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Introduction 

Non-visual eye-movements (NVEMs) are eye-move-
ments that do not serve the provision of visual information. 
Various theories exist as to their raison d’être, depending 
on the context of their production (Ehrlichman et al., 
2007). For instance, during public or conversational speak-
ing, they might serve to convey certain information about 
the interlocutor’s affective or cognitive state (Florea et al., 

2013). A commonly held belief, purported for instance by 
adherents to neuro-linguistic programming (NLP), is that 
certain eye gaze directions are indicative of “remembering, 
imagining, or having an internal dialog” (Florea et al., 
2013). These claims point towards an area of research that 
has not yet been explored in much detail, nor with meth-
odological rigor. However, see Diamantopoulos et al. 
(2009) for a critical review on past research. 

A basic difficulty that arises in wanting to investigate 
correlations between cognitive processes and NVEMs is 
one of annotation. In regular eye-tracking tasks designed 
around eye-movements, it is appropriate to constrain their 
capture to an area of visual interest, such as a screen on 
which visual stimuli appear. In the case of NVEMs, how-
ever, eye gazes are not bound to a specific area of visual 
interest, necessitating their capture in as wide a range as 
possible. Since the captured area of conventional remote, 
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or head-stabilizing, eye-tracking devices is generally lim-
ited to the screen on which stimuli appear, but NVEMs are 
liable to fall outside of this area, these devices are unfit to 
the task the task requirements (see Bojko, 2013, p. 50). 
Furthermore, by limiting participants’ freedom of move-
ment through the employment of head-stabilizing equip-
ment, NVEM behavior may be altered. While wearable de-
vices are less constraining in this regard, they naturally 
alert the participant as to the research’s focus on eye move-
ments, thereby also increasing the chances of altering their 
NVEM behavior during trials. However, in light of the 
non-visual nature of NVEMs, it is unclear whether high 
resolution capture is even necessary in the first place, 
which opens up the possibility to apply less precise yet 
equally valid methodologies to their study.  

Here, we present and discuss two approaches that at-
tempt to enable the non-intrusive study of NVEMs. Both 
approaches operate on the basis of face-centered video 
footage of participants, obtained from an external camera 
positioned above the computer screen. The first approach  
involves manual annotation in the open-source application 
ELAN (Max Planck Institute for Psycholinguistics: The 
Language Archive, 2019) according to a coding grid which 
divides the visual field into nine sections, as seen in Fig. 1. 
The second approach makes use of the open-source neural-
network driven face-recognition software OpenFace 2.0 
(Baltrušaitis et al., 2018), allowing for the representation 
of the participant’s NVEMs in terms of Cartesian vectors. 
Our aim will be a) to evaluate whether each of the two ap-
proaches is at all suitable for the study of NVEMs, and b) 
if they are, in which specific research conditions one is 
preferable over the other. We found that our evaluation of 
one approach was in fact complemented by the respective 
other by providing supplementary information. Thus, our 
analyses also offer insight into the potential compatibility 
of the approaches.   

 

 

Figure 1.  a) Coding grid used for the manual annotation. The 
inclusion of the translucent screen in the image depicts the non-
bounded spatial extension of the radial grid sections. During 
annotation, the grid was mentally super-imposed upon the video 
footage. This grid was super-imposed upon the screen during 
annotation. Since the participants were facing the camera during 
the recording process, their gazes appeared mirrored. In other 
words, a leftwards gaze from the viewpoint of the participant was 
annotated as ‘6’, which is found on the right-hand side of the 
coding grid. Similarly, a participant gazing towards the lower 
right side was annotated as ‘7’. Note that there was a tenth gaze 
direction ‘0’ which was used whenever participants looked into 
the camera or closed their eyes for a longer period. b) Visual 
output of OpenFace. The blue box represents the head pose 
position. The dots represent the landmarks, and the green lines 
represent the eye-gaze vectors which were used in our analysis. 

 

Experimental Methods 
The video material annotated and analyzed here, had 

been collected in the scope of a wider project, namely to 
investigate whether NVEMs differ in terms of (past and 
future) episodic and semantic cognition. Refer to Fig. 2 for  
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Figure 2. a) Experiment set-up in two dimensions for ease of 
representation; what is depicted here as a rotation around only 
one axis, was in reality a rotation around two axes. The 
coordinate system in red is the original coordinate system 
generated by OpenFace during the automatic annotation. The 
vector originating from the participant is the ‘5’ vector, i.e. the 
one that aimed at the center of the screen. b) After rotating the 
coordinate system, its origin is now in the center of the screen 
and oriented such that the x-axis coincides with the ‘5’ vector. 

a view of the experimental setup. Since we are only inter-
ested in the evaluation of different annotation methods 
here, we do not further elaborate on the content of that pro-
ject but refer the reader to Appendix 1 where we explain 
the experimental method and rationale in more detail. 

Manual Annotation with Coding Grid 
Our first approach to analyze the collected data was by 

annotating it manually. We used the open-source software 
ELAN which can display a video and an audio track sim-
ultaneously. The annotation is performed with the aid of 
tiers which are layers of text linked to selected intervals in 
the video and audio track. In addition to the linguistic ut-
terances, and the division of the trials into question and an-
swer, we coded the participant’s gaze directions for each 
trial. To make the process more reliable and to facilitate it, 
we used a coding grid dividing the participant’s field of 
vision into nine sections (see Fig. 1 a)). The sections are 
arranged in a 3 by 3 design with one center area being 
framed by eight radial segments. For easy referencing, the 
sections were numbered starting at the top left and pro-
ceeding line by line from left to right. Therefore, for ex-
ample on the left side, the upper section is labeled ‘1’, the 
middle section is labeled ‘4’, and the lower section is la-
beled ‘7’. The center of the screen was labeled '5'. Here, an 
image of the object for which participants had to narrate a 
(past or future) episode or give a semantic description, was 
displayed. This effectively rendered the central section 
(‘5’) a natural and recurrent reference point for the partic-
ipants’ gazes because it was directly in front of them and 
they were primed to return to it at the beginning of each 
new trial. It is important to note that all sections apart from 
the central one are not bounded, in the sense that they were 
imagined by the annotators to extend beyond the edges of 
the screen (see Fig. 1). In other words, gaze directionality 
was encoded from a central point of reference (section '5'). 
Since the gazes were annotated from the camera perspec-
tive, the gaze directions are vertically mirrored in relation 
to the participant’s point of view. A tenth gaze direction 
‘0’ was used in case the gaze could not be interpreted be-
cause a participant looked directly into the camera or 
closed their eyes for longer than a blink. 

To annotate, the raters went over each trial creating in-
tervals representing the length of each gaze and assigning 
the number of the grid section the respective gaze is di-
rected to (‘0’ to ‘9’) (see Fig. 3). The beginning of an in-
terval was set on the point in time the gaze started to move 
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towards a new grid section in which it would rest next. Im-
mediately before the gaze direction changed into a new 
grid section, i.e. at the end of a fixation period, the interval 
was terminated. Each interval therefore consists of the 
transition movement of the eye gaze from one grid section 
to another and its fixation in the new section. Please note 
that the annotation process relied on the anticipation of the 
raters who could access a complete view of the eye gaze 
progress instead of simply a sequence of snapshots. The 
raters annotated each gaze by watching and rewinding the 
respective part of the video. It allowed them to take into 
account where a gaze would land next, and made the goal-
directed labeling of each gaze possible. Also, it is im-
portant to keep in mind that the raters interpreted all gazes 
with regards to the nine grid sections. At first, the grid 
printed on a transparent sheet was placed on the computer 
screen to train the rater in detecting the correct sections. 
Overall, the participants’ gazes were clearly identifiable. 
However, there was a blending of gaze directions towards 
the grid sections ‘4’ and ‘7’, as well as ‘6’ and ‘9’. Many 
gazes were on the shared border of these grid sections lead-
ing to ambiguous assignment and thus creating two mid-
to-low peripheral sections.  

 
Figure 3. Modified screenshot of the annotated video and audio 
track of one participant in the software ELAN. At the top, the 
video can be seen. At the bottom, annotation tiers for the gaze 
direction and the transcription are shown. The participant’s eye 
gaze in the displayed moment was labeled ‘6’ as seen in the tier 
“Gaze Directions” (see also Fig. 1 a)). Between the video and the 
tiers, the sequence of all gaze directions annotated for this 
participant can be found. This is not to be confused with a 
scanpath, as it merely represents a temporal progression of 
categories. 

The two raters worked separately on individual parts of 
the data. To validate their annotations, 20% of the trials of 
each participant, chosen at random, were additionally rated 

by the respective other rater. For these additional annota-
tions, the respective second rater applied the same annota-
tion procedure as described above but used the temporal 
intervals previously determined by the respective first 
rater. Using this 20% doubly annotated data, an interrater 
reliability test was performed.  

The agreement of both annotations was determined 
with the aid of Cohen’s kappa computed with IBM SPSS 
Statistics 26 (results taken from Stelter (2019)). The over-
all kappa value was 0.907. The lowest kappa value for the 
individual trials of all participants was 0.741 while the 
highest was 1.000. The lowest kappa value for the individ-
ual trials was 0.400 (this trial, however, only consisted of 
three gaze directions) while the highest was again 1.000. 
According to Landis and Koch (1977) the overall kappa 
values of both grids can be interpreted as almost perfect 
agreement. The method of coding the gaze directions man-
ually using a coding grid is thus reliable and therefore jus-
tified (Stelter, 2019). 

Automatic Annotation with OpenFace 

The manual annotation using the coding grid was, by 
design, a simplified, intuitive approach to NVEM catego-
rization, in large part due to the somewhat arbitrary ar-
rangement of the gaze-directions themselves. Even though 
they divide up the visual field into intuitively reasonable 
sections, as seen in Fig. 1, the resulting arrangement may 
only seem reasonable superficially and preclude other 
ways of interpreting the data. Furthermore, the coding grid 
annotations did not lend themselves to finer-grained anal-
yses offered e.g. by saccade and fixation detection algo-
rithms. Lastly, the annotation process proved to be quite 
labor intensive. For all these above reasons, we decided to 
turn to a finer-grained, automatic approach to annotation, 
less prone to human biases. 

At the base of the second approach was the analysis of 
the recorded video footage of the participants using the 
open source software OpenFace (Baltrušaitis et al., 2018). 
OpenFace takes standard video as input and outputs a 
frame-by-frame vectorized analysis of any faces contained 
therein (see Fig. 1 b)). Fixing the camera lens as the origin 
of a 3-dimensional Cartesian coordinate system, OpenFace 
calculates metrics such as head position, eye-gaze vectors, 
eye-gaze angles for each eyeball, as well as the locations 
of various facial landmarks. For our analysis, we took into 
account only the eye-gaze vectors. 
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Since the experiment had not been designed with an 
OpenFace analysis in mind, we had to perform various pre-
processing steps before the raw OpenFace data could be 
put to use and serve as a meaningful basis for comparison 
between the participants. Although all participants were 
seated on a chair fixed in its position relative to the com-
puter screen, we initially did not account for the small dif-
ferences in body posture, head position and tilt, as well as 
the exact position of the camera. Therefore, in order to 
place all of the OpenFace data for each participant in ap-
proximately the same Cartesian coordinate system, i.e. a 
coordinate system whose origin is located at approxi-
mately the same point in space across all participants, we 
had to perform a coordinate system rotation. 

Since each participant looked at the center of the screen 
from a slightly different angle and position, rather than 
measure the distance from the camera lens to the presumed 
center of the screen with a measuring tape, we re-engi-
neered its position algorithmically for each participant us-
ing the coding grid annotations. 

Recall that in the coding grid (Fig. 1 a)), the gaze-di-
rection ‘5’ was defined as a participant’s gaze toward the 
center of the screen. We exploited this, as well as the fact 
that each participant rested their gaze on the ‘5’ for an am-
ple number of frames throughout the entire experiment 
session. This allowed us to reliably calculate the mean vec-
tor for all the frames during which the participant had been 
determined to be looking at the gaze-direction ‘5’. Under 
the assumption that the resulting vector would be an ap-
propriate approximation of, not the absolute, but the par-
ticipant’s idiosyncratic screen center, we rotated each co-
ordinate system such that the mean ‘5’ vector’s polar co-
ordinates were 0° on the x-axis, and 0° on the y-axis (see 
Fig. 2 b)). 

In a subsequent step, we decided to remove the depth 
dimension (z-axis in OpenFace) from our data by means of 
a planar projection, because this would allow us to employ 
eye-tracking algorithms in future analyses (see Fig. 4). An-
other reason for the removal was the fact that the depth 
dimension was ultimately irrelevant to our investigation, 
as NVEMs presumably do not have a well-defined focal 
point in three-dimensional space. Therefore, it would be 
impossible to estimate the depth at which the gaze focuses 
on a point or object. This assumption is supported by find-
ings that show the occurrence of NVEMs even when one 
is alone in a physically barren environment  (Hiscock & 
Bergstrom, 1981; Micic et al., 2010), in the dark 

(Ehrlichman & Barrett, 1983), and even when one’s eyes 
are closed (Ehrlichman et al., 2007). 

 

Figure 4. Vectors in black are the original 3-D coordinates 
generated by OpenFace, whereas the red vectors are the 2-D 
vectors resulting from the planar projection. 

Effectively, we reduced the dimensions of the coordi-
nates by one, converting 3-D coordinates into 2-D coordi-
nates. As depicted in Fig. 4, the 2-D coordinates were lo-
cated on a 2-dimensional plane in 3-D space. To achieve 
this, we had to determine a fixed depth away from the par-
ticipants at which their gazes stopped. We chose a distance 
of 40 cm because that was the approximate distance from 
the center of the chair to the center of the screen. Then, we 
performed a planar projection onto the imaginary plane 
that extends perpendicular to the x-axis of the rotated co-
ordinate system rotation from the previous step. In other 
words, after the planar projection, the resulting vectors 
were no longer represented in 3-dimensional space, but 
were instead located on that plane, described only by their 
newly calculated x and y vector components. The origin of 
this new, 2-D coordinate system was the same as that of 
the rotated 3-D coordinate system, as the origin of the lat-
ter already lay in the assumed center of the screen.  

Upon plotting the 2-D vectors, we noticed that their 
range was more limited than we had expected, extending 
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only ~20 cm in each direction both horizontally and verti-
cally. This did not add up with our intuitive estimates, see-
ing as the screen itself is already 40 cm wide. With an av-
erage gaze span of only 40 cm, this would mean that the 
participants’ gazes rarely ventured beyond the edges of the 
screen, something that did not add up with what the rec-
orded footage suggested. Since OpenFace provides video 
output in which the vectors it calculated are drawn into the 
original footage (see Fig. 1 b)) , we performed a visual 
side-by-side comparison between the eye gazes in the orig-
inal videos and the OpenFace vectors. 

Looking at individual frames in which the participant’s 
eye gaze was most extreme in its deflection from the cen-
ter, we discovered that, in the OpenFace footage, the vec-
tors consistently underestimated the gaze angle a human 
observer would expect (see Fig. 1, or Appendix 2). Other 
gazes directed in the general direction of the camera were 
for the most part captured accurately, but whenever a par-
ticipant would gaze a little farther towards one side, hori-
zontally or vertically, the vectors often did not accurately 
represent the full extent of the movement. In order to find 
out whether the source of the problem was in our camera 
set-up, we recorded new video footage similar to that of 
the participants, while making sure that the recording qual-
ity was as high as possible, the faces were properly lit, as 
well as calibrating OpenFace using the exact camera lens 
specifications. The problem persisted, however, and after 
some research on the matter, the performance we achieved 
seems to be expected, as “estimating gaze from webcam 
data is a really challenging problem overall” (T. 
Baltrušaitis, personal communication, May 28, 2021).  

In order to assess whether this error was systematic 
across participants and in how far the resulting vectors 
were comparable in general, we calculated their overall 
agreement using the intra-class correlation coefficient 
(ICC). Additionally, we compared the ICC of the rotated 
coordinates to that of the original coordinates from before 
the coordinate system rotation. To make them comparable 
to the rotated coordinates, the original coordinates were 
also subjected to the same process of planar projection as 
described above, removing the z-axis. 

Results 
Intra-class Correlation Coefficient of Abso-

lute Agreement 
To test the reliability of OpenFace across so many dif-

ferent participants, we conducted an intra-class correlation 
coefficient (ICC) analysis. The ICC is a measure generally 
used to assess the agreement or consistency of multiple 
raters across different cases using continuous dependent 
variables. Given nothing but the OpenFace vectors, we 
would not have been able to conduct this analysis, but here 
comes into play the data obtained during manual annota-
tion. Since we analyzed all participants twice, once with 
each approach, we were able to temporally map every 
OpenFace vector onto a grid label, allowing us to evaluate 
the extent to which the OpenFace vectors were similar 
across participants and grid labels. One way to conceive 
this is to imagine a scenario in which the participants were 
called into the lab in order to rate the 9 grid sections using 
their eye gazes. Imagine that, in each trial, they had been 
given a general direction to look in (the case, i.e. one of the 
nine gaze directions), and the specific location they looked 
at was their rating (the continuous dependent variable, i.e. 
the OpenFace vector). This was feasible, as our manual an-
notation of grid labels was determined to have a high inter-
rater reliability (overall kappa value of 0.907), allowing us 
to be reasonably certain regarding the participants’ general 
gaze direction. For each participant, a mean vector was 
calculated for each gaze direction, so that, theoretically, 
there should have been 9 vectors (we excluded the gaze 
direction ‘0’ since it was more of a catch-all category for 
unusable gazes), as “ratings”, for each participant. In real-
ity, however, a few participants did not look in all gaze 
directions, so that these vectors could not be included in 
the analysis.  

The type of ICC we ran was a two-way random-effects 
model measuring absolute agreement with single measure-
ments or, in other words, an ICC(2,1) model according to 
Koo and Li (2016). Choosing the right ICC model was 
non-trivial, as our design proved to be unique in its inter-
action between raters (the participants) and the ratees (the 
gaze directions). The assumption made in the ICC(2,1) 
model is that each rater rates each ratee, which was not 
quite the case in our experiment, since some participants 
left out certain gaze directions. The other candidate model 
was the ICC(1,1), in which the assumption is made that a 
subgroup of raters rates a subgroup of gaze directions. Our 
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design is situated somewhere between the two, in the sense 
that each rater/ participant could have rated each gaze di-
rection, but it just so happened to be the case that some did 
not, meaning that most raters rated all gaze directions, 
while a few did not. Since we wanted to confidently gen-
eralize our results to all potential raters with the same char-
acteristics as ours, we opted for the ICC(2,1) model. Inci-
dentally, though, the ICC(1,1) model gave the same results 
as reported for the ICC(2,1) below. 

We calculated an ICC with both the original, unrotated 
data, as well as the processed, rotated data in order to judge 
the degree to which the adjustments made rendered the co-
ordinate systems more similar. It turned out, however, that 
the two types of data received the same ICC rating, for 
which reason the results reported below are representative 
of both. 

ICC estimates and their 95% confidence intervals were 
calculated using R (R Core Team, 2020) and the R ‘psych’ 
package with its ICC() function, based on a single-ratings, 
absolute-agreement, 2-way mixed-effects model (i.e. 
ICC(2,1)). Since our vectors had two dimensions, x and y, 
we performed two separate ICC tests, one for each. The 
ICC(2,1) for the x dimension was estimated at 0.83 with 
95% confidence interval = 0.71-0.94. As per Koo and Li 
(2016), this result indicates a ‘moderate’ to ‘excellent’ 
agreement. The ICC(2,1) for the y dimension was esti-
mated at 0.74 with 95% confidence interval = 0.58-0.90. 
This result indicates a ‘moderate’ to ‘good’ reliability 
(Koo & Li, 2016). 

Superficially, given the ‘moderate’ to ‘good’ ICC, the 
overall match between the different raters seems satisfac-
tory, and one might conclude that OpenFace’s previously 
discussed tendency to underestimate the more extreme 
NVEMs is more or less systematic. 

Moreover, the smaller range of motion in the analysis 
by OpenFace might very well have contributed to a lower 
score, since the vectors are more centralized than they 
should have been. The reason for this is that the ICC is 
sensitive to the overall range of the ratings, with the score 
increasing as the range increases. In other words, if the 
vectors had had a wider spread, i.e. a larger range, the ICC 
might have been higher in turn (Müller & Büttner, 1994, 
p. 2471). 

In order to further assess the compatibility of the Open-
Face vectors with our manual coding grid, we turned to 
clustering. 

Reconstructing the Coding Grid from Open-
Face 

The final step in our analysis of the OpenFace data con-
sisted in determining whether the coding grid could be re-
constructed using clustering algorithms, viewing the clus-
ters as equivalent to the coding grid sections. Out of the 
four algorithms used, DBSCAN, k-means (Pedregosa et al., 
2011), k-medoids and k-medians (Novikov, 2019), only k-
means provided consistent results between iterations that 
were also interpretable in terms of our coding grid. 

For that reason the following discussion will focus on the 
results obtained via k-means exclusively, which do in fact 
show an emergence of a coding grid similar to the one that 
we utilized for the manual annotation. 

Since k-means takes as specification the amount of 
clusters it is supposed to derive from the given data set, 
and we did not want to presuppose our 9 coding grid sec-
tions, we ran the algorithm with all numbers ranging from 
‘3’ through ‘10’. The sectioning most similar to the manual 
coding grid was obtained when the number of clusters was 
‘7’ (see Fig. 5 a)). 

Above 7, the center section of the coding grid became 
over-determined (see Fig. 5 b)), in the sense that multiple 
clusters occupied the space that was allocated to only one 
section in the original coding grid used for manual annota-
tion. On the other hand, the mid-to-low peripheral sections 
from the manual coding grid remained merged into one.  

Above 9, the additional clusters started to be appended 
to peripheral locations on the outside of the cluster struc-
ture, comprising only very few gazes. Since these new 
clusters proved to be uninterpretable with regards to the 
manual grid, we decided to exclude these clusterings from 
our analysis. 

Below 7, the various sections start to merge into each other 
(see Appendix 3). At 6 clusters, the middle top section is 
divided up into the top left and top right ones, as well as 
the center section. At 5, the right-hand side of the grid has 
become one single cluster, while the center section starts 
opening up towards the top. At 4, the remaining clusters 
denote left, right as well as middle top and middle bottom. 
At 3, the whole data set is divided up horizontally into left, 
center and right, indicating a better horizontal resolution 
of NVEMs in our data set. 
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Figure 5: a) Graphical output of the k-means clustering algorithm 
with 7 clusters. One can observe that there are two mid-to-low 
peripheral sections combining the sections ‘4’ and ‘7’, as well as 
‘6’ and ‘9’ from the manual coding grid. b) Graphical output of 
the k-means clustering algorithm with 9 clusters. Here, rather 
than differentiating the lower peripheral clusters into ‘4’ and ‘7’, 
and ‘6’ and ‘9’ as in the manual coding grid, two additional 
sections in the center area appear. 

Discussion 
In this article, we have presented two approaches to an-

alyzing NVEM (non-visual eye movement) data. The first 
approach employed manual annotations made by human 
annotators on the basis of a specific coding grid (see Fig. 
1 a)), while the second approach employed automatic an-
notation with the open-source software OpenFace whose 

output is vector-based (see Fig. 1 b)). We compared the 
two approaches via one quantitative measure, the ICC (In-
traclass Correlation Coefficient), as well as one qualitative 
measure, the reconstruction of the manual coding grid 
through the k-means algorithm.  

The ‘moderate’ to ‘good’ ICC, gives some reason to 
believe that the two approaches provide converging data to 
a certain degree, and that a mapping from one representa-
tion to the other is feasible. Furthermore, in the case of the 
automatic annotations the ICC could have been reduced 
due to the systematic underestimation of extreme NVEMs, 
leading to a centralization of the whole data set. With the 
most extreme NVEMs being mapped towards the center, 
the potential deviations between participants could have 
been inadvertently smoothed out, yielding a lower ICC 
than appropriate. 

Further evidence for some form of connection between 
the two representations (grid vs. vectors), although with 
small modifications to the coding grid, comes from the re-
sults of the k-means algorithm when applied to the Open-
Face data. The emergent clusters divided up the data in 
ways that resembled the manual coding grid, however 
some unevenness remained. Either the lower peripheral 
sections merged with the mid peripheral sections (at 7 
clusters) or the center section became over-determined (8 
and 9 clusters). Interestingly, we also encountered difficul-
ties in keeping distinct the mid and lower peripheral sec-
tions (i.e. ‘4’ and ‘7’, ‘6’ and ‘9’) during the manual anno-
tation phase, stemming from frequent gazes towards the 
dividing lines between them. This, together with the 7 
cluster reconstruction, gives reason to believe that the ini-
tial manual grid consisting of 9 sections might not catego-
rize NVEMs accurately, and would need to be readjusted. 

Moving to the cluster reconstructions with 8 and 9 clus-
ters, the over-determination of the center section is another 
piece of evidence calling into question the 9-fold division 
of the manual coding grid.  

This over-determination of the center section might 
have two reasons: first, it may be due to the predominance 
of recorded gazes towards the center of the screen, and a 
relative lack of gazes away from the screen, implying that 
with a more even gaze distribution, the clusters, too, would 
be distributed more evenly. Second, it might hint at a situ-
ation where gazes towards the center section actually have 
a more finely grained resolution, cognitively speaking, 
than we initially assumed in our manual grid. Perhaps, 
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where exactly one’s non-visual gaze “falls” inside the cen-
ter section, indicates a particular state of mind regarding 
episodic/semantic cognition. 

Overall, the horizontal discrimination of gaze direc-
tions seemed to be more fine-grained than the vertical dis-
crimination, something which is corroborated by both the 
higher ICC score for the x-dimension than the y-dimen-
sion, as well as the good horizontal fit of the k-means clus-
tering. It appears to be a known phenomenon, that gaze 
analysis software boasts higher accuracy on the horizontal 
axis than on the vertical one (Baltrušaitis & ashoorie, 
2021, May 11). This is because of the reduced amount of 
pixels in the eye that are available for determining vertical 
movements, something which stems from the oval shape 
of the human eye. 

On a related note, the human visual field is set up in 
such a way that we have a shorter eye movement range on 
the vertical axis than on the horizontal one (Fortenbaugh 
et al., 2015). This reduced vertical range could be the rea-
son for a lower ICC score in the vertical dimension, since 
the ICC decreases as the range of measurements decreases 
(Müller & Büttner, 1994) [and see Results - Intra-class 
Correlation Coefficient of Absolute Agreement]. 

As of yet, it remains unclear whether it was because of 
the technical limitations that the ICC was lower for the y-
component than for the x-component, or because of the 
higher impact that larger ranges of measurements have on 
the ICC. Further research is still needed to resolve this am-
biguity. 

In the same vein, the distortedness of our visual field, 
privileging the horizontal dimension, might also lead to a 
higher propensity to gaze horizontally, and thus be the rea-
son for the better horizontal resolution in clustering we ob-
tained. Thus, in the most coarse-grained, 3 k-means clus-
tering, we were left with a purely horizontal clustering 
(left, middle, right). Perhaps, due to the anatomy of our 
eyes, we have better cognitive resolution on the horizontal 
axis. In support of this, higher cognitive resolution in the 
horizontal dimension has indeed been found in a study in-
vestigating visuo-spatial short-term memory (Carlei & 
Kerzel, 2014).   

The process of analyzing the data may have been more 
straight-forward if we had designed our experiment from 
the outset with the intention of analyzing it with OpenFace. 
Here, we applied this mode of analysis in a post-hoc, ex-
ploratory manner, taking extra steps in order to address 

some of the incompatibilities in the original experiment, 
such as not having a dedicated calibration phase designed 
to enable better alignment of the OpenFace vectors be-
tween the participants. Furthermore, future research could 
experiment with camera placements below the screen in 
order to mimic conventional eye-tracking setups more 
closely and potentially boost OpenFace performance. 

Interestingly, the rotation step we performed made no 
difference in terms of the convergence between manual 
coding grid and vectors. This is indicated by the equal ICC 
scores for rotated vector data vs. original vector data and 
casts doubts on whether such a step would have been nec-
essary. The reason for this is most likely that the extent of 
this post-hoc alignment was too insignificant to have any 
impact on the ICC calculation. Whether this can be as-
sumed for all future research of this kind is unclear how-
ever, as the exact experimental set-up is subject to contin-
gencies. Also, even though the coordinate rotation may not 
have any significant bearing on the ICC calculation, sub-
sequent analyses might well benefit from it. Therefore, in 
order to eliminate this ambiguity, future experimenters 
looking to utilize OpenFace or similar software would be 
advised to devise some kind of calibration phase, one that 
does not alert the participants as to the study’s focus on 
eye-movements. 

Having established both a moderate to good reliability 
for each method in quantitative terms (via the ICC and Co-
hen’s kappa), and internal validity for the coding grid in 
qualitative terms (via the k-means clustering), a separate 
quantitative measure of performance similarity between 
the two methods would further inform their compatibility. 
At this point, compatibility remains to be inferred from the 
visual similarity of the k-means clusters with the coding 
grid layout. But in a subsequent step, one might also com-
pare their respective performance when subjected to the 
same type of analysis. For this purpose, since categorical 
grid sections and continuous vectors cannot serve as input 
for one and the same analysis, the representations must be 
assimilated, which is achieved by our k-means clustering. 
To conduct a joint analysis then, following a suggestion 
received from an anonymous reviewer, various AOI (area-
of-interest) analyses could be applied to both our coding 
grid annotations as well as our k-means clusters derived 
from OpenFace vectors. The discrepancy of the results 
could serve as a first quantitative measure of the degree to 
which they are able to perform comparably. Future re-
search will be needed to accomplish this aim. 
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Deciding whether one approach, manual coding grid or 
automatic OpenFace analysis, is superior to the other 
should in part depend on the research question one is in-
vestigating, as well as the available resources one has ac-
cess to. For instance, on the one hand, we have used the 
manual annotations to show that speech rate while produc-
ing episodic past, episodic future, or semantic descriptions 
varied significantly across the grid categories (Schmitz, 
2021), indicating differential coordination of (non-visual) 
eye gaze and language production. On the other hand, we 
have made use of OpenFace’s vectors by applying veloc-
ity- and dispersion-based algorithms on the data , allowing 
us to extract saccade and fixation lengths (Kock, 2021; 
Kock & Hohenberger, 2021, see also below). 

The coding grid approach is labor-intensive, but intui-
tive and yields consistent results across raters. Further-
more, it allows the eye gazes to be annotated in a way that 
includes a dimension of meaning which is difficult to re-
construct in the automatic approach. For instance, the an-
notators would be able to identify the target direction of 
certain gazes at the point at which the participant first 
started to move their eyes towards it. In how far this goal-
directedness can be inferred from OpenFace’s data is un-
clear. Whether this dimension of meaning is desirable in 
the first place, depends on the specific research intent. Fol-
lowing recent trends in 4E cognition, perception is always 
already meaningful (Stephan & Walter, 2020), which 
gives reason to consider the possibility that a manual an-
notation can capture particular aspects of NVEMs more 
faithfully. Finally, it is unclear whether the nine-fold divi-
sion of the coding grid is actually appropriate. 

OpenFace, on the other hand, while less labor-inten-
sive, does require some proficiency in programming and 
data visualization techniques. Moreover, the OpenFace 
documentation, while having grown in completeness over 
the years, is still rather broad at the time of writing, so that 
finding answers to more specific questions is not always 
easy.  

OpenFace also offers a higher temporal, as well as spa-
tial, resolution regarding the eye gaze annotations. Despite 
this, we cannot reliably conclude that OpenFace surpasses 
the manual approach concerning the precision in the spa-
tial dimension, due to its systematic underestimation of ex-
treme gazes, discussed at the end of the section Annotation 
methods - Automatic annotation with OpenFace. This is 
the case especially since extreme gazes are of high interest 

to the study of NVEMs. Future technological improve-
ments might however resolve this problem, as eye gaze es-
timation becomes more accurate.  

Additionally, there may be some less obvious biases in 
OpenFace. For instance, it would seem as though Open-
Face calculates its world coordinates, which form the basis 
of its vector representations, on the assumption that the 
distance between a person’s eyes is exactly the “average” 
distance of 65 mm (Baltrušaitis, 2018, March 1). Of 
course, the term “average”, here, is laden with presupposi-
tions, something to be kept in mind. Also, the training data 
on which OpenFace was trained seems to struggle with 
capturing the faces of children and people of Asian descent 
(Fydanaki & Geradts, 2018). However, this can be reme-
died by retraining OpenFace with a more appropriate data 
set if the circumstances require it. 

Nonetheless, OpenFace has performed very well in 
comparative studies with other eye/face-tracking software 
(Baltrušaitis et al., 2018, p. 60, TABLE I), suggesting that 
it is the most likely contemporary gaze analysis software 
to yield good results. In light of the emergence of cluster-
ings reminiscent of our coding grid from the k-means al-
gorithm, there does appear to be a high enough accuracy 
and resolution to make it suitable for certain research sce-
narios in which the capacity for labor is low. It is also 
worth noting that OpenFace offers a host of additional in-
formation, such as “Facial Action Coding”, and various fa-
cial landmarks that may be put to valuable use. 

All in all, our chief finding is best described as provid-
ing two distinct, but potentially converging approaches to 
the study of NVEMs. The exact degree of convergence re-
mains an open question, however.  

For now, there are few open-source programs that fo-
cus on non-intrusive eye gaze estimation specifically, 
which naturally hinders the proper investigation of 
NVEMs. We hope that the future will provide more so-
phisticated tools in this area, and that the procedures doc-
umented here will be of help in elucidating the nature of 
NVEMs and in what way they are associated with our cog-
nitive processes. For example, Kock (2021) (see also Kock 
& Hohenberger, 2021) used the automatically annotated 
data from OpenFace to calculate fixation and saccade 
lengths based on algorithms identifying velocity and dis-
persion thresholds (I-VT and I-DT), respectively. Their 
distribution across (past and future) episodic narration vs. 
semantic description were calculated. Kock did not find 
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any differences between the three conditions – hinting at 
rather similar general processes underpinning these cogni-
tive systems – at least as indicated by eye-gaze features. 
Future research based on the present assessments of alter-
native methods annotating NVEMs, may elucidate this 
connection further. 
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Appendix 
Appendix 1: Experimental Method 

The aim of the experiment was to investigate whether 
NVEMs differ in terms of memory conditions (Kernos, 
2019; Stelter, 2019). To do this, participants’ faces were 
recorded while they verbally described either the sequen-
tial, episodic unfolding of situations in the past or in the 
future, or the semantic description of certain objects. 
Please note that, for our purposes of analyzing the different 
ways of annotating the data, the exact experimental design 
is secondary and is listed here for the sake of illustration 
and completion only. 

Participants 
The 13 participants were students at the University of 

Osnabrück. They all had normal, or corrected vision. Upon 
completion of the experiment, they were licensed to re-
ceive course credit. 

Design 
Participants were asked to describe everyday objects in 

three conditions: (1) semantically, explaining what the ob-
ject is; (2) narrating an episodic memory involving the ob-
ject; and (3) narrating a future episode involving the ob-
ject. The phrasing of the tasks for (1) was “Describe what 
X is.”. For (2) and (3) it was “Describe a situation with X 
from last week/within the next week.”. X was an object 
like “a plant”. Additionally, at the beginning of each trial, 
one of three types of images appeared in the center of the 
screen. The first type was an image of the object from the 
corresponding condition, while the second and third were 
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a male and female face respectively. These were not rele-
vant for our analysis, though. 

Materials 
The prompts at the beginning of each trial, specifying 

either the situation or the object to be described, were read 
by a computer-generated voice. There were 12 different 
stimuli in total. Every participant completed all 12 trials in 
pseudo-randomized order. 

Procedure 
After signing the consent form, the participants were 

seated in front of a computer screen. A video camera was 
installed behind and slightly above the screen, frontally 
capturing the participant’s reactions. A frontal perspective 
was most straightforward for human annotators, as it re-
sembled day-to-day interactions and provided the most 
complete view of the participant’s face. At the beginning 
of each trial, the subjects were informed about the condi-
tion and object and one of the three types of images ap-
peared in the center of the screen. Then the participant ver-
bally responded. There was no time limit with regards to 
either the participant’s planning of their response, or the 
completion of each trial. Once the participant felt that they 
had said enough, they proceeded via the press of a button. 
Afterwards, they answered three questions concerning 
their experience of the process of answering the trial. 

 

Appendix 2: Figure 6 

 

Figure 6: Example of the consistent underestimation of gaze 
angles on the part of OpenFace. Top: Visual output of OpenFace 
including the vectors estimating the participant’s gaze angle. 
Bottom: original video footage. In this case, while human 
observers rate the participant’s gaze angle as ‘4’, the OpenFace 
gaze vectors are oriented in a direction corresponding to ‘7’. 
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Appendix 3: Figure 7 

 

Figure 7: Graphical output of the k-means clustering algorithm 
with 3 to 9 clusters. 


