categories in order to re�ect that some code statements may need to be executed
for every hardware interface for a given type, while others may only need to be executed
once, prior or after the con�guration. These di�erent categories of placeholders are further
explained in Section 6.3.3.3.

6.3.3.3 Examples

This section presents example listings for the initial con�guration of hardware interfaces
based on the concepts described in Section 6.3.3.2. Section 6.3.3.1 shows an overview of
how the respective �les �t into the overall generation process. A key point is that these
�les are generated automatically based on the concepts presented in Section 6.3.4. Thus,
developers do not have to be familiar with the low-level details of the hardware interface
con�guration.
Listing 6.8 shows an example for the header �le that contains the type de�nitions for

the hardware interfaces (platform.h) and thus provides a proof-of-concept that addresses
requirement 1) introduced at the start of Section 6.3.3. Developers may use these type
de�nitions to interact with the hardware via an alias.

1 #ifndef HOLMES_PLATFORM_H
2 #define HOLMES_PLATFORM_H
3 namespace holmes {
4 ${gpio_hal} //Placeholder for type definitions of GPIOs.
5 //Example type definition for a GPIO: typedef internal::Gpio<12, 1> LED1;
6 // [...] more type definitions, e.g. for UART, ADC,...
7 void init();
8 }
9 #endif // #ifndef HOLMES_PLATFORM_H

Listing 6.8: Example for the type de�nitions that allow developers to refer to hardware in-
terfaces with custom names (platform.h). The $ symbol indicates a placeholder
variable (adapted from [106]).

Besides declaring the init() method (cf. line 7), which is explained in the context
of the implementation �le platform.cpp below, Listing 6.8 (platform.h) contains a set of

155



6 Hardware-Implemented Safety Mechanisms

type de�nitions. Listing 6.8 shows a placeholder for these type de�nitions, ${gpio_hal},
which contains a type de�nition for each con�gured GPIO interface. In the generation
process described in Section 6.3.4, this placeholder is replaced with an actual code state-
ment that provides developers with an alias for the GPIO. The code statements have the
following form: typedef internal::Gpio<${port}, ${pin}> ${name};. The
values marked with a �$� sign are placeholders as well and are explained in the following:
The placeholders $port and $pin refer to the port and pin of the GPIO that has been
con�gured in the PinCon�g tool. The placeholder $name in the above statement, on the
other hand, refers to the alias through which the respective GPIO may be accessed by de-
velopers in their program. Line 5 in Listing 6.8 shows a full example for a type de�nition
for a GPIO, with all placeholders replaced with actual values.
Listing 6.9 shows an example for the implementation �le for initially con�guring hard-

ware interfaces, which provides a proof-of-concept that addresses requirement 2) introduced
at the start of Section 6.3.3.

1 ${gpio_pre} //Shared data that can be accessed by code in other placeholders
2 static void initGpio() {
3 ${gpio_header} //Code to be executed before the actual GPIO configuration starts
4 ${gpio_body} //Multiple code statements, each of which configures a GPIO
5 //Example for ${gpio_body} that configures the GPIO on port 12, pin 1 for output mode:
6 //IfxPort_setPinMode((Ifx_P *)\&MODULE_P12, 1, IfxPort_Mode_outputPushPullGeneral)
7 ${gpio_footer} //Code to be executed after all GPIO configurations are finished
8 }
9 //[...] Init-methods for other hardware interfaces
10 void holmes::init() {
11 initGpio();
12 //[...] Initializing other hardware interfaces
13 }

Listing 6.9: Example for the hardware initialization (platform.cpp). The $ symbol indicates
a placeholder variable (adapted from [106]).

Listing 6.9 shows the structure of the �le platform.cpp. It contains the de�nition of
the init() method (cf. lines 10-13 in Listing 6.9) declared in Listing 6.8. This method
is responsible for performing the remaining initialization steps for hardware interfaces
that may not be stored as template parameters inside the HAL classes (cf. the start of
Section 6.3.3).
The init() method invokes speci�c initialization methods for each type of hardware

interface. For example, lines 2-8 in Listing 6.9 show such a speci�c initialization method
for the GPIO interface along with several placeholders. The placeholder ${gpio_header} is
replaced by code that should only be executed once before the initialization of every GPIO.
Conversely, ${gpio_footer} is replaced by code that should only be executed once after
the initialization of every GPIO. These two placeholders may be used in conjunction in
case the con�guration of a speci�c hardware interface requires some form of setup and/or
cleanup once the initialization is complete. An example for this is acquiring a lock on
a concurrent resource in ${gpio_header}, which is released in ${gpio_footer}. Thus, the
${gpio_header} and ${gpio_footer} placeholders address requirement 2) introduced at the
start of Section 6.3.3.
The actual con�guration for each individual GPIO is executed by code statements that

replace the ${gpio_body} placeholder. An example for the speci�c con�guration of a GPIO
on the Aurix TC297 microcontroller is the statement IfxPort_setPinMode((Ifx_P
*)&MODULE_P${port}, ${pin}, ${mode}). It sets the port and pin of the GPIO,
as well as whether it is initially con�gured for input or output mode. The values ${port},
${pin}, ${mode} are placeholders themselves and are replaced with the actual port, pin
and operation mode of the GPIO according to the speci�cation in the PinCon�g tool. The
replacement of these placeholders is executed automatically, as described in Section 6.3.4.
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Line 6 in Listing 6.9 shows an example for such a code statement without any placeholders.
Thus, ${gpio_body} is replaced by several versions of the statement above, depending on
the number of con�gured GPIOs in the PinCon�g tool.
The values for the placeholders are automatically extracted from the con�guration speci-

�ed by developers in the PinCon�g tool. Besides the aforementioned placeholders, line 1 of
Listing 6.9 shows the ${gpio_pre} placeholder, which may provide additional initialization
that may be accessed from within initGPIO() and thus is available for all other GPIO-
initializing code statements. For example, ${gpio_pre} may be replaced by code state-
ments that de�ne constant values. These constant values could subsequently be accessed
in the code which replaces the ${gpio_header}, ${gpio_body} and/or ${gpio_footer}
placeholders.

6.3.4 Automatic Code Generation of Initialization Files

Sections 6.3.2 and 6.3.3 address research gap RG2 of this thesis in the context of hardware-
implemented safety mechanisms, i.e., a software architecture suitable for automatic code
generation. This section addresses research gap RG3, i.e., automated code generation that
generates the software architecture presented in Sections 6.3.2 and 6.3.3 from a model
representation created with the PinCon�g tool introduced in Section 6.2. Section 6.3.3.1
provides an overview of how these di�erent development artifacts relate to each other.
Section 6.3.4.1 describes the general concept of the code generation approach, while Sec-
tion 6.3.4.2 provides an example.

6.3.4.1 Concept

As described in Section 6.3.3.1, one of the inputs to the code generation process is an XML
con�guration of hardware interfaces for a speci�c microcontroller, which is created with
the PinCon�g tool. The XML �le uses key-value pairs to describe the con�guration of
the microcontrollers, where the key is the name of an XML tag, whereas the value of the
key-value pair is the value of the XML tag.
The outputs of the code generation process are the controller-speci�c �les platform.h and

platform.cpp, which are described in Section 6.3.3.2. They contain a �xed structure with
multiple insertion points (�placeholders� in Section 6.3.3.2) for the code statements that
actually perform the initialization of a hardware interface. Thus, automatic code generation
of these �les ultimately comes down to inserting the correct, microcontroller-speci�c code
statements for initializing a hardware interface into these insertion points/placeholders.
These controller-speci�c code statements often follow a key-value scheme, where the key
is the method name, which indicates what property of the hardware interface should be
set. The method parameters of the controller-speci�c code statements, in turn, may be
viewed as the values in a key-value scheme, which indicate the speci�c con�guration values
for the property indicated by the method name. Thus, automatic code generation may be
achieved with the following two steps:

1) Inserting the controller-speci�c method calls m for initializing hardware interfaces
into the �xed structure of platform.h and platform.cpp. This requires a template �le
for platform.h and platform.cpp that contains the structure of the respective �les and
the possible insertion points for placeholder values. In the proof-of-concept for the
automatic code generation for hardware-implemented safety mechanisms presented
in this section (cf. research gap RG3 in Section 1.1.2), there exists one template �le,
referred to as platform_template.xml. It contains the structure of both platform.h and
platform.cpp. Moreover, platform_template.xml contains a set of code snippets which
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are controller-speci�c code statements with placeholders, e.g., with placeholders for
the values of method parameters. These placeholders are replaced with actual values
in step 2) of the code generation approach.

2) Setting the method parameters of the inserted method calls m to the corresponding
values of the PinCon�g tool con�guration. This requires that the respective val-
ues from the XML export �le of the PinCon�g tool are parsed and mapped to the
respective insertion points in platform_template.xml.

The template �le platform_template.xml may be described as a code snippet repository,
as it contains all relevant code statements for the con�guration of hardware interfaces for
a speci�c microcontroller. Some of these code snippets, depending on which hardware
interfaces have actually been con�gured in the PinCon�g tool, are copy-pasted into newly
created �les that follow the �xed structure of platform.h and platform.cpp. During this
copy-paste process, the placeholders of the controller-speci�c code statements, e.g., method
parameters, are replaced with the actual values de�ned in the PinCon�g tool. By de�nition,
a code snippet repository is microcontroller-speci�c, i.e., for every new microcontroller, a
new platform_template.xml �le has to be created.

6.3.4.2 Example

This section expands on the code generation approach described in Section 6.3.4.1 by
discussing a proof-of-concept implementation of these concepts. A key element of the code
generation approach is a template-based code snippet repository, implemented in a single
XML �le, platform_template.xml. In general, this implementation could also be distributed
over several XML �les. Listing 6.10 shows an example for platform_template.xml in the
context of the Aurix TC297 microcontroller and the con�guration of the GPIO interface
for input or output mode.

1 <code_generator>
2 <header_file>
3 <!-- Include the template code for platform.h (cf. Listing 6.8)-->
4 </header_file>
5 <source_file>
6 <!-- Include the template code for platform.cpp (cf. Listing 6.9)-->
7 </source_file>
8 <interfaces>
9 <gpio>
10 <gpio_hal>
11 typedef internal::Gpio&lt;${port},${pin}&gt; ${name};
12 </gpio_hal>
13 <gpio_pre></gpio_pre>
14 <gpio_header></gpio_header>
15 <gpio_body>
16 IfxPort_setPinMode((Ifx_P *)&amp; MODULE_P${port}, ${pin}, ${mode});
17 </gpio_body>
18 <gpio_footer></gpio_footer>
19 </gpio>
20 <!-- Other hardware interfaces -->
21 </interfaces>
22 </code_generator>

Listing 6.10: Example XML �le used as a template to generate the hardware initialization
(platform_template.xml). The �$� symbol indicates a placeholder variable.
Note that some special characters have to be used because of the XML syntax,
e.g., �&lt;� to represent the symbol �<�. The platform.h and platform.cpp
templates in lines 2-7 refer to C++ source code stored within the XML tags
(adapted from [106]).
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At the start of Listing 6.10, inside the tags <header_�le> and <source_�le>, the �xed
structure of the �les platform.h and platform.cpp (cf. Section 6.3.3) is stored. This struc-
ture contains several placeholders that are introduced in Section 6.3.3, e.g., the placeholder
${gpio_body}. The tag <interfaces> in Listing 6.10, contains XML tags with the same
names as these placeholders, e.g., <gpio_body> in lines 15 to 17. These tags contain the
code snippets with the controller-speci�c code that have to be copy-pasted into the re-
spective places marked by the placeholders in the <header_�le> and <source_�le> tags
during the generation of platform.h and platform.cpp. As may be seen in line 16 of List-
ing 6.10, the code snippets may contain placeholders on their own, e.g., the placeholders
${port}, ${pin} and ${mode}. These represent the port and pin of the GPIO that should
be con�gured, as well as the operating mode (input/output) it should be con�gured for.
The placeholders in the code snippets have to be replaced by their corresponding values
in the output of the PinCon�g tool that describes how the hardware interfaces should be
con�gured.
Figure 6.8 shows a UML activity diagram describing a proof-of-concept implementation

of the code generation process, i.e., a proof-of-concept for research gap RG3 in the context
of hardware-implemented safety mechanisms (cf. Section 1.1.2). Both �les, platform.h and
platform.cpp, are generated independently from each other. This is represented by using a
fork node in Figure 6.8. In the following, only the generation of platform.cpp is described
in the main text, as the generation of platform.h functions analogously.
In the �rst step of the code generation process (cf. action (B1) in Figure 6.8), a string Y

is created. This string contains the entire content of the tag <source_�le> in Listing 6.10,
including the placeholders, e.g., ${gpio_body}. In the next step (cf. action (B2) in
Figure 6.8), these placeholders are replaced by their corresponding controller-speci�c values
from the code snippet repository. For this purpose, there exists a 1:1 mapping between
the names of the placeholders and the respective tags in Listing 6.10, e.g., <gpio_body>.
The code snippets themselves still contain placeholders, which are replaced in action (B3)
of Figure 6.8. The values, with which these placeholders are replaced, are taken from the
output of the PinCon�g tool, which has previously been con�gured by the developer. This
replacement process requires a mapping between the placeholders and the corresponding
XML tags in the output format of the PinCon�g tool. This is achieved via name matching,
i.e., the name of the placeholder has to correspond to the name of an XML tag in the output
format of the PinCon�g tool. In the last step of the code generation, a new �le with the
name platform.cpp is created and the entire content of string Y is copied into the newly
created �le (cf. action (B4) in Figure 6.8). After this copy-pasting process, platform.cpp
(in conjunction with the analogously generated platform.h) contains the initialization code
for the hardware interfaces.

6.4 Integration with MDD tools

Section 6.3 presents an approach for the automatic code generation for the initialization of
hardware interfaces. While this code may be used as described in Section 6.3, this thesis is
focused on safety and code generation in MDD. For this reason, this section describes how
the generated code and the PinCon�g tool may be integrated into MDD tools. Naturally,
the speci�c integration process depends on the speci�c MDD tool used. The two main
criteria that have to be ful�lled by the tool are 1) the capability of adding custom GUI
elements to the GUI of the MDD tool and 2) a mechanism for reverse engineering, i.e.,
creating UML models from source code automatically. The following description of the
integration process is presented for the tool IBM Rational Rhapsody [205], but the process
has also been tested for Papyrus [60].
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Figure 6.8: Code generation process for the initial con�guration of hardware interfaces
(UML 2.5 activity diagram notation).
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1) Starting the PinCon�g tool from the GUI of the MDD tool: In principle, the
PinCon�g tool described in Section 6.2 may be used as a standalone application. An
advantage of this is that the GUI of the PinCon�g tool is independent from the GUI of a
speci�c MDD tool. Therefore, the PinCon�g tool may be used in conjunction with several
MDD tools without requiring changes in its source code. Nevertheless, developers may
prefer to start the GUI of the PinCon�g tool from inside their familiar MDD tool. This
also provides the tool with information about the project directory, thereby enabling an
automatic recommendation for a directory in which the hardware initialization �les, e.g.,
platform.h and platform.cpp, are generated. In Rhapsody, helper �les may be used to add
entries to Rhapsody's menus and execute arbitrary Java code once such an entry is clicked.
Thus, the Java code may be used to start the GUI tool. Once developers are satis�ed with
their con�guration and click a respective button, the code generation process described in
Section 6.3 is started.

2) Integrating the HAL into the MDD tool via reverse engineering: The HAL described
in Section 6.3.2 exists as source code. In order to use this code in MDD tools and enable
an object-oriented access of hardware interactions, corresponding classes either have to
be created manually by the developer in the MDD tool or created automatically via the
reverse engineering functionality of the MDD tool. In both cases it is important to mark
the HAL classes as exempt from code generation, as the source code for the HAL already
exists and only has to be linked with the remaining application during compilation. In
Rhapsody, the reverse engineering process may be executed automatically via a dedicated
Java API. Thus, this process may be performed automatically after con�guration of the
hardware interfaces via the PinCon�g tool is �nished by the developer.

3) Include HAL and platform �les during compilation: Once the code for the application
has been created from the model with the MDD tool's code generation, the HAL and
the automatically generated platform.h and platform.cpp �les have to be linked during
compilation.

6.5 Application Example

This section applies the concepts presented in Section 6.2 to the ongoing application exam-
ple initially introduced in Section 3.3, i.e., the �re detection system. Section 4.3 formulates
a safety requirement for a hardware-implemented safety mechanism for this system. This
is requirement DR7, which states that the UART that communicates with the SMS module
should use a parity bit. Figure 6.9 shows the con�guration of this hardware-implemented
safety mechanism inside the PinCon�g tool.
On the left of Figure 6.9, the available hardware interfaces of the �re detection system

are shown, i.e., the hardware interfaces of the Raspberry Pi on which the system is im-
plemented. The hardware interfaces that already have been con�gured are shown on the
right. For the application example, this includes the UART which communicates with
the external hardware module capable of sending an alarm SMS. Furthermore, it includes
several GPIOs used for interacting with the sensors, the buzzer and the button used to
stop the alarm. The middle of the screenshot shows the pin layout of the Raspberry Pi
and highlights which pins are currently con�gured.
The pin con�guration shown in Figure 6.9, i.e., the assignment which hardware interface

is allocated to which pin, has to be carried out manually by a developer. However, the
prototype presented in Section 4.4 allows for the automatic con�guration of additional
properties. Figure 6.9 shows this in the bottom right, where the properties �parityBit� and
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Figure 6.9: Screenshot of the PinCon�g tool with the con�guration for the �re detection
application example [106]. Note that there exist di�erent pin numbering sys-
tems for the Raspberry Pi. The middle compartment uses the physical layout
for pin numbering, while the left and right compartments use the Broadcom
Mode (BCM) format [75].
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�parityMode� have been con�gured according to the values stated in safety requirement
DR7. The value �parityBit� is set to �true�, which indicates that the UART should use
a parity bit for communication. The value �parityMode� is set to �even�, which indicates
that an even parity mode should be used, i.e., the sum of the bits in a message always
equals an even number.
The con�guration from the PinCon�g tool may be exported automatically as an XML

�le according to the concepts presented in Section 6.2.3. This XML �le is the input to
the code generation process described in Section 6.3.4 along with the template-based code
snippet repository for the Raspberry Pi. The result of the code generation process are the
�les platform.h and platform.cpp for this speci�c �re detection development project. The
general structure of these �les is described in Section 6.3.3. Listings 6.11 and 6.12 show
examples for these �les with content of the speci�c application example.

1 #include "interfaces/IGpio.h"
2 #include "interfaces/IUart.h"
3 #include "internal/Gpio.h"
4 #include "internal/Uart.h"
5

6 namespace holmes {
7 typedef internal::Gpio<0,1> InfraredSensor;
8 typedef internal::Gpio<0,2> GasSensor;
9 //Omitted: Similar typedefs for other GPIOs
10

11 //UART<0> refers to the UART that operates on pins 8 and 10
12 typedef internal::Uart<0> SMSServiceUart;
13

14 void init();
15 }

Listing 6.11: Generated code for the �le platform.h. The example uses the libraryWiringPi,
which provides its own pin numbering. For example, the pin number 2,
referenced in line 8 to provide an alias for the gas sensor, corresponds to
pin 13 in the (physical) pin layout shown in Figure 6.9.

1 #include "platform.h"
2 #include <stdlib.h>
3 #include <termios.h>
4 #include <fcntl.h>
5 #include <unistd.h>
6 #include <cstdio>
7 #include <wiringPi.h>
8

9 static void initGpio() {
10 pinMode(2, INPUT) //Gas sensor
11 pinMode(0, INPUT) //Infrared sensor
12 //Omitted: configuring the remaining GPIOs in a similar manner
13 }
14

15 //Filedescriptor used by HAL realization (internal::Uart) to send and receive data
16 int uart0_filestream;
17 static void initUart() {
18 //Open UART0 on pins 8 and 10
19 uart0_filestream = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY);
20

21 //Configure options
22 struct termios options;
23 tcgetattr(uart0_filestream, &options);
24 options.c_cflag |= B9600; //Baudrate
25 options.c_cflag |= PARENB; //Use parity bit
26 options.c_cflag &= ~PARODD // Even parity bit
27 //Omitted: Further configuration options
28

29 //Execute configuration
30 tcflush(uart0_filestream, TCIFLUSH);
31 tcsetattr(uart0_filestream, TCSANOW, &options);
32 }
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33

34 void init() {
35 initGpio();
36 initUart();
37 }

Listing 6.12: Generated code for the �le platform.cpp. The example uses the library
WiringPi, which provides its own pin numbering. For example, the pin
number 2, referenced in line 10 to initialize the gas sensor, corresponds to
pin 13 in the (physical) pin layout shown in Figure 6.9.

Listing 6.11 de�nes aliases for the hardware interfaces utilized in the application example.
Developers may use these aliases to refer to the hardware interfaces without requiring
knowledge about hardware details, e.g., the speci�c pin number of a GPIO. For example,
line 8 of Listing 6.11 allows developers to access the GPIO on pin 13 by referring to it as
a GasSensor in the application-speci�c code (cf. package app in Section 6.3.1). As the
speci�c pin of GasSensor does not appear in the application-speci�c code, porting this
code to another microcontroller is simpli�ed, as only the de�nition of the alias in platform.h
(newly generated for the new microcontroller) needs to be modi�ed.
The �le platform.cpp, which is shown in Listing 6.12, initializes the hardware interfaces

utilized in the application. For the GPIOs (cf. lines 9-13 Listing 6.12), this corresponds to
con�guring them in input mode, e.g., the sensors, or in output mode, e.g., the alarm buzzer
of the �re detector. For the UART (cf. line 16-32 in Listing 6.12), the main con�guration
options are the baudrate, as well as the con�guration of the parity bit.
The generated �les platform.h and platform.cpp have to be included in the speci�c de-

velopment project of the MDD tool used to implement the �re detection application (IBM
Rhapsody in case of the application example), along with the HAL interfaces and their
controller-speci�c implementation for the Raspberry Pi (cf. packages initial_con�g, inter-
faces and internal in Section 6.3.1). The HAL and its controller-speci�c implementation
may be used by developers to read from the hardware sensors, e.g., the CO sensor, during
runtime. The inclusion of these development artifacts may be automated by using the
reverse engineering functionalities of the MDD tool, e.g., as described in Section 6.4.
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This chapter evaluates the concepts presented in Chapters 4 to 6. Section 7.1 evaluates
the runtime overhead that occurs due to the model transformations presented in this
thesis. A potentially large runtime of these transformations may hinder a developer's
work�ow and thus reduce the positive impact of the presented code generation approach
on a developer's productivity. Section 7.2 evaluates the runtime and memory overhead
of the code that is generated by the model transformations at the target level. Safety-
critical systems are often implemented on resource-constrained devices. The additional
runtime and memory overhead of the generated safety mechanisms may require the use
of a less resource-constrained microcontroller than would be used if no safety mechanisms
are included in the application. Such less resource-constrained microcontrollers are often
more expensive from a monetary perspective, thus increasing the market price of the �nal
product. Furthermore, the runtime overhead of the generated safety mechanisms at the
target level has an impact on the timing behavior of the application. It has to be considered
during timing analysis in order to ensure that the application does not fail to meet its timing
constraints due to the presence of the safety mechanisms.

7.1 Scalability of Model Transformations

This section evaluates the scalability of the model transformations presented in Chapters 4
to 6. Depending on the speci�c type of model transformation, they are executed either
frequently, e.g., before every time code is generated from the model, or infrequently, e.g.,
only when the requirements of the system change. For both cases, a high runtime of the
model transformations may impede the work�ow of the developer. Thus, the scalability
of the model transformations is an indicator of the extent to which a developer's work�ow
may be impeded by using the approach presented in this thesis.
Section 7.1.1 evaluates the scalability of the concepts presented in Chapter 4, i.e., the

automatic parsing and application of safety requirements within the model. Section 7.1.2
evaluates the scalability of the concepts presented in Chapters 5 and 6, i.e., the automatic
generation of software-implemented safety mechanisms and the automatic initialization of
hardware-implemented safety mechanisms.
The experiments are conducted on a �Dell Precision M4800 Workstation� notebook, with

an Intel Core i7-4810MQ processor running at 2.80GHz and 32GB RAM. Each measure-
ment is repeated ten times and the arithmetic mean is used for evaluation in order to
reduce any in�uences of the operating system scheduling on the runtime. Windows 10 is
used as the operating system.

7.1.1 Scalability of the Automatic Application of Requirements to the
Model

This section evaluates the scalability of the approach presented in Chapter 4, i.e., parsing
the safety requirements with the ANTLR framework and subsequently applying the cor-
responding safety stereotypes to the application model (for software-implemented safety
mechanisms) or setting the correct con�guration in the PinCon�g tool (for hardware-imple-
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Figure 7.1: Evaluation setup for measuring the runtime for parsing and applying safety
requirements for a software-implemented safety mechanism. Rectangles with
a solid line indicate development artifacts before and after transformation, re-
spectively. The rectangle with the dotted line indicates the transformation
steps whose total runtime is measured in the evaluation. Arrows indicate the
direction of the transformation.

mented safety mechanisms). Section 7.1.1.1 describes the experiment setup, Section 7.1.1.2
presents the results of the experiments and Section 7.1.1.3 discusses these results.

7.1.1.1 Setup

This section describes the experiment setup for measuring the runtime for parsing and
automatically applying the safety requirements to the model. The prototype GUI described
in Section 4.4 is used to create safety requirements that comply with the ANTLR syntax
described in Section 4.2. The speci�c contents of the requirements have no impact on the
runtime of the parsing process or the application to the model, e.g., as the runtime for
parsing an integer does not depend on the actual value of this integer. Thus, the exact
values for each requirement, e.g., the exact integer values for the upper or lower bound of
a numeric range check, are chosen arbitrarily.
In the �rst line of experiments, requirements for software-implemented safety mecha-

nisms are created as described above. Subsequently, the export function of the GUI tool
from Section 4.4 is used to apply corresponding safety stereotypes in the application model.
The runtime is measured from the moment the export button is clicked until the last stereo-
type has been applied in the application model, i.e., in the MDD tool IBM Rhapsody [205].
Figure 7.1 shows a summary of this process, as well as the transformation steps that are
executed automatically during the process. The measured runtime is the sum of these
transformation steps.
In the second line of experiments, requirements for hardware-implemented safety mecha-

nisms are created. The export function of the GUI tool is used to parse these requirements
and set the corresponding con�guration in the PinCon�g tool for the speci�ed hardware
interfaces. The runtime is measured from the moment the export button is clicked until
the last hardware interface for which a requirement exists is con�gured in the PinCon�g
tool. Figure 7.2 shows a summary of this process, as well as the transformation steps that
are executed automatically during the process. The measured runtime is the sum of these
transformation steps. In order to study the same number of requirements for hardware-
and software-implemented safety mechanisms, multiple requirements for the same hard-
ware interface have been included in the experiment, as there is a physical limit on the
number of available hardware interfaces on a given microcontroller. Such a recon�guration
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Figure 7.2: Evaluation setup for measuring the runtime for parsing and applying safety
requirements for a hardware-implemented safety mechanism. Rectangles with
a solid line indicate development artifacts before and after transformation, re-
spectively. The rectangle with the dotted line indicates the transformation
steps whose total runtime is measured in the evaluation. Arrows indicate the
direction of the transformation.

of a hardware interface is carried out via the exact same code as the initial con�guration of
a hardware interface in the PinCon�g tool, thus this choice does not in�uence the results.

7.1.1.2 Results

This section describes the results of the scalability experiments regarding the automatic
parsing of safety requirements and their subsequent automatic application in the model.
Figure 7.3 shows these results. For both software and hardware safety requirements, a
linear runtime of the transformation process is discernible. However, the runtime for
applying the software requirements is larger than for hardware requirements by several
orders of magnitude. While the time to parse these requirements is similar for both types
of requirements (about 50ms to 500ms depending on the number of requirements), the
process of applying the information from this parsing process in Rhapsody (for software
requirements) or the PinCon�g tool (for hardware requirements) di�ers drastically. In
the PinCon�g tool, the process of setting the requirements is implemented as setting the
values in a Map data structure, which has a negligible runtime (< 50ms). For software
requirements, on the other hand, the Java API of Rhapsody is used to create stereotypes
that represent the software requirements. These are subsequently applied to the model
via the API. This interaction with the Rhapsody API, especially the application of the
created stereotypes to model elements, is slow compared to the PinCon�g tool. This leads
to the large di�erence in runtime for both types of requirements.

7.1.1.3 Discussion

This section discusses the results presented in Section 7.1.1.2. This includes a discussion
on the impact of the model transformations on the work�ow of a developer, as well as a
discussion of the validity of the results.

Impact on the work�ow of a developer: For a number of 400 requirements, the to-
tal runtime for the automatic parsing process and con�guration in the PinCon�g tool for
hardware-implemented safety mechanisms is below one second. The runtime for applying
the safety stereotypes that describe software-implemented safety mechanisms is consider-
ably larger (more than 10s, but less than 15s for 400 requirements). Research has found
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Figure 7.3: Runtime for parsing safety requirements and applying the corresponding model
representation of the safety mechanism (adapted from [100]).

that a user's work�ow is impeded in case waiting times for the execution of some com-
putational request take longer than 15s [160]. The results show that this threshold is
not exceeded by the prototype implementation for a number of 400 requirements, i.e., the
runtime for the automatic parsing and application of requirements does not impede the
work�ow of a developer in case of less than 400 requirements. Even for a larger number of
requirements, impeding the work�ow of the developer may be acceptable, as the runtime
only occurs when the safety requirements for the application change or a new requirement
is introduced. While such changes may occur in a development process, they are most
likely infrequent occurrences. Thus the work�ow of the developer in its entirety is largely
una�ected by the runtime of the proposed model transformations.

Validity of the results: The results described in Section 7.1.1.2 are speci�c to the pro-
totype implementation presented in this thesis and results may di�er for implementations
with other design choices, e.g., using another parsing framework than ANTLR or another
MDD tool than IBM Rhapsody. However, the results demonstrate the general feasibility of
the approach in a proof-of-concept manner, i.e., they show that it is possible to automate
the process of parsing requirements and applying them automatically in the application
model without necessarily impeding the work�ow of a developer.

7.1.2 Scalability of the Code Generating Model Transformations

This section evaluates the scalability of the model transformations that generate software-
implemented safety mechanisms (cf. Chapter 5) or initialize hardware-implemented safety
mechanisms (cf. Chapter 6). Section 7.1.2.1 describes the experiment setup, Section 7.1.2.2
presents the results of the experiments and Section 7.1.2.3 provides a discussion of these
results.
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Figure 7.4: Evaluation setup for measuring the runtime for generating software-
implemented safety mechanisms. Rectangles with a solid line indicate devel-
opment artifacts before and after transformation, respectively. The rectangle
with the dotted line indicates the transformation steps whose total runtime is
measured in the evaluation. Arrows indicate the direction of the transforma-
tion.

7.1.2.1 Setup

This section describes the experiment setup for measuring the runtime overhead of the
model transformations that generate software- and hardware-implemented safety mecha-
nisms. The experiment setup for them is as follows:

� The generation for the software-implemented safety mechanisms is integrated in the
code generation process of the MDD tool IBM Rhapsody [205] via its Java API. Thus,
the runtime of the model transformations is measured by taking the time right before
the �rst code statement regarding these model transformations is executed and right
after the last code statement regarding these transformations has �nished. Chap-
ter 5 describes the code generation process for four distinct software-implemented
safety mechanisms. The runtime of the corresponding model transformations is mea-
sured separately for each safety mechanism. For this purpose, a selected number
of model elements is annotated with the corresponding safety stereotypes (from 20
to 200). Subsequently, the runtime required to transform this selected number of
model elements is measured. Figure 7.4 shows a summary of this process, as well as
the transformation steps that are executed automatically during the process. The
measured runtime is the sum of these transformation steps.

� For hardware-implemented safety mechanisms, the model transformation process in-
volves the code generation that creates the initialization code for the hardware inter-
faces, as well as the subsequent reverse engineering process to incorporate the created
entities into the model. A script �le is used to trigger both of these processes and
the runtime of the transformations is measured by taking the time at the start and
the end of this script. Figure 7.5 shows a summary of this process, as well as the
transformation steps that are executed automatically during the process. The mea-
sured runtime is the sum of these transformation steps. For the experiments, code
is generated for the In�neon Aurix TC297 microcontroller [111], as it o�ers a large
number of available hardware interfaces. This is more suited to study the scalability
of the approach than a microcontroller with a lower number of hardware interfaces.
More speci�cally, code for a mix of UART and GPIO interfaces is generated. The
total number of these interfaces is between 14 and 44 for the experiments, which
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Figure 7.5: Evaluation setup for measuring the runtime for generating hardware-
implemented safety mechanisms. Rectangles with a solid line indicate devel-
opment artifacts before and after transformation, respectively. The rectangle
with the dotted line indicates the transformation steps whose total runtime is
measured in the evaluation. Arrows indicate the direction of the transforma-
tion.

consist of 4 UARTs and a multiple of 10 GPIOs each. This is a smaller number of
model elements that are subject to a transformation than for software-implemented
safety mechanisms, because for hardware-implemented safety mechanisms there is
the necessity of the corresponding number of physical hardware interfaces actually
being present on the microcontroller.

7.1.2.2 Results

This section describes the results of the scalability experiments regarding the runtime
of the model transformations that generate hardware- and software-implemented safety
mechanisms. Figure 7.6 shows the results. For both hardware- and software-implemented
safety mechanisms, a linear runtime of the model transformations is discernible. This is
explained by the fact that a �xed number of transformation steps is performed for each
model element. The runtime for the generation of hardware-implemented safety mecha-
nisms is larger than for software-implemented safety mechanisms. While the parsing of the
XML export of the PinCon�g tool and the actual code generation process based on this
information is relatively fast (less than 500ms for all evaluated numbers of hardware inter-
faces), the subsequent automatic reverse engineering process to include this code within
the Rhapsody model makes up the bulk of the measured runtime.
For software-implemented safety mechanisms, the runtime for the model transformations

for error detection for attributes, timing constraint monitoring and voting is similar and
di�ers by less than 100ms for a given number of model elements. The runtime for the
model transformations for graceful degradation increases faster with the given number of
model elements than for the other three software-implemented safety mechanisms. This
is due to a higher (but �xed) number of transformation steps being performed per model
element. However, even if graceful degradation is generated for 200 model elements the
runtime is still below 1s.

7.1.2.3 Discussion

This section discusses the results presented in Section 7.1.2.2. This includes a discussion
of the generation time for hardware-implemented safety mechanisms, as well as software-
implemented safety mechanisms. Furthermore, the validity of the results is discussed.
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Figure 7.6: Runtime for generating software- and hardware-implemented safety mech-
anisms (adapted from [100]). Note that the measurements for hardware-
implemented safety mechanisms have only been conducted for a smaller number
of generated elements than software-implemented safety mechanisms, due to
the necessity of a corresponding number of physical hardware interfaces being
available on the studied microcontroller.
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Figure 7.7: Code generation process and its constituent parts (with example representa-
tions). Rectangles indicate development artifacts, while the arrows indicate the
direction of the generation.

Model transformations that generate hardware-implemented safety mechanisms: While
the model transformations for software-implemented safety mechanisms are executed every
time code is generated from the application model, the transformations for the hardware-
implemented safety mechanisms are only executed in case the developer manually starts
this process via the PinCon�g tool. Thus, although the runtime for the model transforma-
tions for hardware-implemented safety mechanisms is larger than for software-implemented
safety mechanisms, it is unlikely to impede the work�ow of the developer, as this additional
runtime only occurs when the con�guration for the hardware interfaces of the target micro-
controller is changed by the developer. Furthermore, this runtime is below the threshold of
15s, after which the work�ow of a user is negatively impacted by waiting times according
to research [160].

Model transformations that generate software-implemented safety mechanisms: As
stated in the previous subheading, the runtime for the generation of software-implemented
safety mechanisms occurs every time source code is generated from the model with the
MDD tool. The runtime of this process is less than 1s for a number of 200 protected model
elements. This is a time frame that is noticeably smaller than the runtime for the actual
code generation from the MDD tool, which, depending on the number of model elements
in the MDD project, is in the range of a few seconds. This is a multitude of the runtime
required by the model transformations that generate safety mechanisms and thus the model
transformations proposed in this thesis may potentially not even be noticed by developers.
Nevertheless, the threshold of 15s, until a developer's work�ow is impeded, has to take
both constituent parts into consideration, i.e., the runtime of the model transformations
generating the safety mechanisms, as well as the runtime of the actual code generation.
This is shown in Figure 7.7. In-depth studies of the runtime of the code generation by the
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MDD tool, i.e., IBM Rhapsody in the case of this evaluation, are considered out of scope
for this thesis. The reason for this is that the code generation engine of the MDD tool
is proprietary and may thus be seen as a black box on whose runtime the author of this
thesis has no in�uence. Furthermore, an exact quanti�cation of the runtime of the code
generation depends on a large number of parameters, e.g., the type of model elements for
which code is generated (attributes, operations, classes,...) and the speci�c con�guration
of these model elements, e.g., the number of lines of code inside an operation. In theory,
the runtime of the code generation of the MDD tool should scale linearly with the number
of model elements for which source code is generated, as each model element, e.g., an
attribute or an operation, has an equivalent in source code that needs to be generated.
One conclusion that may be drawn from this, is that if the work�ow of a developer

is impeded by the total runtime of the generation process, i.e, the total runtime is larger
than 15s, then this impediment would also occur without the additional generation of safety
mechanisms in most cases. This follows from the consideration that both types of runtime
scale linearly and that the runtime for the code generation of the MDD tool is a multitude
of the runtime of the model transformations that generate software-implemented safety
mechanisms. There may exist theoretical edge cases, where the additional runtime of the
model transformations for the generation of safety mechanisms is responsible for a total
generation time that is slightly larger than the threshold of 15s, e.g., 16s, while the runtime
of the actual code generation of the MDD tool is slightly below the threshold, e.g., 14s.
However, such cases are of little practical relevance, as the waiting time that constitutes
an impediment to the developer's work�ow may be seen as a continuous spectrum. Thus,
a developer's productivity is going to be similarly a�ected, regardless of whether the total
generation time is slightly above or slightly below 15s.

Validity of the results: The results described in Section 7.1.2.2 are speci�c to the pro-
totype implementation presented in this thesis, as, e.g., the use of another MDD tool and
its associated API or model transformation language may result in di�erent values for the
measured runtime. Nevertheless, the linear scalability of the model transformations shown
by the results �ts with theoretical deliberations, as a �xed number of transformation steps
is necessary for each model element for which a safety mechanism should be generated.
Thus, this linear scalability is going to be present in alternative implementations as well.
Furthermore, the runtime evaluations demonstrate the general feasibility of the approach
in a proof-of-concept manner, i.e., they show that it is possible to automatically generate
safety mechanisms in an MDD approach without necessarily impeding the work�ow of a
developer.

7.2 Overhead of the Generated Code at Target-Level

This section evaluates the overhead of the generated safety mechanisms at the target-level,
i.e., the additional memory usage and runtime that occurs by including the generated safety
mechanisms within an application. The speci�c evaluation setups for these are described
in Sections 7.2.1.1 and 7.2.2.1. Both evaluation setups have in common that they use a
Raspberry Pi4B with the �Raspbian Buster� operating system as the target platform. The
g++ compiler (version 8.3.0) is used to compile the code for the generated safety mecha-
nisms with the optimization level �-O0�. This e�ectively turns o� compiler optimizations.
The reason for turning o� compiler optimizations for the evaluation originates from Section
6.6.4.2 in the safety standard DO-178B [213]. It demands the validation and veri�cation
of not only the source code for a safety-critical system, but also the object code, i.e., com-
piled code, in case there is no direct traceability between the source code and the object
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code. Compiler optimizations break such a direct traceability between source and object
code. Thus, in safety-critical system development, compiler optimizations are used only
rarely [74, 145].
The overhead measurements are conducted only for the software-implemented safety

mechanisms presented in Chapter 5. For the initial con�guration of hardware-implemen-
ted safety mechanisms described in Chapter 6, the memory overhead is limited to a few
lines of code that are used to instruct the microcontroller to initiate the con�guration. No
additional data is stored at the application level. The runtime overhead of these hardware-
implemented safety mechanisms, in turn, depends on the speci�c microcontroller at hand
and is not dependent upon the concepts presented within this thesis. Thus, a comparison
of these di�erent runtime overheads for a multitude of microcontrollers is considered out of
scope for this thesis. Section 7.2.1 presents the memory overhead for software-implemented
safety mechanisms, while Section 7.2.2 studies the runtime overhead. Section 7.2.3 provides
a comparison of the memory and runtime overhead with results from the literature.

7.2.1 Memory Overhead

This section evaluates the memory overhead of the generated safety mechanisms described
in Chapter 5 at the target level. Safety-critical systems are often embedded systems that are
implemented on microcontrollers with limited resources, e.g., memory. Thus, a small mem-
ory overhead of the generated safety mechanisms allows for their usage even on memory-
constrained devices. Section 7.2.1.1 describes the experiment setup, while Sections 7.2.1.2
and 7.2.1.3 present the absolute and relative memory overhead. The results are discussed
in Section 7.2.1.4.

7.2.1.1 Setup

This section describes how the memory overhead for the generated software-implemented
safety mechanisms is measured. Section 5.5.3.2 describes the corresponding software archi-
tecture for these safety mechanisms. From this, three constituent elements that in�uence
the memory overhead may be identi�ed:

� Error detectors, which are added to classes that should be protected via composi-
tion. This thesis presents a code generation approach for three categories of error
detection mechanisms, i.e., error detection for attributes (cf. Section 5.6), voting (cf.
Section 5.7) and timing constraint monitoring (cf. Section 5.8). The memory over-
head of each category of error detection mechanism di�ers from each other and also
depends on the speci�c safety mechanism used from this category. For this reason,
these speci�c safety mechanisms are evaluated separately. The memory overhead of
the safety mechanism error detection for attributes additionally depends on the size
of the protected attribute. Thus, this overhead is measured for data types with sizes
of 64, 32, 16 and 8-bit, respectively. For each error detection mechanism, memory
optimizing con�gurations are chosen. This entails:

� The use of a global error handler instead of local error handling or graceful
degradation. The e�ect of this choice on the validity of the evaluation is further
discussed in the bullet point on error handlers below.

� No error identi�er. The error identi�er is a string and thus may be arbitrarily
large and consume an arbitrary amount of memory. For this reason, the eval-
uation reports the values with no error identi�er. In real world scenarios, the
memory overhead increases by one byte per character of the error identi�er.
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7.2 Overhead of the Generated Code at Target-Level

� Error handlers, which are added along with the error detectors, i.e., for each error
detector, an error handler is added to the application as well. There are three types
of error handling discussed in this thesis. Two of these types (local and global error
handling) depend on a manual implementation of the developer to supply an error
handling routine that is called automatically by the generated code. The remaining
type of error handling is graceful degradation and may be generated entirely without
the need for a manual implementation (cf. Section 5.9). As graceful degradation
may be generated completely automatically and is mentioned as a safety mechanism
in the safety standard IEC 61508 [116], its memory overhead is evaluated separately
in this section. The memory overhead of global error handling, on the other hand,
is evaluated only implicitly in the sense, that, on the implementation level, a global
error handler is a member variable of the classes that realize the error detection mech-
anisms. Thus, the memory overhead of the global error handler is already contained
in the measurements for the memory overhead of the error detection mechanisms.
For this purpose, the evaluation uses an empty method body for the implementation
of the global error handler, as the error handling of real applications may become
arbitrarily complex and thus consume an arbitrary amount of memory. Thus, the
evaluation for the error detection mechanisms assumes a best case scenario. In a real
world scenario, the memory overhead of the manually-implemented error handling
routine exists on top of the memory overhead evaluated in this thesis. Local error
handling is not evaluated in this thesis, as its implementation is similar to global
error handling and only adds a single pointer as additional memory overhead com-
pared to global error handling. Thus, the memory overhead of local error handling
may be inferred from the results for global error handling.

� Interfaces and enumerations that are used by the generated code and are added ex-
actly once to the application, regardless of how many safety mechanisms are included
in the application. The memory overhead of these entities may not be evaluated on
their own, as they exist within the objects that make use of them after compilation,
e.g., an enumeration value becomes a numeric literal inside an object. Thus, the
memory overhead of these entities is evaluated implicitly by measuring the memory
overhead of the error detectors and error handlers.

Recall that error detection mechanisms are added via composition to existing classes (cf.
Section 5.5.3.2). For these composite error detection mechanisms, the memory overhead is
measured by using the built-in C++ operator sizeof, which measures the number of bytes
allocated for a given data type. In this case, the data type used for the sizeof operator is
the composite error detection object added to the existing class.
While this approach works for the safety mechanisms error detection for attributes,

timing constraint monitoring and voting, it is not applicable to the safety mechanism
graceful degradation, which is also realized in this thesis. In contrast to the other listed
mechanisms, graceful degradation is not an error detection mechanism, but rather an error
handling mechanism. Thus, in this case, the sum of the individual size of the added objects
is used for the absolute memory overhead. This includes the loader objects responsible for
loading a new state of a consumer, as well as the additional data added to the assessor,
which determines which consumer is a�ected by an error.
One issue to keep in mind for the evaluation is that all safety mechanisms are con�gured

via non-type template parameters. During compilation, these values are substituted with
corresponding constant expressions, e.g., constant numeric literals. Thus, the use of these
non-type template parameters has a similar e�ect on memory usage as hard-coded variables
inside a C++ statement, i.e., they only in�uence the size of the static binary with the
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Figure 7.8: Absolute memory overhead of the generated safety mechanisms in bytes
(adapted from [100]).

program instructions, but have no e�ect on the memory overhead of the objects allocated
in the RAM.

7.2.1.2 Results: Absolute Memory Overhead

This section presents the measured memory overhead for the generated safety mechanisms.
Figure 7.8 shows the absolute memory overhead for each type of safety mechanism. This
overhead is discussed separately for each mechanism in the following paragraphs:

Absolute memory overhead of error detection for attributes: In this thesis, a concept
for the generation of four di�erent safety mechanisms, each targeting the protection of
attributes, is presented in Section 5.6. These are the Range-, Update-, CRC- and M-out-
of-N-check. TheM-out-of-N-check is used as a 2-out-of-3-check (TMR) within this section,
as it is the most common realization of the M-out-of-N-check [10]. This limits the validity
of the results for theM-out-of-N-check to this speci�c realization. The results show that the
absolute overhead of the Range-, Update- and CRC-check is independent of the size of the
protected attribute. The reason for this is that these checks do not add any replicas of the
protected attribute, but rather only introduce new variables whose size is independent of
the size of the protected attribute, e.g., a checksum for the CRC-check. Only the overhead
for TMR scales with the size of the protected attribute, as it allocates copies of the pro-
tected attribute. For each check, the overhead consists of a reference to the error handling
mechanism, as well as a mechanism-speci�c overhead. This mechanism-speci�c overhead
consists of a checksum for the CRC-check and an std::chrono::milliseconds ob-
ject for the Update-check. The upper and lower limit for the Range-check are not included
in the overhead measured by the sizeof command, as they are speci�ed as template
parameters and are not stored inside the object (cf. Section 7.2.1.1). TMR does not incur
any mechanism-speci�c overhead besides the allocation of the replicas. Thus, the absolute
overhead depends on the speci�c type of safety mechanism and the size of the protected
data type. This varies between 2 and 24 bytes.
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7.2 Overhead of the Generated Code at Target-Level

Absolute memory overhead of timing constraint monitoring: For three of the four
timing constraint monitoring approaches presented in Section 5.8 (deadline supervision,
concurrent watchdog and interrupt-based hardware timer) the memory overhead is mea-
sured in Figure 7.8. External hardware watchdogs are excluded from the evaluation, as
their usage does not incur a memory overhead at the software-level. The watchdog variants
operate concurrently (thread- and interrupt-based) and require additional status variables
to track whether the time limit has been violated in the main thread. For this reason,
the watchdog variants incur a slightly larger memory overhead (8 bytes) than the strictly
sequential deadline supervision, which has an overhead of 40 bytes. Note that the speci�c
byte-values are implementation-dependent, whereas the general trend, i.e., thread- and
interrupt-based watchdogs incurring a higher memory overhead due to additional status
variables, is going to be present in alternative implementations as well.

Absolute memory overhead of voting: Figure 7.8 only shows a single bar for the memory
overhead of the voting safety mechanisms, as the memory usage of the di�erent variants is
equal. The memory overhead consists of a reference to the error handler in case the voting
fails, as well as the weights that may be applied to each input, e.g., counting a certain
input twice in majority voting. In total, the overhead of these elements is below 10 bytes.

Absolute memory overhead of graceful degradation: The absolute memory overhead
for graceful degradation totals 48 bytes. Most of these (40 bytes) are allocated by the
loader entity that is added to the consumer. This mostly consists of variables to manage
the degradation state and the two fallback providers that have been used for this evaluation
example. The remaining 8 bytes overhead are allocated by the assessor, which keeps track
of the di�erent consumers and may instruct them to load their next fallback provider.

7.2.1.3 Results: Relative Memory Usage

For the safety mechanism error detection for attributes, primitive attributes are replaced
with a wrapper class that protects these attributes. This allows for the calculation of the
relative memory usage of the wrapper class compared to the original, primitive attribute.
This section presents the results of this relative comparison, which are displayed in Fig-
ure 7.9. Besides error detection for attributes, no relative memory usage is evaluated for
the other safety mechanisms presented in Chapter 5. This is because these mechanisms
only add software constructs during the model transformations and do not replace any ex-
isting software elements. Thus, there exists no baseline for these safety elements on which
a relative comparison may be conducted.
Figure 7.9 shows, that for each of the checks whose absolute memory overhead is in-

dependent of the size of the protected data type, the relative memory usage decreases
proportionally with an increasing size of the protected data type. For TMR, whose abso-
lute overhead depends on the size of the protected data type, the relative memory usage
is the same for data types of the sizes 64-, 32- and 16-bit. Only for 8-bit types there is
a slight increase in the relative memory usage, which is the result of byte padding due to
automatic memory alignment by the compiler. Due to this, an additional byte is allocated,
which is an additional 100% memory overhead when the baseline is only a single byte (8-bit
datatype).

7.2.1.4 Discussion

This section discusses the results presented in Sections 7.2.1.2 and 7.2.1.3. This discus-
sion includes the impact of the generated safety mechanisms on the memory usage of
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Figure 7.9: Relative memory usage of error detection for attributes [100]. A value of 1 is
used as the baseline, i.e., no memory overhead. A value of 2 means a 100%
memory overhead compared to the baseline.

the application, as well as a discussion of tradeo�s between memory overhead and safety.
Furthermore, the validity of the results is discussed.

Impact of the generated safety mechanisms on the memory usage of the application:
For realistic use cases, only the safety mechanisms error detection for attributes and timing
constraint monitoring are going to be included in safety-critical applications by developers
in a signi�cant number. The mechanisms voting and graceful degradation, on the other
hand, may be expected to be used only a couple of times in the application. As the absolute
memory overhead of these latter two mechanisms is relatively small (well below 100 bytes),
their impact on the memory usage of the entire application is small as well.
For error detection for attributes and timing constraint monitoring, the impact on the

total memory usage of the application depends on how many of these safety mechanisms are
used in the application. For timing constraint monitoring, this number may be elegantly
reduced by only protecting operations that aggregate several sub-operations, provided the
individual sub-operations do not necessarily require an individual timing constraint. For
the error detection for attributes, the number of protected elements may be reduced by
only protecting those that are truly safety-critical instead of every attribute within the
application.

Tradeo�s between memory overhead and safety: From a memory usage versus safety
perspective, timing constraint monitoring reveals a slight tradeo�. While the sequential
deadline supervision requires 8 bytes less memory than the concurrent watchdog variants,
the watchdogs are capable of signaling the violation of the timing constraint as soon as it
occurs instead of only when the operation has �nished. This is especially important for
long running operations, where a signi�cant amount of time may pass after the violation
of the timing constraint before it is detected. Additionally, in case the error detection
for attributes mechanism is used for the purpose of software-based memory protection, the
results indicate that for small data types triple modular redundancy incurs less memory
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7.2 Overhead of the Generated Code at Target-Level

overhead than CRC-based mechanisms, while the reverse is true for large data types. This
is because the memory overhead for the CRC-based mechanism is independent of the size
of the protected data type, while triple modular redundancy scales with it.

Validity of the results: The results described in Sections 7.2.1.2 and 7.2.1.3 are mostly
speci�c to the software architecture proposed in Chapter 5. For example, the architecture
uses non-type template parameters to provide a uni�ed way to instantiate error detection
mechanisms, i.e., without any constructor parameters. This is a key aspect of the approach
to keep the code generation truly automatic through several layers of composition (cf.
Chapter 5). However, in case the research community �nds alternative solutions to this
challenge that enable the use of constructor parameters in this context, this alternative
solution might use local member variables instead of non-type template parameters to
con�gure the safety mechanisms. This implies that the con�guration parameters are stored
within the actual objects representing the safety mechanisms, instead of the static binary
as is the case with the concept presented in this thesis. Thus, the RAM usage in this
hypothetical alternative solution would be higher than in the solution presented in this
thesis. Nevertheless, the evaluation demonstrates the general feasibility of the approach
in a proof-of-concept manner, i.e., that the automatic generation of safety mechanisms is
possible with an acceptable memory overhead, in case the application of safety mechanisms
is limited to those elements of the application that are truly safety-critical.

7.2.2 Runtime Overhead

This section evaluates the runtime overhead of the generated safety mechanisms described
in Chapter 5. The runtime overhead incurred by these mechanisms is relevant, because
safety-critical systems are often subject to timing constraints, i.e., a speci�c task has to
�nish within a certain time limit [121, 122, 123]. Thus, the runtime overhead has to be
considered during system design in order to ful�ll these timing constraints. Section 7.2.2.1
describes the experiment setup, while Section 7.2.2.2 presents the results of these experi-
ments. Section 7.2.2.3 discusses the results.

7.2.2.1 Setup

This section describes the experimental setup used for the evaluation of the runtime over-
head of the generated software-implemented safety mechanisms. For the safety mechanism
error detection for attributes, the runtime of accessing the protected attribute and execut-
ing the error detection approaches is compared to the runtime of a conventional getter-
and setter-method.
For timing constraint monitoring, the runtime of an unprotected method is compared to

the runtime of the same method that additionally executes the timing monitoring mech-
anisms. For this evaluation, the unprotected method uses a for-loop that sums up the
numbers from one to one million, which takes about 4.8ms on the target evaluation plat-
form. For both error detection for attributes and timing constraint monitoring, the absolute
runtime overhead is calculated by subtracting the runtime of the unprotected method from
the runtime of the protected method. Additionally, the relative overhead is measured by
dividing the runtime of the protected method by the runtime of the unprotected method.
No runtime overhead is measured for the watchdog variant that relies on external micro-
controller hardware, as these results rely strongly on the evaluated hardware. As indicated
at the start of Section 7.2, a comparison of di�erent runtime overheads for a multitude of
microcontrollers is considered out of scope for this thesis.
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For the safety mechanisms voting and graceful degradation, no baseline comparison exists,
as both mechanisms add additional functionality to the system instead of only performing
a transparent check. Thus, for these two safety mechanisms, only the absolute overhead is
measured, as a relative overhead may not be calculated without a baseline. For voting the
absolute runtime overhead is the runtime of the di�erent voting strategies, e.g., majority
voting, for three input values. The number 3 is chosen for the number of inputs, because
most systems use between 3 to 5 voting inputs [144] and it may be used in conjunction with
the well-known TMR safety mechanism [10]. For graceful degradation, the absolute runtime
overhead is measured for the degradation process with ten consumers, i.e., ten consumers
have to switch to a fallback provider. This number of consumers is chosen arbitrarily, as,
to the best of the author's knowledge, there exists no typical number of consumers in a
graceful degradation scenario in the literature. The runtime of graceful degradation in real
world systems may di�er from these measurements, depending on whether they use more
or less consumers for a given provider.
For a single replication of these measurements, the respective baseline or safety mecha-

nism is executed one million times inside a for-loop, with a time measurement before and
after this loop. The time for a single execution is calculated by dividing the measured time
by one million. An exception to this is the measurement for the timing constraint moni-
toring safety mechanisms, where the mechanism inside the for-loop is only executed one
thousand times. This is due to the fact that the concurrent watchdog starts a thread for
each execution and the number of concurrently active threads on the evaluation platform
is limited by the operating system. This process is replicated 100 times and the values
reported in Section 7.2.2.2 are the arithmetic mean of these measurements. The arithmetic
mean is used, because the variance between the replications is an order of magnitude smaller
than the actual measurements. For example, if the actual measurement is 5 ∗ 10−7s, then
the variance is in the order of 10−8s. This is consistent for all measurements for all safety
mechanisms, as the only di�erence in execution time between replications originates from
the scheduler of the target operating system.

7.2.2.2 Results

This section presents the measured runtime overhead for the generated safety mechanisms.
The following paragraphs present absolute and relative runtime overheads for the generated
safety mechanisms.

Absolute runtime overhead: Table 7.1 shows the results for the absolute runtime over-
head. For the safety mechanism error detection for attributes, the runtime of accessing a
protected attribute is higher than for modifying this attribute for each speci�c detection
mechanism. This is, because the actual error detection check is performed when accessing
an attribute, e.g., for the Range-check the upper and lower bounds for the protected at-
tribute are checked besides actually reading the value of the attribute from storage. During
modi�cation, in contrast, no such check is performed. However, it should be noted that
for other safety mechanisms, e.g., CRC-check, there exists a similar computational load for
accessing and modifying the protected attribute, as in both cases the CRC value of the
protected attribute is calculated. Accessing the protected attribute is still slower than mod-
ifying it, because there is an additional if-condition that compares the current checksum
to the stored checksum during access to the protected attribute. Similar arguments can
be made for the Update-check and the M-out-of-N-check. The absolute overhead of each
mechanism is below 1µs, as the involved computations are relatively fast, e.g., a simple
if-else statement for the Range-check. The Update-check incurs the highest absolute
runtime overhead of the error detection mechanisms that protect attributes. The reason
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for this is that the application program has to communicate with the operating system
regarding the current system time. According to the measurements, this process is slower
than calculating a CRC checksum, for example.

Safety Mechanism Time (s) Safety Mechanism Time (s)

Range-Check (access)1 6.1 ∗ 10−8 Range-Check (modify)1 4.2 ∗ 10−8

Update-Check (access)1 7.5 ∗ 10−7 Update-Check (modify)1 6.9 ∗ 10−7

CRC-Check (access)1 1.4 ∗ 10−7 CRC-Check (modify)1 9.4 ∗ 10−8

M-out-of-N-Check (access)1 1.6 ∗ 10−7 M-out-of-N-Check (modify)1 5.5 ∗ 10−8

Deadline Supervision2 4.7 ∗ 10−5 Majority Voting3 1.3 ∗ 10−7

Concurrent Watchdog2 4.5 ∗ 10−4 Median Voting3 1.2 ∗ 10−6

HWTimer Watchdog2 1.2 ∗ 10−4 Average Voting3 1.0 ∗ 10−7

Graceful Degradation4 6.1 ∗ 10−7

Table 7.1: Absolute runtime overhead of the generated safety mechanisms. The superscript
numbers indicate the category to which each safety mechanism belongs. They
are listed as follows: superscript 1: error detection for attributes; superscript
2: timing constraint monitoring ; superscript 3: voting ; superscript 4: graceful
degradation.

For timing constraint monitoring, the absolute runtime overhead of each evaluated mech-
anism is below 1ms. The strictly sequential deadline supervision is an order of magnitude
faster than the watchdog-based mechanisms. The reason for this is the additional amount
of work executed at the beginning of the protected operation for the watchdog-based vari-
ants, e.g., creating and starting an operating system thread for the concurrent watchdog
variant.
The absolute runtime overhead for the di�erent voting mechanisms is below 1µs. The

runtime overhead for median voting is an order of magnitude higher than for majority-
and average voting, which is due to the multiple comparisons that are necessary to sort
the underlying inputs according to their size.
The absolute runtime overhead for executing the graceful degradation process for ten

consumers is below 1µs. As the number of computation steps in the degradation step is
�xed, this runtime scales linearly with the number of consumers.

Relative runtime overhead: For the safety mechanisms error detection for attributes and
timing constraint monitoring, Figure 7.10 shows the relative runtime overhead of these
mechanisms. The relative runtime overhead for error detection for attributes is calculated
by comparing the runtime of accessing/modifying a protected attribute with conventional
getters/setters that do not contain a safety check. For timing constraint monitoring, the
runtime of a protected operation is compared to the runtime of an unprotected operation
that executes the same method statements minus the protection-speci�c statements. Recall
that for voting and graceful degradation no relative runtime overhead may be calculated
as there exists no corresponding baseline (cf. Section 7.2.2.1).
The relative runtime overhead for error detection for attributes is relatively similar for

accessing or modifying the protected attribute. If the protected attribute is accessed, the
overhead is slightly larger (3.62 to 44.3 times larger than the baseline) than for modifying
the protected attribute (2.28 to 37.4 times larger than the baseline). This is because the
safety mechanism usually performs the actual error detection check when the protected
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Figure 7.10: Relative runtime overhead for the error detection for attributes and timing
constraint monitoring (adapted from [100]). A value of 1 is used as the base-
line, i.e., no runtime overhead. A value of 2 means a 100% runtime overhead
compared to the baseline. The bars for timing monitoring are just above the
baseline (cf. main text for speci�c values).

attribute is accessed, while modifying the protected attribute only updates mechanism-
speci�c information. For example, modifying the protected attribute when the CRC-based
check is applied results in the calculation of a new CRC checksum as overhead. When the
protected attribute is accessed, the current CRC checksum of the attribute also needs to
be calculated. Afterwards, these checksums are compared with each other, which is an
additional computation step that does not occur when the protected attribute is modi�ed.
This is re�ected by the respective relative runtime overheads, i.e., an overhead that is 8.02
times larger than the baseline for accessing the protected attribute and 5.11 times larger
than the baseline for modifying it.

Comparing the di�erent mechanisms of error detection for attributes with each other, the
Range-check has the lowest relative runtime overhead as it contains the smallest number
of added program instructions, i.e., only two comparisons regarding the lower and upper
bound when the protected attribute is accessed. The M-out-of-N-check performs a larger
number of comparisons, resulting in a larger relative runtime overhead. Compared to the
other three mechanisms, the Update-check is about 5 to 10 times slower than the other
checks. As stated for the absolute runtime overhead, this is because it is the only check
that has to communicate with the operating system.

Of special note are the results for the modi�cation of the protected attribute when the
Range-check is applied. Even though the Range-check does not execute any additional pro-
gram instructions when the protected attribute is modi�ed, the relative runtime overhead
is still 2.28 times larger than the baseline. There are two reasons for this:

1) Due to the software architecture described in Section 5.6, even if no actual program-
ming instructions are executed, the program still contains empty method implemen-
tations that originate from the inheritance structure. For each of these empty method
implementations, there is an additional implicit runtime overhead by pushing a cor-
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responding stack pointer with the return address on the call stack of the application,
as well as popping this stack pointer once the method is �nished.

2) The baseline for the relative overhead, i.e., setting a member variable to a new value
with a setter-method, is executed in roughly 1.7 ∗ 10−8s, a time frame small enough
that the interaction with the call stack actually has a measurable e�ect on the relative
runtime overhead. As an example for the in�uence of the call stack at this time frame,
two additional method calls that invoke methods with an empty implementation have
been added to the baseline. This modi�cation increases the runtime of the baseline
to 3.1 ∗ 10−8s. This is almost twice as much as the unmodi�ed baseline, an overhead
that solely originates from the interaction with the call stack.

The overhead originating from empty method implementations may be reduced by devi-
ating from the software architecture proposed in Section 5.6. The current architecture uses
the concept of composition to enable the use of multiple checks that may be con�gured
when instantiating the wrapper class for a protected attribute. The composite realizes an
interface, which may result in empty method implementations in case the speci�c check
does not have any logic to perform for one or more of these interface methods. An alter-
native software architecture, which does not use composites for the actual error detection
checks, but rather implements the respective functionality directly in the wrapper class,
would avoid these empty implementations of interface methods, e.g., when updating the
protected variable for the Range-check. However, this results in a reduced modularity
of the wrapper class. This, in turn, requires changes to the model transformations that
generate the source code for the safety mechanisms, i.e., creating the source code for the
error detection checks during transformation instead of being able to use pre-implemented
versions of this software that are merely instantiated. Thus, the design choice for reducing
the number of empty method implementations comes at the cost of reduced modularity of
the generated code and a larger runtime for the model transformations that generate the
safety mechanisms.
For timing constraint monitoring, the relative overhead of the approaches compared to

the baseline (cf. Section 7.2.2.1) ranges from 1% (deadline supervision) to 10% (concurrent
watchdog). Note that the absolute runtime overhead of these mechanisms is constant, i.e.,
the relative overhead becomes smaller in case the runtime of the baseline method increases.
Conversely, the relative overhead increases in case the runtime of the baseline method
decreases. The results presented in Figure 7.10, i.e., the overhead between 1% to 10%, has
been measured with a baseline operation whose runtime is around 4.8ms.

7.2.2.3 Discussion

This section discusses the results presented in Section 7.2.2.2. This discussion includes the
impact of the generated safety mechanisms on the overall timing behavior of the applica-
tion, as well as a discussion of tradeo�s between runtime overhead and safety. Furthermore,
the validity of the results is discussed.

Impact of the generated safety mechanisms on the overall timing behavior of the ap-
plication: The absolute runtime overhead of each safety mechanism for a single protected
element has a negligible impact on the overall timing behavior of the application, as each
runtime overhead is one or more orders of magnitude less than 1ms. In comparison, even
hard real-time systems, e.g., autonomous emergency braking systems in automobiles, often
only have timing constraints of several milliseconds [121]. Thus, the total impact of the
safety mechanisms voting and graceful degradation on the overall timing behavior of the
application is neglectable, as they are typically only applied to a few system elements.
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In contrast to voting and graceful degradation, the safety mechanisms error detection for
attributes and timing constraint monitoring may be applied to a large number of system
elements. Thus, while a single element protected with one of these two safety mechanisms
may only have a negligible impact on the timing behavior of the application, the application
of these mechanisms to many or even most of the respective system elements may have a
detrimental impact on the timing behavior of the application. The impact of the safety
mechanisms on the timing behavior is discussed in the following:

� For timing constraint monitoring, the impact on the timing behavior may be reduced
by only protecting those operations whose timing constraints are larger than 1ms.
For such operations, the relative runtime overhead of the monitoring is less than 10%,
as shown in Section 7.2.2.2. While this overhead still needs to be taken into account
for timing analysis approaches, e.g., [121, 122, 123], this relatively small overhead of
the automatically generated safety mechanism is unlikely to require any additional
design changes.

� For error detection for attributes, the overall impact on the timing behavior of the
application depends on how often a protected attribute is accessed or modi�ed by
the application. This is in�uenced by the number of the protected attributes in the
application and the individual frequency with which these are accessed or modi�ed.

An example revealing the importance of the modi�cation and access frequency of
the protected attribute is the application of the safety mechanism error detection for
attributes to an implementation of Dijkstra's algorithm from the MiBench embedded
benchmark suite [85]: The original benchmark is programmed in C and utilizes two
structs. As the prototype implemented in this thesis is intended for application to
object-oriented code, the benchmark is modi�ed as a C++ program. In essence, this
entails replacing the two structs of the original C benchmark with corresponding
classes that utilize getters and setters for their respective member variables. In total,
these two classes contain �ve member variables. This modi�ed benchmark is used
for two experiments:

� Experiment A: In this experiment, four out of �ve member variables in the pro-
gram are protected with a CRC-check. This leads to a relative runtime overhead
that is 1.7 times higher than the non-protected version of the implementation.

� Experiment B: In this experiment, the single member variable that has not been
protected in experiment A is protected. At the same time, the four member
variables that are protected in experiment A are not protected in experiment
B. Thus, there are four times as many protected attributes in experiment A
compared to experiment B. However, the runtime overhead in experiment B is
13.1 times higher than for the non-protected version of the implementation of
Dijkstra's algorithm.

Therefore, the overall impact on the timing behavior is application-dependent, as it
depends on the individual access frequency of the protected attributes. Nevertheless,
the results presented in Section 7.2.2.2 show a large relative runtime overhead for all
evaluated types of error detection for attributes, e.g., by a factor of 7 for CRC-based
checks. Thus, simply protecting every attribute in the application with the proposed
approach is infeasible for many applications with timing constraints. For such appli-
cations, it is necessary to limit this type of error detection to those attributes that are
actually safety-critical. Domain experts may help to decide whether a given attribute
of the application is safety-critical. Alternatively, fault-injection campaigns may be
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used to induce arti�cially created faults in a prototype of the application. The re-
sults of such a fault-injection campaign may o�er insights into which attributes, if
a�ected by a fault, have the most impact on the safety of the system [30, 31]. Thus,
expert opinion and fault-injection campaigns may be used to determine which at-
tributes should be protected. Furthermore, the runtime overhead for attributes that
are frequently accessed may be reduced by selecting a periodic check instead of a
check before every access. A periodic check's runtime overhead is independent of the
frequency with which the attribute is accessed.

A rough estimation on the maximum number of accesses to all protected attributes
on an end-to-end execution path, without negatively impacting the timing behavior
of the application, may be gained as follows: each of the error detection for attributes
checks has a runtime overhead of less than 10−6s = 10−3ms. Common timing con-
straints in safety-critical applications are in the range of single digit milliseconds [121].
Thus, the number of accesses to all protected attributes on an end-to-end execution
path should be less than 1000 in order to limit the runtime overhead of the safety
mechanisms to less than 1ms (10−6s ∗ 1000 = 10−3s = 1ms).

Tradeo�s between runtime overhead and safety: Comparing the di�erent realizations
of a safety mechanism with each other, the results presented in Section 7.2.2.2 show that
for voting, the speci�c voting strategy has a negligible impact on the runtime behavior of
the application. Thus, the selection of a speci�c voting strategy should be based on other
factors, e.g., their in�uence on the safety of the system.
For timing constraint monitoring, deadline supervision is an order of magnitude faster

than the watchdog-based approaches. However, the watchdog-based approaches o�er the
advantage of detecting the violation of a timing constraint as soon as it occurs, instead
of only after the current operation is �nished. Moreover, as stated above, the additional
runtime overhead of the watchdog-based approaches compared to deadline supervision
is less of a limitation for operations whose timing constraint is larger than 1ms. Thus,
for operations in which this is the case, watchdog-based approaches should be used. For
operations with a timing constraint smaller than 1ms, a detailed timing analysis is required
to determine whether the additional runtime overhead of the watchdog-based approaches
leads to a violation of the timing constraint. In such a case, deadline supervision should
be preferred over the watchdog-based variants in order to meet the timing constraint.
For error detection for attributes, the CRC- and the M-out-of-N-check (TMR) may both

be used for the purpose of software-based memory protection. Section 7.2.2.2 shows that
the runtime overhead of a CRC-based approach is smaller than for a TMR approach. As
a CRC-based approach also requires less memory overhead for attributes with a size ≥ 32-
bit, CRC-based approaches should always be preferred over TMR for such attributes. For
smaller data types, the choice between CRC and TMR depends on whether the application
should optimize runtime or memory usage. A related publication [30], which presents an
aspect-oriented approach for the generation of software-based memory protection, argues
for the usage of CRC over TMR in general. However, their approach is applied at the
object-level, instead of attributes. Thus, their evaluation and recommendation did not
take into account the protection of elements smaller than 32-bit. For protected elements
larger than 32-bit, the results shown in Section 7.2.2.2 con�rm their recommendation.

Validity of the results: The results described in Section 7.2.2.2 are mostly speci�c to
the software architecture proposed in Chapter 5. This becomes apparent from the impact
of the interactions with the call stack on the relative runtime overhead, as described in
Section 7.2.2.2. As the execution of empty method implementations, which exist in the

185



7 Evaluation

prototype for some safety mechanisms due to the inheritance architecture, has a measurable
and non-negligible impact on the relative runtime overhead, the results are highly suscepti-
ble to changes in the prototype application. Nevertheless, the evaluation demonstrates the
general feasibility of the approach in a proof-of-concept manner, i.e., that the automatic
generation of safety mechanisms is possible with an acceptable runtime overhead, in case
the application of safety mechanisms is limited to those elements of the application that
are truly safety-critical.

7.2.3 Comparison of the Memory and Runtime Overhead with Results from
the Literature

This section compares the memory and runtime overhead measured in Sections 7.2.1
and 7.2.2 with comparable results from the literature. Section 7.2.3.1 presents the compar-
ison for the safety mechanism error detection for attributes, Section 7.2.3.2 for the safety
mechanism voting, Section 7.2.3.3 for the safety mechanism timing constraint monitoring
and Section 7.2.3.4 for the safety mechanism graceful degradation.

7.2.3.1 Comparison for the Safety Mechanism: Error Detection for Attributes

This section compares the memory and runtime overhead of the Range-, Update-, TMR-
and CRC-check with results from the literature. The relevant works from the literature,
as presented in related work in Section 2.2.3.3, may be classi�ed into two categories:

(1) Those that do not measure the memory and runtime overhead of their approaches
at all, e.g., [152, 196, 254]. For these, no comparison of the overhead is possible.

(2) Those that measure the memory and runtime overhead for only a subset of the safety
mechanisms mentioned above, e.g., [30, 31, 48, 193]. These are mostly approaches
that provide software-based memory protection and thus only measure the overhead
for CRC and TMR. No suitable overhead measurements for the Range- and Update-
check have been found in the literature by the author of this thesis.

The comparison with results from category (2) is further complicated by the fact that
these approaches often provide an evaluation in which the application of their approach
is limited to an arbitrarily chosen subset of safety-critical data of an example program,
e.g., [30, 31, 48, 193]. For example, the authors of [193] describe a protection amount of
10% to 15% of the total data as �relatively high�. The evaluation presented in Sections 7.2.1
and 7.2.2, however, studies the worst case scenario in which 100% of the total data is pro-
tected. This enables a more impartial comparison for the overhead of safety mechanisms
that does not rely on arbitrarily selected subsets of protected memory of arbitrarily se-
lected example applications. Restricting the evaluation to safety-critical data prevents a
fair comparison, as the inclusion criteria for data being safety-critical may di�er between
approaches. Thus, the amount of protected data may di�er between di�erent evaluations.
It should be noted that these respective evaluations still have value, in the sense that they
aim to estimate the real-world overhead of their approaches. It is simply that this evalu-
ation methodology is ill-suited to compare the overhead of di�erent approaches with each
other.
Considering these restrictions, it is not surprising that the memory and runtime overhead

presented in Sections 7.2.1 and 7.2.2 is larger than for many of the approaches reported in
the literature, e.g., [40, 69, 193]. For the runtime overhead, the most suited comparison
to the evaluation presented in this thesis is the sync2 example program from [30]. In this
program, the authors report that the majority of the runtime is spent in those code regions
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in which protected code is executed. Here, their CRC approach incurs a runtime overhead
that is 18 times larger than the baseline, while the runtime overhead for TMR is 57 times
larger than the baseline. The results presented in Section 7.2.2, in contrast, show a smaller
runtime overhead that is 8.02 and 9.41 times larger than the baseline, respectively.
For memory overhead, the evaluation methodology in [30] is less suited as a comparison

to the approach presented in Section 7.2.1. This is because [30] studies the static binary
size of unprotected and protected example programs. Section 7.2.1, in contrast, compares
the actual size of the protected data objects in memory with the unprotected objects, i.e.,
primitive variables. Once again, this evaluation methodology is used because it does not
rely on an arbitrary selection of which data is safety-critical in the example programs.
Nevertheless, other related work often fails to report the memory overhead of their ap-
proaches at all, e.g., [48, 193]. Thus, the reported values from [30] are used as a reference
for comparison, which is 58% for CRC checks and 105% for TMR. The results presented
in Section 7.2.1, in contrast, show a memory overhead of 100% to 800% and 400% to
500%, respectively, depending on the size of the protected data type. While the memory
overhead of the approach presented in this thesis seems to be a lot larger than in [30], it is
important to keep in mind that their reported overhead refers to the protection of a subset
of the memory. The quantity of this subset is unknown, but similar approaches, e.g., [193],
report the protection of less than 20% of the total memory. The overhead measured in
Section 7.2.1, in contrast, measures the overhead for a scenario in which the entire memory
is protected. Thus, it is within expectations that the results in Section 7.2.1 show a higher
memory overhead than in [30].

7.2.3.2 Comparison for the Safety Mechanism: Voting

This section compares the memory and runtime overhead of the voting mechanisms with
results from the literature. The relevant works from the literature, as presented in related
work in Section 2.2.3.4, may be classi�ed into three categories:

(1) Approaches that only study voting at the model-level, i.e., there is no source code
and thus no e�ciency analysis is possible, e.g., [25, 26, 268, 276].

(2) Approaches that study the automatic code generation of voting mechanisms but
neglect to study the memory and runtime overhead, e.g., [97, 98].

(3) Approaches that present novel voting algorithms but neglect to study the memory
and runtime overhead of their mechanisms, e.g., [150, 204].

The author of this thesis has been unable to �nd studies that include an evaluation of
the memory or runtime overhead of voting mechanisms. This may be explained by the
factors discussed in Sections 7.2.1.4 and 7.2.2.3, i.e., the memory and runtime overhead
of voting mechanisms is negligible. Thus, it is likely that many authors consider a speci�c
evaluation of this aspect as unnecessary.

7.2.3.3 Comparison for the Safety Mechanism: Timing Constraint Monitoring

This section compares the memory and runtime overhead of timing constraint monitoring
with results from the literature. Reports of the runtime overhead for software-based timing
constraint monitoring are consistent [50, 125, 168]. They are in the range of 1µs to a 100µs,
depending on the speci�c approach and example program to which it has been applied.
The results in Section 7.2.2.2 are in line with these values of the literature, ranging from
47µs (deadline supervision) to 445µs (concurrent watchdog). The author of this thesis has
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found no data on the memory overhead of timing constraint monitoring in the literature,
thus no comparison is possible with the memory overhead of the approach presented in
this thesis.

7.2.3.4 Comparison for the Safety Mechanism: Graceful Degradation

This section compares the memory and runtime overhead of graceful degradation at the
application-level with results from the literature. While many approaches for graceful
degradation at the application level do not measure the runtime and memory overhead,
e.g., [194, 195, 225, 226, 234], there are some exceptions that report execution times for
the degradation step in the order of 1µs to 600µs, depending on the size of the system
and the number of possible alternative providers [80, 256]. The results in Section 7.2.2
show a smaller runtime overhead (less than 1µs) than the values from the literature. The
reason for this is that [80, 256] perform additional computations upon degradation that
determine the suitable replacements for a provider on the spot. The approach presented in
this thesis, in contrast, relies on static con�gurations speci�ed at design time to determine
the suitable replacements, as encouraged by the safety standard IEC 61508 [116]. Thus,
the smaller runtime overhead than the overheads reported in the literature may be due to
the fact that the approach presented in this thesis does not spend additional time during
degradation to determine the next suitable replacement. The author of this thesis has
found no data on the memory overhead of graceful degradation in the literature, thus no
comparison with the memory overhead of the approach presented in this thesis is possible.
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Safety standards, e.g., IEC 61508 [116], provide several guidelines for the development of
safety-critical systems. However, they o�er no actual implementation assistance for these
guidelines. A category of these guidelines are safety mechanisms, which may be further
divided into fault detection and fault correction and/or recovery. These mechanisms aim
to detect and correct or recover from any safety-relevant faults that may occur during the
runtime of the safety-critical system.
This thesis provides a model-driven approach for the automatic generation of these

safety mechanisms. This may increase developer productivity, decrease the number of
safety problems in these systems and reduce the required amount of expert knowledge for
developers in the safety domain. The approach is realized by three main contributions:

� Contribution C1 provides a structured way to specify safety requirements that serve
as the input to the remaining code generation approach. For this, this thesis intro-
duces an ANTLR grammar that enables the speci�cation of such safety requirements.
Furthermore, it provides prototypical tool support for creating these requirements
and parsing them automatically.

� Contribution C2 provides a model-driven code generation approach for software-
implemented safety mechanisms. The approach models safety mechanisms via UML
stereotypes that indicate which mechanism should be generated for the model ele-
ment the stereotype is applied to. Automated model-to-model transformations use
this model representation as the input to generate the corresponding safety mech-
anisms. The result is an intermediate model that contains the generated safety
mechanisms and only contains model elements that have a 1:1 mapping to the target
programming language. The default code generation capabilities of common MDD
tools, e.g., IBM Rhapsody [205], Enterprise Architect [237] or Papyrus [60], may be
used to generate the source code that corresponds to this intermediate model. As
the intermediate model already contains the generated safety mechanisms, the gen-
erated source code also includes them. The application of the safety stereotypes to
the model is automated in case the safety requirements are speci�ed according to the
concepts presented in contribution C1.

� Contribution C3 provides a code generation approach for the initialization of hardware-
implemented safety mechanisms. Without such an automatic initialization, develop-
ers are required to interact with low-level source code at the register-level. This,
in turn, is a shift in development paradigms in case the remainder of the applica-
tion is developed according to MDD principles. Such a shift in perspective may
lower developer productivity and introduce safety problems in the program. The
initial con�guration of hardware interfaces may be con�gured via a prototype GUI
introduced in this thesis. This con�guration may be used as the input for the code
generation process, which relies on a template-based code snippet repository. Thus,
for each con�guration of a hardware interface in the GUI tool, the corresponding
code snippets are selected from the repository and included at the appropriate places
inside a template �le that orchestrates the initialization process. The con�guration
of the safety-relevant hardware interfaces in the GUI tool is automated in case the
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safety requirements are speci�ed according to the concepts presented in contribution
C1.

The contributions C1 to C3 are demonstrated by applying them to the development
of a safety-critical �re detection application. It is an example for the category of envi-
ronment monitoring systems, which use sensors to detect certain phenomena and signal
an alarm if the sensor values are larger than a certain threshold. In case of the �re de-
tection application, this includes a CO, infrared and temperature sensor. Based on the
safety guidelines of IEC 61508, this thesis presents exemplary safety requirements for this
application according to the principles of contribution C1. The concepts of contribution
C2 are used to generate the software-implemented safety mechanisms speci�ed by the re-
quirements. This includes the use of majority voting among the sensors, monitoring of the
application's timing behavior and sanity checks for the values measured by the sensors.
Furthermore, a graceful degradation approach for the alarm process is generated. The
concepts of contribution C3 are used to generate the initial con�guration of the employed
hardware interfaces and con�gure their safety relevant properties, e.g., the use of a parity
bit for a communication via UART.
The approach presented in this thesis is evaluated at the model- and the code-level. At

the model level, the runtime of the transformation steps scales linearly with the number
of safety mechanisms to be used in the system. This includes the automatic application
of safety requirements to the model, as well as the model transformations that generate
the safety mechanisms. The absolute runtime of the transformation steps is below 15s for
several hundred safety mechanisms. The value of 15s has been reported as a threshold
below which the work�ow of a developer is not negatively in�uenced [160].
For the code-level, the memory and runtime overhead of the generated safety mechanisms

is investigated. Both are negligible if only a single safety mechanism for a single system
element is considered. However, the overhead is large enough to become relevant if a) many
system elements are protected (memory overhead) and b) elements that are frequently used
are protected (runtime overhead). Thus, the application of safety mechanisms should be
limited to those system elements that are strictly safety-critical, while periodic approaches
may be considered for elements that are frequently accessed. A rough estimation for
this frequency is that the number of accesses to all protected attributes on an end-to-end
execution path should be less than 1000 in order to keep the runtime overhead of the safety
mechanisms smaller than 1ms.
Future work closely related to this thesis includes the integration of additional safety

mechanisms within the presented approach, i.e., providing a code generation approach for
future types of safety mechanisms. Moreover, the PinCon�g tool presented in Chapter 6
could provide an alternative frontend that is based on SysML [184]. This would allow the
con�guration of hardware interfaces within the same MDD tools developers use to develop
their UML application models instead of requiring them to change tools for this purpose.
The concept of safety is a so called NFP. Future work could aim to transfer the approach

for modeling safety mechanisms via UML stereotypes and generate the actual mechanisms
via model-to-model transformations to other NFPs. For example, stereotypes could specify
energy limits for which an automated energy monitor is generated. Furthermore, security
policies might be modeled and generated with the underlying approach.
Security in general is a topic of increasing importance in the safety domain, as more and

more safety-critical systems have network access and thus become vulnerable to potential
attackers [236]. Thus, methods and tool support for the integration of security analysis in
the safety development cycle gains importance. A speci�c research avenue for this challenge
is the integration of safety analysis in the hazard and risk analysis that is already part of
the safety development lifecycle [72, 153, 214, 241]. A further area in which security
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becomes more and more relevant is during the certi�cation of the safety-critical system,
where assurance cases also have to contain security arguments [167].
A further research opportunity that arises from the increased availability of network

access for safety-critical systems is the integration of modern development principles, e.g.,
DevOps, in the development of safety-critical systems [257, 275]. It does not only require
technical methods and tool support to enable the integration of these development princi-
ples, but also process-based innovation that ensures the safety of the system at all times.
This includes late-stage development stages like the certi�cation of the system by an in-
dependent authorization body. Frequent updates of an application, as are often the case
in DevOps processes, would have to be certi�ed just as frequently by these certi�cation
authorities. For this, new processes between developers and certi�cation authorities are
needed that also maintain the independence of these certi�cation authorities.
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