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Abstract

Affective disorders, such as major depression, are frequently associated with

metabolic disturbances involving mitochondria. Although dysregulation of the

hypothalamic–pituitary–adrenal (HPA) axis is known to alter energy metabo-

lism, the precise mechanisms linking stress and metabolic disturbances are

not sufficiently understood. We used a mouse model of affective disorders to

investigate the impact of a genetic predisposition for extremes in stress reactiv-

ity on behavioural and metabolic phenotypes as well as energy metabolism.

Adult males of three independent mouse lines selectively bred for high, inter-

mediate or low HPA axis reactivity were tested for exploratory and locomotor
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activity as well as stress-coping behaviour. Additionally, basal and stress-

induced plasma corticosterone levels, body weight, food intake and body com-

position were measured. At the molecular level, the hippocampal transcrip-

tome was analysed using microarray, serial analysis of gene expression and

qRT-PCR. Finally, mitochondrial DNA copy number, damages and mitochon-

drial respiration were assessed. We found clear effects of the differential stress

reactivity on the behavioural, morphometric and metabolic measures.

Remarkably, the hyperactive behavioural and neuroendocrine stress-coping

style of high-reactivity mice was associated with significant changes in the

expression of an extended list of genes involved in energy metabolism and sev-

eral mitochondrial functions. Yet, only minor changes were found in mito-

chondrial DNA copy number, damages and respiration. Thus, our findings

support a prominent role of glucocorticoids in shaping the major endopheno-

types of the stress reactivity mouse model and contribute towards understand-

ing the important role of HPA axis dysregulation and changes in energy

metabolism in the pathophysiology of affective disorders.
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1 | INTRODUCTION

The hypothalamic–pituitary–adrenal (HPA) axis plays a
pivotal role in the neuroendocrine stress response
(de Kloet et al., 2005; Holsboer & Ising, 2010). Mitochon-
dria, which are small, dynamic and multifunctional
organelles, not only fuel the stress response by providing
adenosine triphosphate (ATP) but are also important
players during the stress response and influence adapta-
tion processes (Du et al., 2009; Morava & Kozicz, 2013;
Picard et al., 2015). In addition, stress directly influences
mitochondrial functions, primarily in a negative manner
(Picard & McEwen, 2018b). For example, acute and
chronic stressors disturb mitochondrial activity
(e.g. respiratory chain dysfunction, increased radical oxy-
gen species generation and mitochondrial structural
abnormalities), causing mitochondrial dysfunction, cell
damage or death and ultimately producing defects in the
brain and the neuroendocrine system (Picard &
McEwen, 2018a, 2018b).

Stress is one of the most important risk factors in the
aetiology of major depression (MD) (Kessler, 1997), a
debilitating disorder characterised by emotional,
cognitive and physiological disturbances (American
Psychiatric Association, 2013; Nemeroff, 2020) and high
levels of morbidity and mortality (World Health
Organization, 2017). Dysfunctions of the HPA axis have
particularly emerged as key endophenotypes of MD
(Holsboer & Ising, 2010; Menke, 2019; Rein et al., 2019).

Functional alterations are found at many levels
(i.e. brain, pituitary and adrenal glands), leading to
either hyper- or hypo-cortisolism (for review, see Rein
et al., 2019). On this basis, different psychopathological
MD subtypes have been related to different HPA axis
reactivity types. For instance, MD patients of the melan-
cholic subtype tend to show hypercortisolemia, whereas
patients with the atypical MD subtype exhibit a
decreased or no change in their HPA axis activity
(American Psychiatric Association, 2013; Juruena
et al., 2018).

Increasing evidence points towards the involvement
of mitochondria in the pathophysiology of MD (for
review see (Morava & Kozicz, 2013; Rappeneau
et al., 2020; van der Kooij, 2020). On the one hand, indi-
viduals with mitochondrial diseases (i.e. showing severely
impaired mitochondrial functions) have a markedly high
prevalence of MD compared to the general population
(Anglin et al., 2012; Fattal et al., 2006). On the other
hand, molecular correlates of mitochondrial dysfunctions
(e.g. changes in mitochondrial biogenesis, redox imbal-
ance, increased oxidative damages and apoptosis) along
with reduced glucose metabolic activity and energy
metabolism have been reported in the brain of MD
patients (for review, see Rappeneau et al., 2020; van der
Kooij, 2020). Similar alterations in mitochondrial func-
tions and energy metabolism have been reported in ani-
mal models of MD based on chronic stress exposure
(reviewed in Rappeneau et al., 2020; van der Kooij, 2020).
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Despite the clear evidence connecting mitochondria, MD
and stress, inconsistencies are shown in both clinical and
preclinical studies. One of the major reasons for this is
the lack of studies taking MD subtypes into account.
Studies using preclinical models of MD based on the
expression of its key pathophysiological endophenotypes
are, thus, highly warranted.

In our study, we used a mouse model of MD estab-
lished by selective breeding for high (HR), intermediate
(IR) or low (LR) stress reactivity to a moderate psycholog-
ical stressor, referred to as the stress reactivity
(SR) mouse lines (Touma et al., 2008). We aimed to deter-
mine whether behavioural and metabolic phenotypes in
the SR mouse lines were associated, at the molecular
level, with changes in energy metabolism involving mito-
chondria in the hippocampus, a brain region largely
involved in HPA axis-regulated affective behaviours and
showing major alterations in MD (Campbell &
Macqueen, 2004; Holsboer & Ising, 2010; McEwen
et al., 2016; Nolan et al., 2020; Patel et al., 2019; Sheline
et al., 2019; Xu et al., 2020).

The SR mouse lines have been a valuable model for
uncovering how extremes in HPA axis reactivity, such
as those observed in the melancholic and atypical MD
subtypes, are associated with divergent responses at the
behavioural, neuroendocrine and molecular levels. In
previous studies, we have reported on a broad range of
behavioural phenotypes, neuroendocrine alterations
and changes in body weight, appetite and sleep archi-
tecture relevant to the mentioned MD subtypes (Fenzl
et al., 2011; Heinzmann et al., 2014; Knapman
et al., 2010, 2012; McIlwrick et al., 2016, 2017; Touma
et al., 2008, 2009). Importantly, we have shown that
HR mice display cognitive deficits accompanied by
changes in neuronal integrity, neurotrophic levels
[i.e. change in brain-derived neurotrophic factor
(BDNF)] and markers for glycolysis and glucose trans-
port in the hippocampus (Knapman et al., 2010, 2012).
These findings gave the first indications of the influ-
ence of the HPA axis on hippocampal mitochondrial
metabolism.

Therefore, the aim of the present study was to identify
significant differences in gene expression patterns and
molecular pathways related to energy metabolism and
mitochondrial functions in the hippocampus between the
HR, IR and LR mouse lines. For this, adult male mice of
the SR model were tested in paradigms assessing explor-
atory and locomotor activity as well stress-coping behav-
iour. In addition, basal and stress-induced plasma
corticosterone (CORT) levels, body weight, food intake
and body composition were measured. At the molecular
level, the hippocampal transcriptome was analysed using
microarray, serial analysis of gene expression (SAGE)

and qRT-PCR. Finally, mitochondrial DNA (mtDNA)
copy number, mtDNA damage and mitochondrial respi-
ration were assessed.

2 | MATERIALS AND METHODS

2.1 | Animals and housing conditions

The animals used in this study were adult male mice
from the SR mouse model (Touma et al., 2008). They
were selectively bred for high (HR), intermediate
(IR) and low (LR) CORT response to a moderate psycho-
logical stressor. Animal husbandry was performed under
standard laboratory conditions (temperature: 22 ± 1�C;
55 ± 10% humidity; 12-h light–dark cycle). Mice were
provided with a standard chow diet (Altromin No. 1324,
Altromin GmbH, Germany), water ad libitum, bedding
and nesting material (LTE E-001 and NBF E-011, respec-
tively; ABEDD Vertriebs GmbH, Austria).

2.2 | Experimental design

Six study cohorts of the SR mouse lines were utilised,
with similar measures taken, when possible, to ensure
cohort comparability (see Supplementary Figure S1 and
Supplementary Table S1). Mice from generation XIV
(cohort 1; 3–5 months old) were subjected to the SR test
(SRT). A transcriptional profile of gene expression was
realised in their hippocampus using a combination of
microarray, SAGE and qRT-PCR. Following the tran-
scriptomic analyses, mice from generation XXXII (cohort
2; 5–8 months old) were used to investigate the mtDNA
copy number (mtDNAcn) and damage in the hippocam-
pus. Moreover, mice from generation XXXIII (cohort 3;
5–6 months old) and XXXV (cohort 4; 5–6 months old)
were used to characterise the behavioural and metabolic
phenotypes of the three SR mouse lines as well as the res-
piration of isolated mitochondria in the hippocampus
and the liver using the Seahorse assay. Immunohisto-
chemistry for glial fibrillary acidic protein (GFAP) was
performed in mice from generation XXXVIII (cohort 5;
9–10 months old) and gene expression analyses were con-
ducted using qRT-PCR in mice of cohorts 3 and 6 (genera-
tion XXXIX; 5–6 months old).

2.3 | Behavioural testing

Mice of cohort 2–6 were single-housed 2 weeks prior to
the behavioural experiments (see below and Supplemen-
tary Methods). On the test day, mice were brought to the
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experimental room immediately before the start of the
test. All tests were performed between 08:00 and 13:00 h,
when the animals’ CORT levels are in the circadian
trough (Ishida et al., 2005; Touma et al., 2009).
Apparatuses were cleaned with 70% ethanol between
each mouse.

2.4 | Forced swim test

The stress-coping behaviour of the animals was
assessed in the forced swim test (FST) as previously
described (Touma et al., 2008). Mice were put individu-
ally for 6 min into a glass beaker (24 cm high; ;
12 cm) filled three quarters with water (21–23�C).
Floating behaviour (i.e. minimal movements to keep
the head above water) and periods of more vigorous
activity (swimming and struggling behaviours) were
manually scored by an observer blind to the mouse
line using the Behavioural Observation Research
Interactive Software (BORIS, version 4.1.1) (Friard &
Gamba, 2016).

2.5 | Open-field test

Locomotor activity and exploratory behaviour were mon-
itored in a dimly illuminated circular open-field
(OF) arena (; 60 cm, <15 lux) as previously described
(Touma et al., 2008). A circular area in the centre of the
OF arena (; 30 cm) was defined as the inner zone. The
mouse was placed into the outer zone, facing the wall of
the apparatus, and allowed to explore freely for 5 min.
The behaviour was tracked using the ANY-maze software
(Stoelting Co. Wood Dale, Ireland). Parameters measures
included the total distance travelled and the time spent
in the inner zone. The number of rearing was manually
scored using BORIS (definition: the mouse puts its weight
on its hind legs, raises its forelimbs from the ground and
extends its head upwards).

2.6 | Elevated platform test

The explorative drive (independent of locomotor activ-
ity) was tested using a brightly illuminated inescapable
circular platform (; 10 cm, 100 lux) elevated about
40 cm above the floor. As previously described (Touma
et al., 2008), the number of head-dips was manually
scored for 5 min by an observer blind to the mouse
line (definition: the mouse moves its head below
the level of the platform at least to the eye level
or more).

2.7 | Blood collection and CORT analysis

Mice of cohorts 1 and 3 were subjected to the SRT to
measure the reactivity of the HPA axis in response to a
moderate psychological stressor. Briefly, two blood sam-
ples were collected from the ventral tail vessel through
small incisions, the first immediately before the exposure
to a 15-min restraint period (initial sample) and the sec-
ond directly after the restraint period (reaction sample).
In mice from cohorts 2, 4, 5 and 6, blood was also col-
lected immediately after the FST (reaction sample) and
from trunk blood at sacrifice (initial sample).

Basal and stress-induced levels of plasma CORT were
determined using enzyme-linked immunosorbent assay in
the collected blood samples after centrifugation (4000 � g,
4�C, 10 min) as previously described (Touma et al., 2008).

2.8 | Molecular analyses

At the end of the experiments, the mice were sacrificed
by decapitation under deep isoflurane anaesthesia and
several organs or tissues were harvested for subsequent
analyses (i.e. brain, adrenal glands, liver, muscle and fat
depots) (see details in the Supplementary Methods).

2.9 | Hippocampal transcriptome
analysis

The hippocampal transcriptome analysis was done in
mice from cohort 1 (HR n = 7, IR n = 8 and LR n = 9),
using a combination of microarray and SAGE techniques.
For details on the sample preparation and data analyses,
see the Supplementary Methods. Significantly enriched
clusters between HR and LR mice in the microarray
experiment are presented in Supplementary Table S2.
The differential transcriptional profiles of gene expres-
sion in the hippocampus of HR and LR mice were
confirmed using qRT-PCR (see Supplementary Tables S3
and S4). Significantly enriched clusters between HR and
LR mice in the SAGE experiment are presented in
Supplementary Table S5. The differentially expressed
genes in the hippocampus were analysed using the
MitoXplorer web-based application (Yim et al., 2020) (see
details in the Supplementary Methods).

2.10 | Hippocampal candidate gene
expression analysis

Candidate gene expression was analysed in the hippo-
campus by qRT-PCR in mice from cohorts 3 and 6. For
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this, total RNA was extracted using RNeasy Isolation
Micro Kits (Qiagen, Germany), tested for concentration
and purity using a NanoDrop ND-1000 Spectrophotome-
ter (Life Technologies GmbH, Germany) and reverse
transcribed to cDNA (High-Capacity cDNA Reverse
Transcription Kit, Life Technologies GmbH, Germany)
according to the manufacturer’s instructions.

Fluorescence-based qRT-PCR was performed in dupli-
cates (SD < 1.0) on 96 well-plates on a thermal cycler
(C1000 Thermal Cycler, FX96TM RealTime System, Bio-
Rad Laboratories GmbH, Germany) using SsoAdvanced
Universal SYBR® Green Supermix (Bio-Rad Laboratories
GmbH, Germany). Primers were designed (http://www.
ncbi.nlm.nih.gov) and tested to optimise reaction condi-
tions (sequences provided in Supplementary Table S6).
Primers all had an efficiency between 90% and 110%. An
identical cycle profile was used for all genes (40 cycles,
annealing at 60�C for 30 s, dissociation stage).

The fold change in gene expression was calculated
using the formula 2(�ΔΔCq) (Livak & Schmittgen, 2001).
Expression was normalised to glyceraldehyde
3-phosphate dehydrogenase gene (F:5´-TGACGTGC
CGCCTGGAGAAAC-30; R:5´-CCGGCATCGAAGGTG-
GAAGAG-30) and hypoxanthine-guanine phosphoribosyl
transferase (F:5´-GTTGGATACAGGCCAGACTTTGT-30;
R:5´-CCACAGGACTAGAACACCTGCTA-30), which did
not significantly differ between the three SR mouse lines.

2.11 | Hippocampal mitochondrial DNA
content and damage assays

A semi-long run qRT-PCR method was used to determine
the mitochondrial DNA copy number (mtDNAcn) as well
as the potential mtDNA damages on total DNA extracted
from the hippocampus in mice from cohort 2 (Furda
et al., 2012; Gonzalez-Hunt et al., 2016; Rothfuss
et al., 2010; Santos et al., 2006). Details are presented in
the Supplementary Methods.

2.12 | Seahorse assay

For measuring oxygen consumption rates (OCRs) of iso-
lated hippocampal and hepatic mitochondria, a Seahorse
assay (Cell Mito Stress Test kits, Agilent Technologies
Germany GmbH & Co. KG) was used in mice from
cohort 4. Details about the isolation of mitochondria and
the mitochondria coupling assay are provided in the Sup-
plementary Methods. Quality control of the mitochon-
drial isolation procedure was performed using western
blotting (see Supplementary Methods).

2.13 | Immunohistochemistry

Immunohistochemistry for GFAP was conducted in the
hippocampus of mice from cohort 5, as previously
described but with minor changes (Rappeneau
et al., 2016). Briefly, mice were anesthetised using iso-
flurane and perfused transcardially with 0.9% saline/4%
formaldehyde. Then, the brain samples were collected
and frozen at �35�C before being cut into slices
(30 μm) using a cryostat (Cryostar NX7, Life Technolo-
gies GmbH, Germany). The brain tissue slices were
processed using standard immunohistochemistry for
GFAP and the number of cells positive for GFAP
counted in the regions of interest [the hippocampal
regions CA1, CA3, the ventral and dorsal Dentate
Gyrus (DG)] using a light microscope (AxioImager
AX10 microscope, Carl Zeiss AG, Germany).
Further details are provided in the Supplementary
Methods.

2.14 | Statistical analyses

Details of the bioinformatics analyses of the microarray
and SAGE data are explained in the Supplementary
Material. Statistical analyses were conducted using IBM
SPSS Statistics version 25. To verify the comparability
of the different cohorts of mice used in the present
study, data were log transformed to reach normal distri-
bution and a one-way ANCOVA was used to compare
the parameters between the cohorts. Behavioural, mor-
phometric, endocrine and molecular data were first
tested for normality and equality of error variances
using the Shapiro–Wilk test and Levene’s test, respec-
tively. Data that met the requirements for parametric
analyses were analysed using one-way ANOVA fol-
lowed by Bonferroni post hoc tests. Data that did
not meet the requirements for parametric analyses
were analysed using Mann–Whitney U-test or Kruskal–
Wallis H-test followed by Dunn–Bonferroni post
hoc tests. The Friedman test followed by Wilcoxon
signed-rank tests was performed to compare the inter-
measure differences within the mouse lines in the
Seahorse assay.

Figures were created with Graph Pad Prism version
6.01 (San Diego, California). Data are presented as box
plots showing the median (horizontal line in the box),
25–75% (boxes) and 10–90% (whiskers). All data in the
text are presented as the mean ± the standard error of
the mean (SEM). Results are reported as significant at the
0.05 level (two-sided p-values) unless indicated
otherwise.
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3 | RESULTS

3.1 | Hippocampal transcriptome

3.1.1 | Microarray expression profile

A large-scale cDNA microarray was conducted in the hip-
pocampus of mice of cohort 1 in order to explore the
HPA axis regulatory mechanisms that may drive individ-
ual differences in stress reactivity in the SR mouse lines
(Touma et al., 2008). Due to a large amount of data, ini-
tial analyses concentrated on the comparison of mice
with extreme responses in stress reactivity (i.e. HR vs. LR
mice). Five significantly enriched gene clusters were
identified (p < 0.05, FDR < 0.05) (see Supplementary

Table S2). Thirty-one genes were chosen for validation
using qRT-PCR analysis of which, 13 could be validated
(see Supplementary Tables S3 and S4).

The subsequent mitochondrial function enrichment
analyses involved all three SR mouse lines. For this, log2
fold values above +1.5 or below �1.5 in the microarray
were considered. A total of 297, 250 and 276 genes
showed significant expression changes in the HL (HR vs.
LR), HI (HR vs. IR) and IL (IR vs. LR) comparisons,
respectively. Genes with significant expression changes
between each comparison (HL, HI and IL) were uploaded
into the mitoXplorer. This revealed 37 differentially
expressed genes from all comparisons (i.e. HL, HI and
IL) that were associated with 12 different mitochondrial
functions (Figure 1a). Although HL and HI clustered

F I GURE 1 Genetic predisposition

for extremes in HPA reactivity had a

marked impact on the hippocampal

transcriptome as revealed by microarray

gene expression analysis. (a) The top

12 mitochondrial functions identified in

the microarray data sets using

mitoXplorer. (b) Heat map of

mitochondrial genes that significantly

differed between each comparison (HI:

HR vs. IR; HL: HR vs. LR and IL: IR

vs. LR), with data normalised to

log2-fold values for mouse line

comparisons. (c) Comparative log2 fold

values of genes for each comparison;

n = 7–9 mice/line. Abbreviations: HPA:

hypothalamic–pituitary–adrenal axis;
HR: high reactivity, IR: intermediate

reactivity, LR: low reactivity.
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together, normalised log2-fold measurements of the sig-
nificant mitochondrial genes in HL, HI and IL showed
good separation between each mouse line (Figure 1b).

Differential gene expression was seen for genes
involved in protein translation. This included Mrps10
(mitochondrial ribosomal protein S10) and Rpsdu4, an
uncharacterised mitochondrial putative pseudo uridine
synthase component of mitoribosome RNA granules,
which were markedly down-regulated and upregulated
in HR mice, respectively (Figure 1c). Differential expres-
sion was also observed for the mitochondrial fission fac-
tor Mff and the autophagy initiator Becn1 (beclin 1) as
well as for genes implicated in import and sorting (upre-
gulation of Chchd4 (coiled–coil–helix–coiled–coil–helix
domain containing 4), Mipep (mitochondrial intermedi-
ate peptidase) and Hspe1 (heat shock protein family E
member 1), and down-regulation of Timm9 (translocase
of inner mitochondrial membrane 9) in HR mice.
Moreover, HR mice also showed a down-regulation of
the assembly factor Sdhaf1 (succinate dehydrogenase
complex assembly factor 1) involved in oxidative
phosphorylation (Figure 1c).

3.1.2 | SAGE expression profile

An additional transcriptional profile of gene expression
was performed in mice of cohort 1 using the SAGE
approach. The comparison of mice with extreme
responses in HPA axis reactivity (i.e. HR vs. LR) identi-
fied 14 significantly enriched gene clusters (p < 0.05,
FDR < 0.05) (see Supplementary Table S5).

A total of 743 genes showed significant expression
changes between HR and LR mice. Similar to the micro-
array study, these genes were uploaded to the mitoX-
plorer. According to the functional enrichment analysis,
60 differentially expressed genes between HR and LR
mice were associated with 21 different mitochondrial
functions. The majority of genes were involved in
oxidative phosphorylation, amino acid metabolism and
translation functions. This includes ‘Oxidative phosphor-
ylation’ genes like Sdhaf1, which was significantly
down-regulated in HR mice compared to LR mice. As
for Sdhc (integral membrane protein of succinate
dehydrogenase complex subunit C), it was significantly
upregulated in HR mice. Furthermore, Aars2 (alanyl-
tRNA synthetase 2, ‘Translation’ function), Mthfs
(5, 10-methenyltetrahydrofolate synthetase, ‘Folate &
Pterin metabolism’ function) and Usp30 (ubiquitin spe-
cific peptidase 30, ‘Mitochondrial Dynamics’ function)
were markedly down-regulated among the down-
regulated genes in HR mice. Similarly, genes such as Fh1
(fumarate hydratase 1, ‘Tricarboxylic Acid Cycle’

function), Aldh18a1 (aldehyde dehydrogenase 18 family
member A1, ‘Amino Acid Metabolism’ function), Pdss2
[prenyl (solanesyl) diphosphate synthase subunit 2, ‘Ubi-
quinone Biosynthesis’ function] and Nfu1 (NFU1
iron–sulfur cluster scaffold, ‘Fe-S Cluster Biosynthesis’
function) were strongly upregulated among the
upregulated genes in the HR mice (Figure 2).

3.2 | Behavioural characterisation of the
SR mouse lines

As previously shown (Heinzmann et al., 2014; Knapman
et al., 2010, 2012; Touma et al., 2008), the genetic predis-
position for extremes HPA axis reactivity resulted in sev-
eral robust behavioural and endocrine phenotypes,
which were confirmed here in mice from cohorts 2–6
(Figure 3 and Supplementary Table S1).

In Figure 3a, plasma CORT concentrations in
response to the SRT (cohort 3) or the FST (cohort 4) are
shown. As expected, significant differences were found in
stress-induced CORT levels between HR, IR and LR mice
(SRT: χ 2 (2) = 20.697 p < 0.001; FST: χ 2 (2) = 31.634
p < 0.001), confirming the hyper-reactive and hypo-
reactive HPA axis in HR and LR mice, respectively.

The explorative drive assessed in the elevated plat-
form test (cohort 5) showed significant differences in the
number of head dips [χ 2 (2) = 9.348 p = 0.009]
(Figure 3b).

In the open-field test (cohort 3), significant differ-
ences were observed in the total distance travelled [χ 2

(2) = 12.695 p = 0.002] and the time spent in the inner
zone [χ 2 (2) = 7.190 p = 0.027], but not in the number of
rearing [χ 2 (2) = 3.969 p = 0.137] (Figure 3c–e).

In the FST (cohort 4), the durations of struggling,
swimming and floating were significantly different
between the three mouse lines [χ 2 (2) = 14.3 p < 0.001;
χ 2 (2) = 15.0 p = 0.006; χ 2 (2) = 25.7 p < 0.001, respec-
tively] (Figure 3f–h), confirming the hyperactive
vs. hypoactive coping style of HR and LR mice,
respectively.

3.3 | Morphometric and metabolic
phenotypes of the SR mouse lines

In mice from cohort 4, the body weight, the food intake
and the weight of several organs/tissues were assessed
(Figure 4).

As expected, significant differences were found
regarding the animal body weight [χ 2 (2) = 28.145,
p < 0.001] and the relative food intake [χ 2 (2) = 22.766,
p < 0.001] (Figure 4a,b). Interestingly, significant

RAPPENEAU ET AL. 7

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16044 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



differences were also observed in the relative total white
adipose tissue (WAT) weight [χ 2 (2) = 16.400, p < 0.001]
(Figure 4c). The inguinal white adipose tissue (iWAT),
the epididymal white adipose tissue (eWAT) and the ret-
roperitoneal white adipose tissue (rpWAT) all showed
significant line differences (iWAT, χ 2 (2) = 20.678,
p < 0.001; eWAT, χ 2 (2) = 9.455, p = 0.009 and rpWAT,
χ 2 (2) = 9.405, p = 0.009) (Figure 4c), revealing an over-
all reduced adiposity in LR mice compared to IR and HR
mice. Significant differences were also seen in the relative
liver weight [χ 2 (2) = 16.812, p < 0.001] but not in the
relative muscle weight [χ 2 (2) = 4.0925, p = 0.129]
(Figure 4d).

3.4 | mtDNA copy number and damages
in the hippocampus

Significant differences between the three mouse lines
were found neither in the hippocampal mitochondrial
DNA copy number (mtDNAcn) [F(2,24) = 0.857,
p = 0.437] (Figure 5a) nor in the lesion frequency to
mtDNA [D-Loop F(2,25) = 0.370, p = 0.694; Cox 3 F
(2,24) = 0.163, p = 0.851] (Figure 5b). There was also no
significant line difference in the mRNA expression of the
apoptosis regulators Bax (pro-apoptotic) [mean ± SEM:
HR 1.09 ± 0.035, IR 1.00 ± 0.030, LR 0.98 ± 0.084; F
(2,22) = 0.004, p = 0.996] and Bcl-2 (anti-apoptotic)

(mean ± SEM HR 0.91 ± 0.052, IR 1.00 ± 0.091, LR 0.97
± 0.126; F(2,22) = 0.31, p = 0.736), as well as in their
ratio F(2,22) = 1.36, p = 0.278] (Figure 5c).

3.5 | Mitochondrial respiration in the
hippocampus and the liver

For assessing mitochondrial functionality, real-time
OCRs of isolated hippocampal mitochondria were mea-
sured using a Seahorse XFe96 analyser in cohort
4 (Figure 5d–f and Supplementary Table S7).

No significant differences between the three mouse
lines were observed regarding the basal OCR calcu-
lated after subtraction of non-mitochondrial respiration
[χ 2 (2) = 2.978, p = 0.226], the ATP-linked OCR [χ 2

(2) = 1.107, p = 0.575] and the respiration of proton
leak calculated following the addition of Oligomycin
[χ 2 (2) = 2.986, p = 0.225]. A trend for line differences
was found regarding the maximal OCR measured
following the addition of FCCP [χ 2 (2) = 5.111,
p = 0.078]. The spare respiratory capacity (difference
between basal OCR and maximal OCR) showed no sig-
nificant line differences [χ 2 (2) = 0.345, p = 0.841].
Finally, no significant line differences were seen in the
coupling efficiency, representing the proportion of
basal OCR used to drive ATP synthesis [χ 2 (2) = 1.713,
p = 0.425].

F I GURE 2 Genetic predisposition for extremes in HPA reactivity had a marked impact on the hippocampal transcriptome as

revealed by serial analysis of gene expression. The top 21 mitochondrial functions identified in the SAGE data sets using mitoXplorer.

Comparative log2-fold values of mitochondrial genes that significantly differed between HR (high reactivity) and LR (low reactivity) mice;

n = 7–8 mice/line.
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Similar analyses performed in mitochondria isolated
from the livers of the same animals (cohort 4) resulted in
very similar patterns (Figure 5g–i and Supplementary
Table S7). No significant differences between the three
mouse lines were found in any aspect of mitochondrial
respiration measured in the liver.

Overall, these data demonstrate a lack of effect of the
genetic predisposition for extremes in HPA axis reactivity
on the capacity of mitochondria for coupling ATP pro-
duction to the electron transport chain activity.

3.6 | Expression of genes involved in
glucose and lipid metabolism in the
hippocampus

To determine whether differences in glucose transport
and fatty acid metabolism in the hippocampus could
account for the line-specific stress-coping behaviour and
the metabolic phenotypes (Figures 3 and 4), gene
expression analyses were conducted in mice from
cohorts 3 and 6.

F I GURE 3 Genetic predisposition

for extremes in HPA axis reactivity had

a marked impact on behavioural

phenotypes. Stress-induced

corticosterone in response to the stress

reactivity stress (SRT) (cohort 3) and to

the forced swim test (FST) (cohort 2) (a).

Number of head-dips in the elevated

platform test (cohort 6) (b). Total

distance travelled (c), time spent in the

inner zone (d) and number of rearing

(e) in the open-field test (cohort 2).

Duration of struggling (f), swimming

(g) and floating (h) in the FST (cohort

2). Statistics: Kruskal–Wallis H-test

followed by Dunn–Bonferroni post hoc
tests; *p < 0.05, **p < 0.01, ***p < 0.001

and Tp < 0.1; n = 9–16 mice/line.

Abbreviations: CORT: corticosterone;

FST: forced swim test; HPA:

hypothalamic–pituitary–adrenal axis;
HR: high reactivity; IR: intermediate

reactivity; LR: low reactivity; SRT: stress

reactivity test.
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Regarding glucose metabolism, significant line differ-
ences were found in the mRNA expression of Dld (dihy-
drolipoamide dehydrogenase) [χ 2 (2) = 7.096, p = 0.029],
which was lower in HR mice compared to IR (p = 0.026)
and LR mice (p = 0.020) (Figure 6a). A statistical trend
was found in the mRNA expression of Mcp2 (mitochon-
drial pyruvate carrier 2) [χ 2 (2) = 5.720, p = 0.057].
Hexokinase 1 (Hk1) [χ 2 (2) = 1.319, p = 0.517], Ldhb
(lactate dehydrogenase B) [χ 2 (2) = 1.651, p = 0.438] and
Mcp1 (mitochondrial pyruvate carrier 1) [χ 2 (2) = 0.535,
p = 0.765] were not significantly different between the
three mouse lines (Figure 6a).

Concerning glucose transport, significant line differ-
ences were found in the mRNA expression of Slc2a4 (sol-
ute carrier family 2 member 4, coding for the insulin-
regulated facilitative glucose transporter GLUT4)
(p < 0.001) [χ 2 (2) = 16.947, p < 0.001], which was con-
siderably higher in HR mice compared to both IR
(p = 0.002) and LR mice (p = 0.002). The mRNA

expression of Slc5a1 (solute carrier family 2 member
5, coding for the sodium-dependent glucose transporter
SGLT1) showed line differences [χ 2 (2) = 12.961,
p = 0.002], with a lower expression level in HR mice
compared to both IR (p = 0.001) and LR mice
(p = 0.009) (Figure 6b). Gene expression did not differ
significantly between the three mouse lines for Slc2a1
(solute carrier family 2 member 1, coding for GLUT1 at
the blood–brain barrier) [χ 2 (2) = 0.521, p = 0.771],
Scl2a3 (solute carrier family 2 member 3, coding for the
neuronal glucose transporter GLUT3) [χ 2 (2) = 1.435,
=0.488], Insr (insulin receptor) [χ 2 (2) = 0.000,
p = 1.000], Irs1 (insulin receptor substrate 1) [χ 2 (2)
= 4.223, p = 0.121] and Mtor (mechanistic target of rapa-
mycin kinase, regulator of insulin signalling) [χ 2 (2)
= 5.226, p = 0.073] (Figure 6b,c).

With regards to fatty acid metabolism, significant line
differences were observed in the mRNA expression of
Adipor2 (adiponectin receptor 2) [χ 2 (2) = 10.522,

F I GURE 4 Genetic predisposition for extremes in HPA axis reactivity responses had a marked impact on metabolic phenotypes. Body

weight (a), relative food intake (b), relative fat depot weight (c) and relative weight of muscle and liver (d) (cohort 4). Statistics: Kruskal–
Wallis H-test followed by Dunn–Bonferroni post hoc tests; *p < 0.05, **p < 0.01, ***p < 0.001 and Tp < 0.1; n = 9–16 mice/line.

Abbreviations: eWAT: epididymal white adipose tissue; HPA: hypothalamic–pituitary–adrenal axis; HR: high reactivity; IR: intermediate

reactivity; iWAT: inguinal white adipose tissue; LR. Low reactivity; rpWAT: retroperitoneal white adipose tissue; WAT: white adipose tissue.
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p = 0.005] and Cpt2 (carnitine palmitoyltransferase 2)
[χ 2 (2) = 6.465, p = 0.039], which were markedly higher
in HR mice compared to LR mice (p = 0.001 and
p = 0.015, respectively). Significant line differences were
also seen in the mRNA expression of Lepr (leptin recep-
tor) [χ 2 (2) = 10.355, p = 0.006], which was lower in HR
mice compared to IR (p = 0.001) and LR (p = 0.055)
mice (Figure 6d). No significant line differences were
found, however, in the mRNA expression of Adipor1 (adi-
ponectin receptor 1) [χ 2 (2) = 0.960, p = 0.619], Cpt1c
(carnitine palmitoyltransferase 1c) [χ 2 (2) = 0.328
p = 0.849] and Tspo (translocator protein) [χ 2 (2)
= 0.411, p = 0.814] (Figure 6d). Finally, no significant

line differences were found in the mRNA expression of
Nr3c1 (nuclear receptor subfamily 3 group C member
1, coding for the glucocorticoid receptor) [HR 1.00
± 0.032, IR 1.00 ± 0.030, LR 1.01 ± 0.046; χ 2 (2) = 0.076,
p = 0.963].

3.7 | Expression of genes involved in
neurotransmission and synaptic plasticity
in the hippocampus

Because the brain depends on the interaction of various
cell types to meet its energy demand, we also investigated

F I GURE 5 Genetic predisposition

for extremes in HPA axis reactivity had

no significant impact on mtDNA copy

number, mtDNA damages and

mitochondrial respiration in the

hippocampus or the liver. (a–c)
Mitochondrial DNA (mtDNA) copy

number and lesion. (a) Fold change in

mtDNAcn. (b) mtDNA lesions per

10 kb. (c) Apoptosis ratio (Bax mRNA

fold change/Bcl2 mRNA fold change).

Statistics: one-way ANOVA; n = 7–10
mice/line. (d–i) Bioenergetic profile of
isolated mitochondria from the

hippocampus (d) and the liver

(g) showing real-time OCR at baseline

and after the addition of modulators of

key components of the electron

transport chain: ADP, oligomycin A,

FCCP and antimycin A. Basal and

maximal OCR are also shown for the

hippocampus (e, f) and the liver (h, i).

Statistics: Kruskal–Wallis H-test;

Tp < 0.1; n = 5–7 mice/line.

Abbreviations: ADP: adenosine

diphosphate; Bax: gene coding for BCL2

associated X, apoptosis regulator; Bcl2:

gene coding for BCL2 apoptosis

regulator; Cox 3: gene coding for

cytochrome c oxidase subunit 3; FCCP:

carbonyl cyanide p-trifluoromethoxy–
phenylhydrazone; HPA: hypothalamic–
pituitary–adrenal axis HR: high

reactivity; IR: intermediate reactivity;

LR: low reactivity; mtDNAcn:

mitochondrial DNA copy number; OCR:

oxygen consumption rate.
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the impact of a genetic predisposition for extremes in
HPA axis reactivity on the expression of candidate genes
related to neurotransmission and synaptic plasticity in
the hippocampus (Figure 7a).

Major line differences were found in the mRNA
expression of the astrocytic Gfap marker [χ 2(2) = 10.900,
p = 0.004], which was strongly decreased in HR mice
(p < 0.001) and to a lesser extent in LR mice (p < 0.05)
compared to IR mice. Significant differences were also

seen in the mRNA expression of the neuron-specific syn-
aptic vesicle-associated phosphoprotein Syn1 (synapsin I)
[χ 2 (2) = 8.137, p = 0.017], which was increased in HR
mice compared to both IR and LR mice (p < 0.01). No
significant differences were observed; however, in the
mRNA expression of Bdnf (brain-derived neurotrophic
factor) [χ 2 (2) = 3.393, p = 0.183], Glud1 (glutamate
dehydrogenase 1) [χ 2 (2) = 0.655, p = 0.721], Gls1 (gluta-
minase 1) [χ 2 (2) = 3.214, p = 0.200], Slc1a1 (solute

F I GURE 6 Genetic predisposition

for extremes in HPA axis reactivity had a

significant impact on the expression of

genes involved in glucose and fatty acid

metabolism in the hippocampus of HR,

IR and LR mice. Changes in mRNA fold

change (normalised to IR) quantified by

qRT-PCR for genes involved in glucose

metabolism (a), glucose transport (b),

insulin signalling (c) and fatty acid

metabolism (d). Statistics: Kruskal–
Wallis H-test followed by Dunn–
Bonferroni post hoc tests; *p < 0.05,

**p < 0.01, ***p < 0.001 and Tp < 0.1;

n = 7–12 mice/line. Abbreviations:

Adipor1, adiponectin receptor 1;

Adipor2, adiponectin receptor 2; Cpt1c,

carnitine palmitoyltransferase 1C; Cpt2,

carnitine palmitoyltransferase 2; Dld,

dihydrolipoamide dehydrogenase; Fasn,

fatty acid synthase; Hk1, hexokinase 1;

HR, high reactivity; Insr, insulin

receptor; IR, intermediate reactivity;

Irs1, insulin receptor substrate 1; Ldhb,

lactate dehydrogenase B; Lepr, leptin

receptor; LR, low reactivity; Mcp1,

mitochondrial pyruvate carrier 1; Mcp2,

mitochondrial pyruvate carrier 2; Mtor,

mechanistic target of rapamycin kinase;

Scl2a1, solute carrier family 2 member 1;

Scl2a3, solute carrier family 2 member 3;

Slc2a4, solute carrier family 2 member 4;

Slc5a1, solute carrier family 5 member 1;

Tspo, translocator protein.
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carrier family 1 member 1, coding for the neuronal excit-
atory amino acid transporter 3) [χ 2 (2) = 1.801,
p = 0.406], Slc1a2 (solute carrier family 1 member 2, cod-
ing for the glial excitatory amino acid transporter 2) [χ 2

(2) = 0.426, p = 0.808] and Syp (synaptophysin) [χ 2 (2)
= 2.033, p = 0.362].

Motivated by the marked differences in Gfap mRNA
expression, the number of GFAP+ cells was quantified in
the different sub-regions of the dorsal hippocampus
(Figure 7b,c). There were significant differences in the

number of GFAP+ cells in the CA1 sub-region [χ 2 (2)
= 9.178, p = 0.010] with HR mice showing a higher
number of reactive astrocytes compared to both IR
(p = 0.045) and LR (p = 0.016) mice. No significant dif-
ferences in reactive astrocyte numbers were seen for the
other hippocampal regions including the CA3 [χ 2 (2)
= 0.340, p = 0.843], the dorsal dentate gyrus (DGd) [χ 2

(2) = 0.851, p = 0.653] and the ventral dentate gyrus
(DHv) [χ 2 (2) = 0:860, p = 0.651] and when considering
the whole hippocampus [χ 2 (2) = 1.005, p = 0.605].

F I GURE 7 Genetic predisposition for

extremes in HPA axis reactivity had only a

minor impact on the expression of genes

involved in neurotransmission and synaptic

plasticity in the hippocampus of HR, IR and LR

mice. (a) Changes in mRNA fold change

(normalised to IR) quantified by qRT-PCR for

candidate genes involved in neurotransmission

and synaptic plasticity. (b) Representative

photomicrograph of glial fibrillary acidic protein

(GFAP) immune-reactivity and delineation of

sub-regions counted: 1: CA1; 2: DGv; 3: DGd; 4:

CA3. Objective, 2.5X; scale bar, 200 μm.

(c) Number of GFAP-positive cells in the whole

hippocampus (Hc) and the different sub-regions

counted. Statistics: Kruskal–Wallis H-test

followed by Dunn–Bonferroni post hoc tests;
*p < 0.05, **p < 0.01, ***p < 0.001 and

Tp < 0.01; n = 7–12 mice/line. Abbreviations:

Bdnf, brain-derived neurotrophic factor; Gfap,

glial fibrillary acidic protein; Gls1, glutaminase;

Glud1, glutamate dehydrogenase 1; HR, high

reactivity; IR, intermediate reactivity; LR, low

reactivity; Slc1a1, solute carrier family

1 member 1; Slc1a2, solute carrier family

1 member 2; Syn1, synapsin I; Syp,

synaptophysin.
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4 | DISCUSSION

Based on our previous findings indicating an influence of
changes in HPA axis reactivity on hippocampal mito-
chondrial metabolism in the SR mouse lines (Knapman
et al., 2010, 2012), we used a number of different molecu-
lar biology techniques to determine specific alterations in
molecular correlates of mitochondria-related functions in
the hippocampus of HR and LR mice—identified as
groups of high vulnerability to develop depression-like
phenotypes relevant to the melancholic and atypical MD
subtypes, respectively (see summary in Figure 8).

By combining microarray and SAGE approaches, we
found a significant divergent enrichment in the expres-
sion of genes related to mitochondria-related functions in
the hippocampus of HR mice (Figures 1 and 2). Our
results are consistent with the well-known high energy
expenditure of the brain and extend the findings of others
showing major changes in the expression of genes/
proteins involved in energy metabolism, oxidative phos-
phorylation, antioxidant enzymes, cytoskeleton regula-
tion and apoptosis in the hippocampus of mice subjected
to different chronic stress paradigms such as chronic mild
stress (Bergström et al., 2007; Liu et al., 2011; Tang

et al., 2019; Xie et al., 2018; Zhang et al., 2018), psychoso-
cial stress (Carboni et al., 2006), social isolation stress
(Filipovi�c et al., 2020) and chronic restraint stress (Choi
et al., 2018). Interestingly, however, our animal model is
based on the genetic predisposition for extremes in HPA
axis reactivity, and the animals from the HR, IR and LR
lines were not stressed before brain harvesting for gene
expression analysis.

In the microarray experiment, we observed significant
expression differences in genes involved in ribosome
function, oxidative phosphorylation and mitochondrial
fission, supporting previous observations in animal
models of depression (Smagin et al., 2016; Zubenko
et al., 2014) and MD patients (Wang & Dwivedi, 2017).
Moreover, we found a down-regulation of the Becn1 gene
expression in the hippocampus of HR mice. This gene
encodes a protein that regulates autophagy and associates
with the FK506-binding protein 51 (FKBP5/FKBP51)
(Gassen et al., 2014, 2015). The latter is an Hsp90 co-
chaperone, which constitutes a prominent regulator of
the glucocorticoid receptor (GR), the main driver of HPA
axis feedback regulation (Fries et al., 2017; Rein, 2016;
Wochnik et al., 2005). Recent work has shown a critical
role of FKBP5/FKBP51 in fine-tuning MR:GR (MR:

F I GURE 8 Overview of the impact of a genetic predisposition for extremes in HPA axis reactivity on behavioural and metabolic

phenotypes as well as hippocampal energy metabolism in the stress reactivity mouse lines. Abbreviations: HPA, hypothalamic–pituitary–
adrenal; mtDNA, mitochondrial DNA; Gfap, glial fibrillary acidic protein; GFAP-IR, immunoreactivity for glial fibrillary acidic protein.
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mineralocorticoid receptor) balance in the hippocampus
(Hartmann et al., 2021). In the hypothalamus, FKBP5/
FKBP51 plays a key role in shaping the body’s stress sys-
tem (re)activity (Häusl et al., 2021). Importantly, FKBP5/
FKBP51 not only regulates antidepressant response in
mice and humans (Binder et al., 2004; Fries et al., 2015;
Touma et al., 2011), but its association with BECN1 to
enhance autophagy constitutes a prerequisite for antide-
pressant action (Gassen et al., 2015). Interestingly, we
were able to show previously that HR mice present a
down-regulation of hippocampal Fkbp5 mRNA levels
under basal conditions (Heinzmann et al., 2014) as well
as after exposure to early life stress (McIlwrick
et al., 2016). Our data thus warrant further investigation
of these molecular links in the SR mouse model, includ-
ing aspects of stress and autophagy (see also Gassen
et al., 2014).

In the SAGE study, we extended the gene expression
analysis even more and found significant differences in a
number of genes involved in oxidative phosphorylation,
again supporting previous observations on chronic stress
models (Rezin et al., 2008; Weger et al., 2020). Because
MD has been associated with abnormal energy metabo-
lism and reduced ATP level in patients (Gu et al., 2021;
Martins-de-Souza et al., 2012; Moretti et al., 2003), it is
conceivable that alterations in the mitochondrial respira-
tory chain represent one mechanism in the pathophysiol-
ogy of MD. Mitochondrial protein synthesis is required for
oxidative phosphorylation and mutations affecting mito-
chondrial translation have been identified as a major
cause of mitochondrial diseases (Webb et al., 2020). In our
study, the Aars2 gene involved in mitochondrial transla-
tion and associated with depression and cognitive decline
(Srivastava et al., 2019) was found down-regulated in HR
mice, suggesting that the phenotypes of HR mice may
derive from mitochondrial translation dysfunction.

In contrast to the transcriptomic data that highlighted
major differences in mitochondrial gene expression in
the hippocampus between HR and LR mice, we did not
find significant differences in indicators of oxidative
stress, as measured by the mtDNA copy number, the
extent of oxidative damages to mtDNA and the mRNA
expression of apoptosis-related genes in this brain region
(Figure 5a–c). Furthermore, we observed no significant
mouse line differences in mitochondrial respiration
(Figure 5d–f), both in the hippocampus and the liver, a
key peripheral metabolic organ vulnerable to stress.
Thus, we could not confirm that a genetic predisposition
for extremes in HPA axis reactivity, associated with con-
trasting stress-coping behaviour and physiological stress
responses (Figure 3), significantly altered hippocampal
mitochondrial function and integrity at the cellular level.
Yet, a few limitations should be mentioned.

First, the ultimate assessment of mitochondrial respi-
ration and the underlying molecular and cellular mecha-
nisms would require to isolate and culture neurons and
astrocytes from the hippocampus of the SR mouse lines.
In fact, the high-throughput Seahorse XF96 Analyser
technique allowed us to process multiple samples within
a short amount of time, with a small quantity of mito-
chondria and minimal sample-to-sample variations. The
manipulation of various substrates provided a detailed
functional characterisation of mitochondria that was
independent of potential changes in mitochondrial
dynamics or cellular signalling regulating mitochondria.
Yet, the lack of the natural cellular environment and
milieu makes our data difficult to compare with in vivo
situations.

Second, the mitochondrial function and integrity in
the SR mouse lines would need to be assessed in other
areas of the brain than the hippocampus (i.e. nucleus
accumbens, amygdala and prefrontal cortex). Indeed, as
we recently reviewed (Rappeneau et al., 2020), chronic
stress applied during early life or in adolescence in
rodents was associated with major changes in mitochon-
drial biogenesis as well as oxidative stress and damage;
yet, some regional differences regarding the brain areas
implicated in MD were highlighted, possibly due to
regional differences in stress-induced structural plasticity
and gene expression (McEwen et al., 2016).

Third, it should be kept in mind that the present find-
ings were gathered from non-stressed animals, i.e. not
subjected to any physiological or behavioural challenge,
which might trigger differential responses in the three
mouse lines.

Interestingly, we found significantly altered expres-
sion of genes involved in metabolic regulatory networks
between HR, IR and LR mice, especially involving glu-
cose metabolism and transport candidates (Figure 6).
These results are in line with several studies showing
altered glucose metabolism in both rodent models of MD
and depressed patients (for review see van der Kooij
(2020). For example, in HR mice, we observed a signifi-
cant decrease in the mRNA expression of Dld and Scl5a1
[coding for the sodium/glucose cotransporter 1 (SGLT1)]
as well as a substantial increase in the mRNA expression
of Scl2a4 [coding for the insulin-regulated glucose trans-
porter 4 (GLUT4)] (Figure 6b). These changes were not
accompanied by significant variations in the mRNA
expression of other genes involved in glucose metabolism
and transport and insulin signalling (Figure 6a–c). So
far, conflicting data have been reported regarding
GLUT4 expression and insulin signalling in the hippo-
campus, for example after short-term CORT adminis-
tration in rats (Piroli et al., 2007), or after chronic
stress in mice (Głombik et al., 2020; Mehta et al., 2017;
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Mehta, Singh & Udayabanu, 2017). Importantly, some
studies did find major alterations in GLUT4 and insulin
signalling by combining stress exposure and other aversive
factors (e.g. glucose loading or high-fat diet; Detka
et al., 2014; Ezaki, 1997). Because the overexpression of
GLUT4 dramatically improved glycaemic control in
insulin-resistant db/db mice and high-fat diet-fed mice
(Ezaki, 1997), further work is needed to characterise in
more detail the peripheral and cerebral glucose homeosta-
sis and insulin signalling in the three SR lines.

It would, in particular, be relevant to investigate these
aspects after exposure to a nutritional challenge such as a
high-fat diet treatment. Indeed, we found clear differences
in body weight, food intake, relative liver weight and over-
all adiposity (Figure 4a–d), confirming the regulatory effect
of the HPA axis on body weight homeostasis. The literature
shows the complex effects of glucocorticoids on morpho-
metric measures of body composition. In rodents, chronic
stress produces multiple metabolic abnormalities regarding
body weight, food intake, body adiposity and insulin and
leptin signalling, but the directionality of these effects is
unclear (Carneiro-Nascimento et al., 2020; Chuang, Cui
et al., 2010, Chuang, Krishnan et al., 2010; Kumar
et al., 2013). In humans, dysregulation in the HPA axis on
account of chronic stress has been associated with increased
adiposity, body mass index and weight gain, although data
are inconsistent due to methodological differences across
studies (Adam & Epel, 2007; Bose et al., 2009; Dallman
et al., 2005, 2006; Torres & Nowson, 2007).

In addition to changes in glucose/insulin metabolic
pathways, we found marked differences in lipid metabo-
lism in the hippocampus of the SR mouse lines
(Figure 6d), which are consistent with recent studies
showing altered lipid metabolism in depressed patients
(Gowey et al., 2019; Wei et al., 2020) as well as chronic
stress rodent models of MD (Hamilton et al., 2018;
Oliveira et al., 2016; Patel et al., 2019). In particular, we
found that, compared to both IR and LR mice, HR mice
showed a significantly decreased mRNA expression of
the receptor for the adipocyte-derived hormone leptin
(Lepr), which is well-known to regulate calorie intake,
glucose metabolism and energy expenditure (Timper &
Brüning, 2017) as well as stress adaptation, possibly via
the HPA axis (Roubos et al., 2012). We also observed a
significant increase in the mRNA expression of Adipor2
(adiponectin receptor 2) in HR mice compared to IR
mice. Interestingly, the critical roles of adiponectin, an
adipokine with glucose-lowering and insulin-sensitising
properties, have been recently highlighted in MD patients
(Carvalho et al., 2014), and in rodents (e.g. regulation of
depression-like behaviours and glucocorticoid-induced
effects on energy metabolism) (Liu et al., 2012; Nicolas
et al., 2020). Its role in whole-body glucose metabolism

likely involves GLUT4 and carnitine palmitoyltransferase
(CPT) activity (Fu et al., 2005; Holland et al., 2017;
Nguyen, 2020). Thus, further work is needed to fully
characterise the extent of perturbation in glucose and
lipid metabolism in the SR mouse lines.

In the brain, mitochondrial metabolism has been
largely associated with energy production, and astrocytes
are considered as the master regulators of brain metabo-
lism (Rose et al., 2020). Therefore, we quantified both the
mRNA expression of Gfap, coding for the major protein
constituent of intermediate filaments in reactive astro-
cytes, and the number of astrocytes immuno-positive for
GFAP in the hippocampus. We found a clear decrease in
Gfap mRNA expression in both HR and LR mice com-
pared to IR mice (Figure 7a), which was associated with
significant changes in the number of astrocytes in the
CA1 sub-regions of the hippocampus (Figure 7c). No sig-
nificant variations, however, were found in the expres-
sion of a number of genes involved in neurotransmission
and synaptic plasticity (Figure 7a). A consistent decrease
in GFAP-immunoreactive cells, Gfap mRNA, and GFAP
protein has been reported in MD patients and rodent
models of MD (for review see (Kim et al., 2018). Yet, the
GFAP biomarker may not be sufficient to reliably assess
how the genetic predisposition for extremes in HPA axis
reactivity impacts astrocyte reactivity (Escartin
et al., 2021). Thus, further work (e.g. assessment of multi-
ple molecular and functional parameters) is needed to
determine in more detail whether the SR mouse lines
show differences in astrocyte functions.

Altogether, our results are the first to report in a
genetic animal model of MD the impact of individual dif-
ferences in HPA axis reactivity on gene expression rele-
vant to mitochondria-related functions and energy
metabolism, under basal, non-stressed conditions (see
summary in Figure 8). From our behavioural, neuroendo-
crine, metabolic and neuronal findings in the SR mouse
lines, CORT, which is the final effector and key compo-
nent of the HPA axis response to stressors acting via high-
affinity mineralocorticoid receptors (MRs) and lower
affinity glucocorticoid receptors (GRs), is likely to be a
major driver of the differential endophenotypes observed
in the SR mouse lines (see summary in Figure 9).

On one hand, CORT is critically involved in whole-
body energy metabolism, regulating energy balance
depending on the body’s needs (e.g. lipid metabolism in
the white adipose tissue, thermogenesis in the brown adi-
pose tissue and glucose metabolism in the liver) as well
as food preference (Jaszczyk & Juszczak, 2021; Mir
et al., 2021). On the other hand, CORT critically regulates
emotionality and cognitive functions relevant to affective
disorders via its influences on functional and structural
plasticity in neuronal circuits (McEwen, 2007). In the SR
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mouse lines, we have demonstrated previously that
emotional and cognitive phenotypes of HR and LR
mice were associated with significant changes in morpho-
metric measures (e.g. body weight, food intake and
adiposity) and hippocampal neuronal dysfunctions
(e.g. neurogenesis, neuroplasticity involving neurotro-
phins and neuronal integrity) mechanistically modulated
by CORT (Heinzmann et al., 2010, 2014; Knapman,
Heinzmann, Hellweg et al., 2010; Knapman,
Heinzmann, Holsboer et al., 2010; Knapman et al., 2012;
McIlwrick et al., 2016, 2017; Pillai et al., 2012; Surget
et al., 2016; Touma et al., 2008, 2009); present data) (see
summary in Figure 9).

Central and peripheral effects of CORT involve com-
plementary MR-GR-mediated actions involving rapid
non-genomic engagement of cellular signalling systems
and slower gene-mediated mechanisms (for review
(de Kloet & Joëls, 2023). Both MR and GR alter gene

expression by occupying directly or indirectly binding
sites in the DNA promoter regions of glucocorticoid-
responsive genes via the glucocorticoid response element
(GRE) (Juszczak & Stankiewicz, 2018). Although GRs
regulate memory formation and promote stress-coping
strategies, MRs maintain neuronal homeostasis, promote
stress resilience and regulate adipogenesis and adipose
endocrine function (de Kloet & Joëls, 2023; Kanatsou
et al., 2019; Mir et al., 2021). It is thus conceivable that
the behavioural, neuroendocrine, metabolic and neuro-
nal phenotypes of HR and LR mice result from an imbal-
ance in MR/GR-mediated actions or changes in
downstream targets such as FKBP5/FKBP51, which is
significantly down-regulated in HR mice (Heinzmann
et al., 2014; McIlwrick et al., 2016) (see summary
Figure 9). As previously mentioned, FKBP5/FKBP51 crit-
ically regulates GR sensitivity and in turn, physiological
stress response, neuroendocrine reactivity and stress-

F I GURE 9 Overview of the potential role of glucocorticoids in shaping the main endophenotypes of the stress reactivity mouse lines.

Starting from CD1 outbred mice, three independent breeding lines (HR, IR, LR) have been established by selective breeding for extremes in

hypothalamic–pituitary–adrenal (HPA) axis reactivity. We hypothesise that corticosterone (CORT), as key effector of the HPA axis acting via

mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), is a major driver of the differential behavioural, neuronal and

molecular phenotypes of the stress reactivity mouse lines. Abbreviations: 11HSD, 11β-hydroxysteroid dehydrogenase; ACTH,

adrenocorticotropic hormone; Adipor2, gene coding for adiponectin receptor 2; BDNF, brain-derived neurotrophic factor; Becn1, gene

coding for beclin1; CBG, corticosteroid-binding globulin; CORT, corticosterone, Cpt2, gene coding for carnitine palmitoyltransferase 2; CRH,

corticotropin-releasing hormone; Fkbp5, gene coding for FKBP prolyl isomerase 5; GLUT4, glucose transporter 4; GR, glucocorticoid

receptor; GRE, glucocorticoid response element; HPA, hypothalamic–pituitary–adrenal; HR, high reactivity; IR, intermediate reactivity; LR,

low reactivity, MDR-Pgp; multiple drug resistance P-glycoprotein; MR, mineralocorticoid receptor; NAA, N-acetyl aspartate; OXPHOS,

oxidative phosphorylation; Slc2a4, gene coding for solute carrier family 2 member 4. Symbols: ", significant increase; #, significant decrease.
Created with BioRender.com.
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coping behaviour (Binder et al., 2004; Fries et al., 2015;
Touma et al., 2011). Variation in the human FKBP5 gene
(i.e. single-nucleotide polymorphism rs1360780) is associ-
ated with less efficient HPA axis negative feedback as
well as with increased cortisol and higher depressive
symptomatology (Binder et al., 2004; Ising et al., 2008;
Velders et al., 2011). Interestingly, FKBP5/FKBP51 regu-
lates antidepressant response through autophagy path-
ways (Binder et al., 2004; Fries et al., 2015; Gassen
et al., 2015; Touma et al., 2011), and it also regulates the
balance between autophagy and mTOR signalling in the
hypothalamus in response to metabolic challenges, thus
influencing the vulnerability to high-fat diet-induced obe-
sity (Bajaj et al., 2022; Häusl et al., 2022). Therefore,
FKBP5 may be an important factor in shaping the differ-
ential phenotypes of our SR mouse lines.

Other central or peripheral CORT-related mecha-
nisms might also be involved in driving the differential
phenotypes of the SR mouse lines (see summary in
Figure 9). For example, we observed a substantial
increased gene expression of Cyp11a1 (coding for intra-
cellular 11β-hydroxysteroid dehydrogenase [11HSD],
which regulates the access of CORT to steroid receptors)
and Abcb1 (coding for the multidrug resistance
P-glycoprotein [MDR-Pgp], which limits the access of
synthetic and native glucocorticoids at the rodent blood–
brain barrier) in HR mice (Heinzmann et al., 2014). Dif-
ferences in CORT bioavailability may also produce the
differential phenotypes of the SR mouse lines, as indi-
cated by the differential free CORT and corticosteroid-
binding globulin availability and release (Mattos
et al., 2013). Finally, the observed differences in adrenal
sensitivity to ACTH between the three SR lines might
also be involved (Heinzmann et al., 2014).

Further work using advanced genome sequencing
and genomic technologies will provide opportunities to
understand the genetic determinants of the complex
stress reactivity trait of the SR mouse lines at the molecu-
lar level and to identify line-specific polymorphisms con-
ferring vulnerability versus resilience to stress.

Overall, our results provide compelling evidence for
the critical role of the HPA axis in cerebral metabolic dis-
turbances involving mitochondria and promote our under-
standing of the biological mechanisms linking affective
disorders and mitochondrial dysfunctions. As discussed
earlier (Rappeneau et al., 2020; van der Kooij, 2020), the
direction of changes between the stress reactivity trait of
the SR mouse lines and changes in energy metabolism
involving mitochondria remains to be determined.

Despite that only minor line differences were
observed in mitochondria-related functions at the physio-
logical and cellular level, our results hold promise for
future investigations of the role of HPA axis reactivity in

controlling whole-body lipid and glucose homeostasis as
well as insulin signalling under more challenging condi-
tions, for example excess energy supply in form of high-
fat diet treatment). Furthermore, our findings highlight
the relevance of the SR mouse model as a promising tool
for elucidating the peripheral and cerebral metabolic dis-
turbances involving mitochondria in affective disorders
such as MD.

5 | CONCLUSION

Taken together, the present study demonstrates that
genetic variations in HPA axis reactivity produced major
changes in stress-coping behaviour, glucocorticoid stress
responses and morphometric measures. Remarkably, the
hyperactive neuroendocrine and behavioural stress-coping
style of HR mice was associated with significant changes
in gene expression related to mitochondria-related func-
tions and energy metabolism in the hippocampus. Yet,
minor changes were found in mtDNA copy number and
damages as well as in mitochondrial respiration in this
brain region. One limitation of the present study is, how-
ever, that we used only male mice, and it would be impor-
tant to also extend the behavioural, physiological and
molecular characterisation to female mice of the three SR
lines in order to address potential sex differences.

In conclusion, our results highlight that the SR mouse
model can be a promising tool in the search for bio-
markers and novel drug targets and for improving our
understanding of the neurobiological mechanisms under-
lying MD, including the negative consequences of
increased brain oxidative stress, impaired mitochondrial
functions as well as molecular alterations in energy
metabolism pathways in the periphery and central ner-
vous systems.
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