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Environmental scientists often face the challenge of predicting a complex phenomenon
from a heterogeneous collection of datasets that exhibit systematic differences.
Accounting for these differences usually requires including additional parameters in the
predictive models, which increases the probability of overfitting, particularly on small
datasets. We investigate how Bayesian hierarchical models can help mitigate this problem
by allowing the practitioner to incorporate information about the structure of the dataset
explicitly. To this end, we look at a typical application in remote sensing: the estimation of
leaf area index of white winter wheat, an important indicator for agronomical modeling,
using measurements of reflectance spectra collected at different locations and growth
stages. Since the insights gained from such a model could be used to inform policy or
business decisions, the interpretability of the model is a primary concern. We, therefore,
focus on models that capture the association between leaf area index and the spectral
reflectance at various wavelengths by spline-based kernel functions, which can be visually
inspected and analyzed. We compare models with three different levels of hierarchy: a
non-hierarchical baseline model, a model with hierarchical bias parameter, and a model in
which bias and kernel parameters are hierarchically structured. We analyze them using
Markov Chain Monte Carlo sampling diagnostics and an intervention-based measure of
feature importance. The improved robustness and interpretability of this approach show
that Bayesian hierarchical models are a versatile tool for the prediction of leaf area index,
particularly in scenarios where the available data sources are heterogeneous.

Keywords: bayesian hierarchicalmodel, leaf area index, interpretability, markov chainmonte carlo sampling, remote
sensing, reflectance spectra

1 INTRODUCTION

The leaf area index (LAI) is a unitless measure (m2m−2) of the one-sided leaf surface area of a plant
relative to the soil surface area (Watson, 1947). It characterizes, among other variables, the
photosynthetic performance of plants (Watson, 1947; Chen and Black, 1992; Montheith and
Unsworth, 2007), the size and density of the crop’s canopy and thus serves as an important
indicator for the plant’s growth stage and stand productivity (Schueller, 1992; Cox, 2002; Bréda,
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2003; Mulla, 2013; Yan et al., 2019). It plays a major role in
meteorological, ecological, and agronomical modeling (Moran
et al., 1995; Broge and Mortensen, 2002; Kergoat et al., 2002;
Asner et al., 2003; Yan et al., 2012; Anita et al., 2014), as well as for
studying the influence of climate change on crop growth (Gao
et al., 2005; Manea and Leishman, 2014).

Various non-destructive methods exist to measure or estimate
LAI directly (Jonckheere et al., 2004), but they typically require
taking a large number of manual measurements in the field. Since
this is a laborious process and it can be difficult to control for
confounding variables such as weather, alternative faster
approaches to infer LAI from indirect measures, e.g.,
spectroscopy and (hyper-)spectral imaging, have been
investigated (Liu et al., 2016; Din et al., 2017; Yan et al., 2019;
He et al., 2020). A common approach makes use of vegetation
indices (VIs), which can be computed from distinct wavebands of
spectral measurements, to estimate LAI (Huete et al., 2002).
These measures, while well understood and easy to calculate,
have several limitations. For example, most of them are sensitive
to more than one plant parameter (e.g., LAI and chlorophyll
content) (Govaerts et al., 1999; Dorigo et al., 2007), and especially
for wheat crops, the non-linear relationship between numerous
VIs and the LAI can lead to saturation for moderate to high LAI
values (LAI > 3) (Serrano et al., 2000; Nguy-Robertson et al.,
2014).We instead use a Bayesian, spline-based regression method
that utilizes the entire hyperspectral reflectance measurement to
predict LAI and provides uncertainty estimates over all model
parameters.

However, the relationship between LAI and spectral
reflectance is also affected by other factors, such as the crop
type, phenology, Sun illumination, local micro-climate, the type
of soil, or the amount of precipitation (Kjaer et al., 2016; Din et al.,
2017), and it may vary throughout the life cycle of the crop. These
effects can be included in spatio-temporal models of LAI
(Mustafa et al., 2014; Seyednasrollah et al., 2018; Jin et al.,
2019; Qiu et al., 2020; Ji et al., 2021), which can be applied to
data from aerial or satellite surveillance. This has the potential to
greatly simplify monitoring crop growth across large or remote
areas (Sun et al., 2021; Wan et al., 2021; Zhang et al., 2021).

But the annotated training data required for such spatio-
temporal models, i.e., matched measurements of reflectance
spectra, ground-truth LAI, and potential confounding variables,
is not available for every location and crop. For example, the data
used in this study consists of distinct datasets of corresponding LAI
measurements and reflectance spectra, each set acquired on a single
field over a period of one or 2 days. In this situation, the amount of
labeled training data that can be acquired is too limited to fit either
a full spatio-temporal model or a separate model for each field and/
or growth stage. It is possible, in principle, to train a single model
that generalizes across these conditions by simply pooling multiple
datasets that were acquired under different conditions (see
(Siegmann and Jarmer, 2015), for example). However, since the
association between each data point and the specific dataset it
belongs to (and thus its location and time) is lost in the pooling
process, such a model is likely to perform worse than a spatio-
temporal model or a field- and growth-stage-specific model, given
sufficient training data. Ideally, we would like to find a compromise

between these two extremes, i.e., between a single model trained on
the pooled data on the one hand and an independent model for
each dataset, on the other hand, that allows us to generalize over all
the available datasets yet makes specifically adjusted predictions for
each dataset. To this end, we propose a hierarchical, parameter-
efficient Bayesian model, which implicitly accounts for the
influence of location and time by allowing the model
parameters to vary across different datasets.

Bayesian hierarchicalmodels similar to the one suggested here are
especially appealing for environmental sciences (Britten et al., 2021),
where they have seen increasingly widespread use. For example,
several recent studies applied Bayesian hierarchical models to time
series of multispectral satellite images in order to assess the effects of
climate change through land surface phenology (Senf et al., 2017;
Seyednasrollah et al., 2018; Qiu et al., 2020; Babcock et al., 2021) or
other indicators such as Normalized Difference Vegetation Index
(Wilson et al., 2011). A similar remote sensing approach has been
used to predict LAI and its spatio-temporal evolution for bamboo
(Xing et al., 2019) and other forests (Naithani et al., 2013; Schraik
et al., 2019). For agronomicalmodels of the LAI of food crops such as
rice (Xu et al., 2019), Brazilian Cowpea (Soratto et al., 2020) or white
winter wheat (Qu et al., 2008), local multispectral measurements are
often used instead of–or in addition to–satellite images. In most of
these studies, Bayesian hierarchical models are used to impose prior
domain knowledge, combinemultimodal data sources, and integrate
data collected at multiple resolutions of space and/or time, all of
which ultimately improve prediction performance. By contrast, our
primary goal is to show how Bayesian hierarchical models and
associated tools can be used to construct and diagnose simple and
interpretable models for heterogeneous datasets, which commonly
occur in environmental sciences.

Based on these considerations, we develop a Bayesian
hierarchical model according to the following steps: 1) we filter
the spectral measurements to remove noise, 2) apply basis splines
with adaptively placed knots to extract features from the spectra, 3)
train a Bayesian hierarchical model to predict LAI from these
features on labeled data, 4) select and validate the best performing
model, 5) and estimate the importance of the individual features for
prediction. Our model learns an easily interpretable general
relationship between reflectance spectra and LAI, as well as the
dataset-specific deviations from that baseline. By using a variant of
Markov Chain Monte Carlo (MCMC) sampling, we can
incorporate domain knowledge or regularization through prior
distributions of the parameters and provide a full posterior
probability distribution over these parameters, which allows the
quantification of uncertainty. We compare two variants of this
hierarchical approach with a non-hierarchical alternative and find
that it indeed offers a favorable trade-off between prediction
accuracy and model complexity.

2 METHODS

2.1 The Dataset
We evaluate our proposed model on a combination of four
datasets, totaling 191 pairs of measured reflectance spectra (see
also Supplementary Figure S1 for examples) and corresponding
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measurements of the LAI on fields covered by white winter wheat
(lat. Triticum aestivum).

Each pair of measurements was taken on a different square
plot of size 50 cm×50 cm. The LAI values of each plot were
measured multiple times in a non-destructive way and averaged
to a single value per plot. Five reflectance spectra were acquired
and averaged for each plot using a spectroradiometer from a
height of 1.4m above ground with a nadir view and converted to
absolute reflectance values using a reflectance standard of
known reflectivity (Spectralon, Labsphere Inc.,
United States). The data were collected on four different
fields in different years, corresponding to different stages in
the plants’ growth cycle, and there are minor differences in the
data collection procedure.

The first two sampling areas, which we call Field A and Field B
in the following, are located near Köthen, Germany, which is a
part of one of the most important agricultural regions in
Germany. The region is distinctly dry, with 430 mm mean
annual precipitation due to its location in the Harz mountains.
The mean annual temperature varies between 8◦C to 9◦C. The
study area has an altitude of 70m above sea level and is
characterized by a Loess layer up to 1.2m deep that covers a
slightly undulated tertiary plain. The predominant soil types of
the region are Chernozems, in conjunction with Cambisols and
Luvisols. At two locations in this region, 57 spectral
measurements were recorded on seventh to eighth May 2011
using two ASD FieldSpec III spectroradiometers (ASD Inc.,
United States) with 25° field of view optics. Another 74
measurements were taken on 24th to May 25, 2012, using one
ASD FieldSpec III (ASD Inc., United States) and one SVC HR-
1024 spectroradiometer (Spectra Vista Corporation,
United States) with 14° field of view. For each location, the
corresponding LAI was measured non-destructively with a
SunScan device (Delta-T Devices Ltd., United States) in 2011
and an LAI 2000 (LI-COR Inc., United States) in 2012, and,
respectively, five and four LAI measurements were averaged per
plot. Data from this study area was also used and described in
more detail in (Siegmann and Jarmer, 2015).

The other two sampling areas, called Field C and Field D in the
following, are located near Demmin, Germany. The region has a
mean annual precipitation of 550 mm, and a mean annual
temperature of 8◦C. Albeluvisols interspersed by Haplic
Luvisols dominate the sand-rich area. The observed area is
south of the river Tollense, where the ground elevation drops
from 70m to 7m due to glacial moraines causing high variability
in soil conditions. At two locations in this region, 26 spectral
measurements were recorded on, and another 34 on using SVC
HR-1024i spectroradiometer (Spectra Vista Corporation,
United States) in nadir view 1.4 m above the ground using 14°

field of view optics. In this case, six measurements of LAI [taken
with LAI 2000 (LI-COR Inc., United States)] were averaged for
each plot.

The recorded spectra cover wavelengths in the range from 350
to 2,500 nm, of which we use the range from 400 to 1,350 nm (for
details see Table 1). We preprocess these spectra by smoothing
with a first-order Gaussian filter with width σ � 10 nm.

For a summary of these parameters, see Table 1.

In the following, we reference specific subsets of this data. We
introduce the following notation: all spectra-LAI-pairs for field j ∈
{1, . . ., 4} are numerically indexed by the set Jj, where J1, J2, J3, J4

correspond to the measurements from Field A, Field B, Field C,
and Field D, respectively. We denote the ith ∈ Jj reflectance
spectrum from dataset j by the function Rj

i (λ) of the wavelength λ
∈ [400 nm, 1,350 nm], and the corresponding measured LAI
value by Yj

i .

2.2 Feature Extraction From Reflectance
Spectra With a Spline Basis
The data collection and preprocessing steps outlined above result
in reflectance spectra of wavelengths 400–1,350 nm at a
resolution of 1 nm. Since this representation is much too high
dimensional for direct use, we extract the most important
information into a low dimensional representation by
computing the inner product between the preprocessed
reflectance spectra and a set of eleven cubic basis splines
(B-splines) with adaptively placed knots (see Figure 1).

The positions κi, i ∈ {1, . . ., 11} of the inner knots, which
determine the shape of the individual basis splines, are chosen
such that the cumulative absolute curvature Q (κi+1) − Q (κi) of
the average reflectance spectrum is equal between any two
successive knots i and i + 1. We compute the absolute
curvature q(λ) by convolving the average reflectance spectrum
�R with the second derivative of the Gaussian function g, and then
compute the absolute value thereof1. Formally, we can express
this as follows:

g(λ) � 1 nm���
2π

√
σ
exp −λ

2

σ2
( ), σ � 10 nm

�R(λ) � 1

∑4

j�1|Jj|
∑4
j�1

∑
i∈Jj

Rj
i (λ)

q(λ) � (�R *g″)(λ)
∣∣∣∣ ∣∣∣∣

Q(x) � ∫
x

400 nm

q(λ)dλ ∀x ∈ [400 nm, 1350 nm]
Qmax � Q(1350 nm)

κi � Q−1 i − 1
10

Qmax( ) ∀i ∈ {1, . . . , 11}

The eleven basis functions bk, k ∈ {1, . . ., 11} are generated from
this knot vector κ using the standard Cox-DeBoor algorithm
(Boor, 1978), where the multiplicity of the first and last knot is
three, i.e., all basis functions go to zero at their respective start and
end knots. The last basis function b12, which originates at knot
κ10, is not used. This heuristic algorithm results in a
proportionally larger number of knots, and thus higher spatial
resolution, where the reflectance spectra have the largest absolute
curvature and hence “have most structure”; see also (Pipa et al.,
2012; Ferrer Arnau et al., 2013; Tjahjowidodo et al., 2015). For
each of the data-subsets j ∈ {1, . . ., 4}, we can then compute our

1This is equivalent to computing the absolute curvature of the smoothed average
reflectance spectrum g * �R.
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model’s feature or design matrix Xj using these basis
functions bk(λ):

(Xj)i,k � 〈Rj
i , bk〉

� ∫
1350 nm

400 nm

Rj
i (λ)bk(λ)dλ, ∀i ∈ Jj, k ∈ {1, . . . , 11} (1)

2.3 Bayesian Markov Chain Monte Carlo
Regression for Predicting LAI
Our primary objective is to construct a simple, interpretable
model that can reliably predict the LAI value of a wheat plot
directly from a corresponding reflectance spectrum. We are
additionally interested in analyzing the model’s confidence,
how well it generalizes, and which features it relies on most to
make a prediction. Since the total available data is limited and
stems from four heterogeneous datasets, prior constraints are
required to prevent overfitting.

In order to meet all of these requirements, we design three
different (non-)hierarchical Bayesian generalized linear models
(GLM) (McCullagh and Nelder, 1989; Gelman et al., 2013) of
different complexity. For each of these, we infer a full posterior
distribution over model parameters from training data and use
this to provide a full posterior predictive distribution over LAI
scores on testing data. To generate representative samples from
these probability distributions, we use a specific type of
Hamiltonian Monte Carlo sampling, namely No-U-Turn-
Sampling (Hoffman and Gelman, 2014) (NUTS), as
implemented by the probabilistic programming package
pyMC3 (Salvatier et al., 2016).

TABLE 1 | Parameters of the dataset and the collection procedures.

Field a Field B Field C Field D

collection date 7th to May 8, 2011 24th to May 25, 2012
Measurements 57 74 26 34
Location Köthen, Germany Demmin, Germany
LAI device SS1 SunScan LAI-2000 LAI-2000
spectral device ASD FieldSpec III SVC HR-1024 SVC HR-1024i
field of view 25° 14° 14°

measurement height 1.4m above ground
reflectance standard Spectralon, Labsphere Inc., United States
spectral range measured 350–2,500 nm
spectral range used 400–1,350 nm at a resolution of 1 nm, smoothing with σ � 10 nm
LAI range 0.5 to 3.32 1.14 to 6.16 1.72 to 7.46 0.48 to 5.25

FIGURE 1 | Adaptive knot-placement for B-Splines. (A) For the measured
reflectance spectra Ri(λ), (B) we calculate the mean absolute curvature q(λ). (C)
We then find knot positions such that the integral Q(λ) of this measure between
any two successive knots κi, κi+1 is identical. (D) The result are 11 cubic
spline basis functions bk(λ) with non-uniformly spaced knots.

FIGURE 2 |Dependency graph of the baseline model. For each dataset j
(encoded in the feature matrix Xj and corresponding labels Yj), the prediction
depends on the same three shared parameters b, w and σ. Circles represent
random variables, rectangles represent deterministic variables, filled
shapes represent observed variables.
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2.3.1 Model 1: A Baseline Model With Pooled Data
As a baseline (see Figure 2), we construct a simple generalized
linear model, which we apply to all of the datasets j ∈ {1, . . .4}
together. This model merely pools all available data but does not
account for any systematic differences that might exist between
the individual datasets. We assume the logarithm of the observed
LAI scores to be normally distributed around an affine linear
predictor μj with deviation σ, which is a model parameter with
log-normal prior. The predictor μj is computed by the matrix-
vector product between the dataset’s feature matrix Xj and the
model’s weight vector w � (w1, . . ., w11), plus an additional bias
parameter b. Including the unknown deviation parameter σ, the
model thus has a total of 13 free parameters to be inferred from
data. The individual parameterswk and b have normal priors with
standard deviation 1 and 11, respectively, to allow the individual
bias term to counteract the effect of all 11 weights, if necessary.
The baseline model is described by Eq. 2.

log(σ) ∼ Normal(0, 1)
b ∼ Normal(0, 11)

wk ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
μj � Xjw + b, ∀j ∈ {1, . . . , 4}

log(Yj
i ) ∼ Normal(μji , σ), ∀j ∈ {1, . . . , 4}, i ∈ Ij

(2)

2.3.2 Model 2: A Model With Hierarchical Bias
Our second model (see Figure 3) extends the baseline model by
an additional bias parameter bj for each dataset and thus has a
total of 17 free parameters. Due to the logarithmic link function,
this additional parameter per dataset allows accounting for the
overall variation in scale between the four different datasets. But
rather than setting each parameter bj independently (and thus
adding three full degrees of freedom), we constrain them to be
clustered around a common bias value b*, which replaces the bias
term b in the baseline model. Therefore, the prior for the new
variables bj is a Normal distribution centered at b* with an order
of magnitude smaller standard deviation of 11/10 � 1.1. The

affine linear predictor μj then depends on the dataset-specific bias
term bj. The hierarchical bias model is described by Eq. 3.

log(σ) ∼ Normal(0, 1)
b* ∼ Normal(0, 11)
bj ∼ Normal(b*, 1.1) ∀j ∈ {1, . . . , 4}
wk ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
μj � Xjw + bj, ∀j ∈ {1, . . . , 4}

log(Yj
i ) ∼ Normal(μji , σ), ∀j ∈ {1, . . . , 4}, i ∈ Ij

(3)

2.3.3 Model 3: Full Hierarchical Model
Our third model (see Figure 4) extends the second model even
further by also allowing the model weight vector w to vary for
each dataset. Just like we did for the bias terms, we introduce
the new parameter vectors wj, and we constrain the individual
parameters wj

k to be clustered around the corresponding
common values wk* with standard deviation 0.1. This
increases the model’s degrees of freedom by an additional
44 parameters (11 for each dataset), resulting in a total of 61
free parameters. The affine linear predictor μj then depends on
a dataset-specific weight vector wj and a dataset-specific bias
term bj. The full hierarchical model is described by Eq. 4.

log(σ) ∼ Normal(0, 1)
b* ∼ Normal(0, 11)
bj ∼ Normal(b*, 1.1) ∀j ∈ {1, . . . , 4}
wk* ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
wj

k ∼ Normal(wk*, 0.1) ∀k ∈ {1, . . . , 11}, j ∈ {1, . . . , 4}
μj � Xjwj + bj, ∀j ∈ {1, . . . , 4}

log(Yj
i ) ∼ Normal(μji , σ), ∀j ∈ {1, . . . , 4}, i ∈ Ij

(4)

2.4 Model Selection Using
Pareto-Smoothed Importance Sampling
To get an unbiased estimate of our model’s generalization error
from the very limited available data, we would like to perform
leave-one-out cross-validation (LOO-CV) and compute the
expected log posterior predictive density (ELPD) for new
data (Vehtari et al., 2019). Unfortunately, this is a
prohibitively expensive computation when combined with
MCMC sampling. However, the generated samples and their
associated log-likelihood values contain sufficient information
to estimate the LOO-CV ELPD by directly weighing the
samples. This procedure is called Pareto-smoothed
importance sampling (PSIS) (Vehtari et al., 2019).
Combining these two methods, PSIS and LOO-CV, yields a
validation method called PSIS-LOO-CV (Vehtari et al., 2019),
which is beneficial in situations like this, where an MCMC
sampling-based model is trained on a small dataset. As a result,
we get for each model the ELPD score, which we use to compare
the three proposed models, a parameter η, which can be
interpreted as the effective number of degrees of freedom in
the model, and the so-called Pareto shape parameters ki, which
assess for each data point i in the dataset, howmuch it affects the
ELPD estimation. For data points where ki exceeds 0.7, the PSIS-
LOO-CV estimate becomes unreliable, which can also indicate

FIGURE 3 | Dependency graph of the hierarchical model with dataset-
specific bias terms. The predictions for each dataset j depend on an individual
bias parameter bj, which in turn depends on the shared mean bias
parameter b*.
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an under-constrained model or an outlier in the data (Vehtari
et al., 2019).

2.5 Evaluation of Feature Importance
To estimate the importance that our model assigns to each feature
of the reflectance spectra, we calculate a model-agnostic measure
of feature importance (Fisher et al., 2019) called model reliance
(MR). Here, the importance of an individual feature is calculated
as the relative change in the model’s error when the individual
observations of only that feature are shuffled, compared to the
error on non-shuffled data. This causal intervention intentionally
breaks the dependence between different correlated features.
Therefore, MR, unlike correlation analysis, is a causal tool to
diagnose the model rather than the data. This is relevant here
because the different features of our model are computed by
taking the inner product between the reflectance spectra and a set
of overlapping not independent basis functions and are hence
certainly correlated. We use the same loss function as for the
model selection, namely ELPD. Since this measure already
estimates the logarithm of a quantity of interest (the posterior
density), we use the difference between shuffled and non-shuffled
ELPD instead of their ratio to estimate the logarithm of the MR
for the posterior density. Because we are only interested in
qualitatively ranking features by their importance, we
normalize the resulting importance value of each feature by
their average. To improve the robustness of this measure, the
shuffling is repeated multiple times (here, ten times), and the
results are averaged. Repeating this procedure for each feature of
a model yields positive scores for ranking all features by their
importance.

3 RESULTS

In this section, we evaluate each of the three models presented
above, namely the non-hierarchical model, the model with
hierarchical bias term, and the full hierarchical model.

3.1 Model Predictions
First, we visualize the models’ accuracy and ability to generalize in
a model-agnostic way by directly plotting predictions against the
correspondingmeasured “ground-truth” values. For this purpose,
we randomly select 80% of all available data (the training set,
shown in blue) to infer model parameters, which we then use to
predict the LAI for the remaining 20% of the data (the test set,
shown in green). Due to the probabilistic nature of our models, a
full posterior predictive distribution is given for each data point,
which we summarize in Figure 5 (A),(C), and (E). We can
observe that all three models make reasonable predictions,
i.e., that the predicted LAI grows in proportion to the
measured LAI. Because all our generalized linear models
assume that the logarithms of the LAI scores are
homoscedastic, the standard deviation of the predictive
distribution increases with the measured LAI, as well. Rather
than the raw residuals rji � Ŷ

j
i − Yj

i , we therefore compute the
relative residuals ~rji � rji

Yj
i

, each normalized by the corresponding

measured LAI value Yj
i , and summarize them in the cumulative

histograms shown in Figure 5 (B),(D) and (F). For all three
models, the relative residuals are similar between training and test
set, which indicates that they generalize well.

3.2 Model Comparison
To quantify the generalization error of all three models more
accurately, we use the PSIS-LOO-CVmethod on all available data
to estimate the ELPD on novel data. This procedure yields several
highly informative measures, which are summarized in Table 2.
To verify the convergence of the sampling procedure for each
model, we compare the marginal posterior distribution of each
parameter across multiple chains and find no discrepancies or
divergences (see also Supplementary Figures S2–S4). We can see
that the highest ELPD (indicating the lowest generalization error)
is achieved for the two hierarchical models, with little difference
between them (−157.8 and −157.0, respectively, with a standard
deviation of ≈ 11.5 each). Suppose, for the sake of argument, that
for a similar dataset, we would select models based purely on the

FIGURE 4 | Dependency graph of the hierarchical model with dataset-specific bias and weight terms. The predictions for each dataset j now depend on an
individual bias parameter bj and weight vector wj, which in turn depend on the shared bias parameter b* and the shared weight vector w*, respectively.
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ELPD. In that case, it might be a matter of chance to pick the
model with only a hierarchical bias term (as in this case) or the
full hierarchical model.

However, due to the limited amount of training data and
considering that the number of parameters ranges from 13 for
the non-hierarchical baseline model to 17 for the model with
hierarchical bias term to 61 for the full hierarchical model, we
are also concerned withmodel complexity and the risk of overfitting.
Since LOO-CV estimates generalization error directly, it does not
need to explicitly penalize a large number of parameters, which is a
significant advantagewhen comparing Bayesian hierarchicalmodels.

Instead, it allows us to estimate the model complexity of the three
models by the so-called effective number of parameters η, which
provides some intuition about how many degrees of freedom the
model has to approximate the available data. As we see in Table 2, η
� 13.3 is quite close to the parameter count of the non-hierarchical
model on the pooled dataset. This only increases slightly to η � 15.0
for the hierarchical bias model, even though it has four additional
parameters. However, adding another 44 parameters for the full
hierarchical model increases η substantially to 24.9.

Since PSIS-LOO-CV emulates conventional LOO-CV, it
provides additional information that can help us understand

FIGURE 5 |Model predictions of LAI. For the three models, (A), (C) and (E) plot for each data point (training data in blue and testing data in green) the predicted LAI
values against the measured LAI values. Error bars indicate the interquartile range of the predictive distributions. Dots represent the expected value. The gray line shows
the optimal predictions; the best 50% of model predictions lie within the gray cone around it. (B), (D), and (F) show the cumulative distribution function of the residuals,
each normalized by the corresponding measured LAI value for training and testing data (blue and green lines). The gray areas show the same interquartile range as
the cones in (A), (C), and (E).

TABLE 2 |Comparison of the three models using PSIS-LOO-CV. The ELPD ± one standard deviation are listed for eachmodel. #params denotes the number of parameters,
η denotes the effective number of parameters. For each model, we show the number of data-points for which the Pareto shape parameter k falls into either of four
different intervals.

Model ELPD #params η Pareto k

(-Inf, 0.5] (0.5, 0.7] (0.7, 1] (1, Inf)

Naive -185.5 ± 12.2 13 13.3 191 0 0 0
Hier. Full -157.8 ± 11.5 61 24.9 180 8 3 0
Hier. Bias -157.0±11.5 17 15.0 187 3 1 0
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how prone each model is to overfitting: For each data point, the
procedure yields the shape parameter k of a Pareto distribution,
which indicates whether estimating the generalization error for
that data point is reliable (k ∈ [ − ∞, 0.7], ideally k ≤ 0.5),
potentially unreliable (k ∈ [0.7, 1]) or entirely unreliable (k ∈ [1,
∞])(Vehtari et al., 2019). As Table 2 shows, the full hierarchical
model struggles with PSIS-LOO-CV for three data points, which
may indicate that the model is more prone to overfitting to these
potential “outliers” (see also Supplementary Figure S5).

As these numbers suggest, the model with a hierarchical bias
term is the best choice because it is barely more complex than the
non-hierarchical model, yet it performs at least as well as the full
hierarchical model.

3.3 An Interpretable Kernel Function
As outlined above, all three models derive their predictions of LAI
from a weighted linear combination of features, which we
compute by taking inner products between the measured
reflectance spectra and a set of B-spline basis functions. These
linear operations can be equivalently expressed as taking the
inner product between each reflectance spectrum and an inferred
kernel function κj(λ), which provides a different, more
interpretable perspective on the model.

To motivate this equivalent perspective, we look at how the
reflectance spectra affect the linear predictors μji of the respective
GLMs in Eqs. 2–4, ignoring the contribution of the inferred bias
terms here. For all three models2, we can use Eq. 1 to rewrite the
contribution of the features extracted from the ith reflectance
spectrum Rj

i of the jth dataset as follows:

μji − bj � ∑
k

(Xj)i,kwj
k

� ∑
k

〈Rj
i , bk〉wj

k

� 〈Rj
i , κ

j〉 where κj(λ) � ∑
k

wj
kbk(λ)

(5)

Since the parameters wj
k are random variables, the kernel

functions κj are random variables, samples of which can be
generated by combining the (static) basis functions bk with
samples of wj

k. Figure 6A shows the distribution of the
inferred kernel function for our model of choice, i.e., the
hierarchical bias model (for the other two models, see
Supplementary Figures S6, S7). By analyzing this kernel
function, we can identify regions of the reflectance spectrum
that contribute positively or negatively (e.g., around λ ≈ 700 nm
and λ ≈ 1,300 nm) to the predicted LAI score, and relate them to
physical mechanisms.

3.4 Feature Importance
In addition to the sign and magnitude of each feature’s
contribution (which are determined by the inferred weights; c.
f. Supplementary Figures S2–S4), we are also interested in how

important each individual feature is for the model’s prediction.
We quantify this via MR as described above. Figure 6B shows
that, except feature four, all features are indeed important for the
prediction accuracy of the model. The low importance of feature
four centered around 730 nm is likely due to the narrow domain
of basis function b4 (see Figure 1D), which indicates that this
feature could be removed or an alternative knot-placement
procedure could be chosen to reduce model complexity.

4 DISCUSSION

Our results confirm that using a Bayesian hierarchical model not
only leads to an improvement in the prediction accuracy over a
non-hierarchical approach, but more importantly, it yields
several qualitative benefits regarding interpretability, model
complexity, and robustness.

One important benefit of the Bayesian hierarchical approach is
that an appropriate choice of priors and model structure allows us
to integrate additional model parameters without excessively
increasing model complexity. For example, the number of
spectral features used in our model directly determines the
scale of the respective spline basis functions, which determines
the resolution of our kernel function. This can create a trade-off
between a model with lower spectral resolution and a model with
a larger number of parameters. In the Bayesian approach, we can

FIGURE 6 | Inferred kernel function and feature importance. (A) shows
the posterior distribution of the inferred kernel function. The black line
represents the expected kernel. We can relate several ranges of the
reflectance spectrum to physical phenomena, namely effects due to
green leaf pigment [400–700 nm (Cen and Borman, 1990; Aparicio et al.,
2000)] and photosynthetic capacity [495–680 nm, peak at 670 nm (Cen and
Borman, 1990; Aparicio et al., 2000; Weber et al., 2012)] and the red edge
region [690–720 nm (Zhang et al., 2016)] in the visible light range, as well as
the canopy’s water content [1,150 nm–1,260 nm (Sims and Gamon, 2003),
peak absorption at around 1,200 nm (Weber et al., 2012; Wang C et al.,
2017)] in the near-infrared range. (B) shows a stem-plot of the relative
importance of each feature (enumerated; normalized by the average feature
importance) as well as the resulting estimated importance of each wavelength.

2To simplify notation, we write wj and bj for the (possibly) dataset-specific weight
and bias terms, and set wj � w or bj � b for models that don’t make these dataset-
specific distinctions
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choose the model with more parameters without the risk of
overfitting if we formalize our uncertainty and prior
assumptions about the parameters appropriately. This is
particularly important for hierarchical models, where we might
want to add a large number of parameters to account for the
specific variations in each subset of the data. Compare, for
example, our full hierarchical model with its 61 parameters to
the non-hierarchical baseline model with 13 parameters. Here,
the addition of 48 new parameters only increases the effective
degrees of freedom of the model by 11 and appears to increase the
risk of overfitting only moderately. In our hierarchical bias model,
we directly incorporate the fact that each of the four data subsets
was recorded at a different growth stage of the plants, which
affects the expected LAI, and hence requires a separate bias
parameter. However, by simultaneously inferring the shared
prior distribution over these separate parameters, we can
ensure that the prediction on any one subset of the data
benefits from the information contained in all the others. Of
course, a non-hierarchical model can also benefit from
heterogeneous data (see e.g. (Siegmann and Jarmer, 2015)),
but it may fail in subtle ways if systematic differences between
the data subsets obscure the relevant associations within each
dataset3. In general, Bayesian hierarchical models allow us to
conveniently include additional information about the dataset,
domain knowledge, and regularizing priors, all of which can help
to reduce the model’s effective degrees of freedom. For the often
small and heterogeneous datasets used in environmental sciences
(Britten et al., 2021), this can be a major advantage over
alternative machine learning approaches such as Random
Forest Regression (Houborg and McCabe, 2018; Srinet et al.,
2019) or Deep Learning (Wang T et al., 2017; Apolo-Apolo et al.,
2020; Yamaguchi et al., 2021), which may require prohibitive
amounts of training data due to their typically large number of
parameters.

We employ MCMC sampling to generate unbiased samples of
the full posterior distributions over parameters and predictions,
which allow us to use additional diagnostic tools and error
measures. For example, we can directly estimate posterior
densities, credible intervals, and even generalization errors via
sample-based methods such as PSIS-LOO-CV, which are more
broadly applicable than information criteria such as the Akaike
Information Criterion (AIC), the Widely Applicable Information
Criterion (WAIC), or the Bayesian Information Criterion (BIC)
(Vehtari et al., 2017). In particular, we saw that a hierarchical
model might have a considerably larger number of parameters
with a comparatively minor increase in model complexity,
making any form of regularization based directly on the

number of parameters difficult. Besides better diagnostics,
sample-based measures can also provide insights about the
data itself, e.g., indicating which data points are potential
“outliers” that the model is susceptible to (see Supplementary
Figure S5).

In addition to descriptive statistics, we also estimate feature
importance using an intervention-based model-agnostic method
that artificially breaks the dependence between naturally
correlated features. Thus, we can infer exactly which features
the model relies on for its prediction–independently from the
magnitude of the respective parameters. Such information can
help domain experts identify potential problems, e.g,. if
supposedly relevant features are ignored, or irrelevant features
are relied on. This simple example shows how methods from
causal analysis (Pearl, 2009) can help explain or interpret the
model in qualitatively different ways than descriptive
statistics alone.

Because we use a generalized linear model, we can additionally
analyze and interpret the model’s linear predictor directly in the
measurement space. Since the individual features are extracted
from the spectra using B-spline basis functions, this linear
predictor is just an inner product between a reflectance
spectrum and a kernel function plus an additive bias term.
Due to the logarithmic link function, the bias term ultimately
has a scaling effect on the LAI predictions. The kernel function
directly shows which wavelengths are associated with higher LAI,
e.g., short wavelengths of the visible spectrum and much of the
near-infrared spectrum, or lower LAI, e.g., around 600–750 nm.
These results can be directly linked to physical phenomena and
examined with domain knowledge. For example, the positive
association for short wavelengths in the range 400–550 nm may
be attributable to the effect of green leaf pigment, which reflects
light in the range 400–700 nm (Cen and Borman, 1990; Aparicio
et al., 2000). Similarly, the pronounced drop around the red edge
(690–720 nm (Zhang et al., 2016)), which is related to the plants’
chlorophyll content (Richardson et al., 2002; Liu et al., 2004), total
nitrogen (Cheng et al., 2005; Clevers and Kooistra, 2009) and
yield (Huang et al., 2004; Rasooli Sharabiani et al., 2014), may be
attributed to the plants’ photosynthetic capacity (495–680 nm
(Cen and Borman, 1990; Aparicio et al., 2000; Weber et al., 2012))
that peaks at around 670 nm.

Finally, we opted for a simplistic, interpretable model of
LAI as a function of spectral power, but the hierarchical
Bayesian modeling approach makes it easy to extend the
proposed model further. For a larger dataset, the model
complexity could be increased, either by choosing broader
priors or by increasing the number of parameters to improve
its accuracy, or the additional measurements could be used to
reduce the uncertainty over the model’s parameters. The data
used in this study consists of measurements taken at four
distinct locations and points in time. By allowing the specific
parameters for each of these datasets to vary independently
around a shared set of global parameters, we thus indirectly
account for the combined effect of location and time. If a much
larger number of datasets is used, their spatio-temporal
distribution could also be taken into account explicitly, for
example, by forcing the specific parameters of the datasets to

3In Supplementary Figure S6, we show that this is indeed the case here, as
wavelength around 1,200 nm lead to a pronounced dip in the kernel function when
data frommultiple datasets is pooled, but this association disappears if the model is
instead fit to any individual dataset. Looking at the pooled dataset, we would
therefore be led to conclude that lower spectral power around 1,200 nm is a strong
predictor of higher LAI. While this is correct on the artificially pooled dataset, it
appears to be incorrect on any individual datasets. This may be an instance of
Simpson’s paradox (Pearl, 2014), which suggests that a hierarchical model is more
appropriate here
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be correlated, depending on their proximity in time and space,
through an appropriate choice of a joint prior distribution.
This approach leads to a full spatio-temporal model, which
could also predict LAI on crop sites for which no training data
is available. One could also include additional levels of
hierarchy (e.g., to extend the model to other related plant
species or different geographical regions), or other factors such
as soil moisture content (Rad et al., 2011), the influence of
climate change and CO2 concentration on crop growth (Gao
et al., 2005; Manea and Leishman, 2014), the effects of
warming asymmetry due to climate change (Cox et al.,
2020), effects of microclimate (Hardwick et al., 2015), the
influence of the amount of soil conditioner on the crops (Su
et al., 2015), and ammonium level in the soil.
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