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The Three Laws of Robotics:

1: A robot may not injure a human being or, through inaction, allow a
human being to come to harm;

2: A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law;

3: A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law;

The Zeroth Law: A robot may not harm humanity, or, by inaction,
allow humanity to come to harm.

Isaac Asimov, I, Robot
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Abstract

English

Recent severe failures of black box models in high stakes decisions have increased
interest in interpretable machine learning. In this cumulative thesis, I discuss why
black box machine learning models can fail and explain the potential of
interpretable machine learning. After a general introduction into this topic, I
present three examples of interpretable machine learning models that I developed
for studies in different scientific fields: medicine, epidemiology, and remote sensing,
which correspond to three publications that constitute the thesis. For each
publication, I first explain the data context, the prediction task, why it is a
challenging problem and how interpretable machine learning can help improve the
outcome. Then, in each publication, I outline the methods, examine their
performance, and discuss how interpretability adds to understanding the results
and phenomena. The publications show that it is possible to design interpretable
models that yield good predictions, but they also demonstrate that domain
expertise and understanding of data context are crucial. The thesis concludes with
an outlook on the future of interpretable machine learning. I argue that, especially
when it comes to high stakes decisions, a better understanding of machine learning
models will be crucial - also because new and future laws will increasingly regulate
algorithmic decisions.

Deutsch

Ernsthafte Misserfolge von Black Box Modellen bei schwerwiegenden
Entscheidungen haben in jüngster Zeit zu wachsendem Interesse an
interpretierbarem maschinellem Lernen geführt. In dieser kumulativen
Dissertation beginne ich mit einer Erläuterung, warum Black Box Modelle
versagen können, und erkläre das Potenzial von interpretierbarem maschinellem
Lernen. Anschließend stelle ich drei Beispiele für die Entwicklung interpretierbarer
maschineller Lernmodelle in verschiedenen wissenschaftlichen Bereichen vor:
Medizin, Epidemiologie und Fernerkundung, die drei Publikationen entsprechen
die diese Arbeit ausmachen. Für jede Publikation erläutere ich zunächst den
Datenkontext, die Problemstellung, warum es sich dabei um ein schwieriges
Problem handelt und wie interpretierbares maschinelles Lernen verwendet werden
kann, um das Ergebnis zu verbessern. Dann stelle ich in jeder Publikation die
verwendeten Methoden vor, untersuche ihre Leistungsfähigkeit und erörtere, wie

v



ABSTRACT vi

die Interpretierbarkeit zum Verständnis der Ergebnisse und Phänomene beiträgt.
Die Publikationen zeigen zum einen, dass es möglich ist, interpretierbare Modelle
zu entwerfen, die gute Vorhersagen liefern. Zum anderem, sie zeigen aber auch,
dass Fachwissen und Verständnis des Datenkontextes entscheidend sind. Die
Arbeit schließt mit einem Ausblick auf die Zukunft des interpretierbaren
maschinellen Lernens ab. Ich argumentiere, dass insbesondere bei schwerwiegenden
Entscheidungen ein besseres Verständnis von Modellen des maschinellen Lernens
von entscheidender Bedeutung sein wird - auch weil neue und künftige Gesetze
algorithmische Entscheidungen zunehmend stärker regulieren werden.
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Preface

What is this thesis about?

In the first two chapters, I write about the common challenges in machine learning
that stem from the complexity of the data context and the use of interpretable
machine learning to mitigate them. Then I show examples of such models in three
scientific fields:

� medicine - for which I developed a method for prediction of epileptic seizures,

� epidemiology - for which I developed a method for prediction of the spread of
infectious diseases and

� remote sensing - for which I developed a method for predicting the leaf area
index.

The thesis is organized as follows: for each of the models, an overview of the
prediction task and challenges in the scientific field are given in one chapter, and
the developed model is shown and analyzed in the next chapter. In chapters 3 and
4, I describe our model for the prediction of epileptic seizures. In chapters 5 and 6,
I talk about the model for the prediction of infectious diseases, and in chapters 7
and 8, I talk about the model for prediction of the leaf area index. I conclude the
thesis with an overview of the developed models and an outlook on the future of
interpretable machine learning.

How did this thesis come to be?

I started my Ph.D. studies at the Institute of Cognitive Science after finishing my
bachelor’s studies in Physics (focusing on Medical Physics) and master’s studies in
Electrical and Computer Engineering at the University of Novi Sad in Serbia.
Since I had previously worked with data analysis of electroencephalographic
(EEG) data, my initial interest was medical data in general and EEG data in
particular. Following this direction, I wrote the first paper, “Predicting epileptic
seizures using nonnegative matrix factorization”. During this project, we
collaborated with Dr. Levin Kuhlmann from Monash University in Melbourne,
Australia. Working on this project showed me the complexities of real-world data
and the importance of data context. I got interested in interpretability of machine
learning models, and I wanted to expand my research into time series prediction.

xi
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Following these interests, I wrote my second paper, “A Bayesian Monte Carlo
approach for predicting the spread of infectious diseases”. The paper is a result of
the collaboration with Dr. Alexander Ullrich and Dr. Stéphane Ghozzi from the
Robert Koch Institute in Berlin. As a part of the project, I spent two months at
the Signale Group of the Robert Koch Institute, working on implementing the
proposed model. During this time, I learned a lot about Bayesian methods and
their potential for developing interpretable machine learning models. Further, I
studied how interpretable models help communicate scientific results to a broader
audience. As a part of the project, I presented a poster at the EU Data Viz
conference in 2019 entitled “Visualizing the spread of infectious diseases using
public health data”. The poster presented our developed methods, how they could
be used to serve citizens through data visualization and to communicate
epidemiological data to the public.

Continuing my interest in the Bayesian approach, I wrote the third paper
“Bayesian hierarchical models can infer interpretable predictions of leaf area index
from heterogeneous datasets”. It explores the possibilities of Bayesian hierarchical
models for developing interpretable machine learning models for application in
remote sensing and, more broadly, environmental sciences. In this project, we
collaborated with Dr. Bastian Siegmann from Jülich Research Centre and
Dr. Thomas Jarmer from the Institute of Computer Science in Osnabrück. Here, I
used Bayesian hierarchical models to deal with challenges similar to those I
encountered in previous projects: making predictions from limited and
heterogenous datasets.

Currently, I work as a data scientist in the private sector. My daily work
includes analyzing various datasets on different spatial levels (e.g., estimating
purchasing power for different administrative levels in Germany or other
countries). In my work, analyzing heterogeneous datasets and understanding the
data context is crucial for interpreting models based on such data and for further
communication with clients.

Olivera Stojanović
Nürnberg, March 2023.



Acknowledgments

This thesis is a product of three projects from very different domains, but all of
them show the potential of interpretable machine learning. During my Ph.D., I was
given a lot of freedom to explore my scientific interests and focus on interpretable
machine learning models before they became part of a larger scientific discourse.

I would like to thank my supervisor, Prof. Gordon Pipa, for allowing me to
work on such diverse projects and for trusting me with the topic of my thesis.

I would further like to thank the Signale Group of the Robert Koch Institute,
especially Dr. Alexander Ullrich and Dr. Stéphane Ghozzi, for their collaboration
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Chapter 1

Why machine learning models
(often) fail

At the beginning of the coronavirus pandemic, there were high expectations for
artificial intelligence (AI) and machine learning to help curb the pandemic. We
were hoping for AI to help us stop the spread of coronavirus, trace contacts,
diagnose COVID-191, and provide up-to-date information. There were reasons for
optimism, since this is the first pandemic in which we have supercomputers and
powerful machine learning models, we know how to work with big datasets, and we
are more connected than ever.

Three years after the beginning of the pandemic, these expectations are still not
met. Although a lot of prediction models were developed, most of them
underperformed, or their predictive performance is still not suitable for clinical
use. [2, 3, 4, 5] We got contact tracing apps, but some of them infringe on data
privacy for purposes that users did not initially agree to (e.g., police in Germany
requesting data from the “Luca” contact tracing app [6]). This erodes trust in the
apps, and makes contact tracing more difficult.

How did this happen? Why did AI fail to live up to its potential in this
instance? The Alan Turing Institute lists four main points as sources of problems:
incomplete or poor quality data, automated discrimination, human errors, and
challenges in communication between researchers, policy makers, and the public.
[7] Data was collected in real-time across many different institutions and countries,
all of which have different standards, and the datasets, in the beginning, were not
large. It is generally hard to predict the spread of the virus from small, not
standardized, heterogeneous datasets, where the chance for human errors is high.

Further, available datasets in medicine usually reflect historical discrimination
and biases, such as unequal and often unethical treatment of marginalized groups
without their consent (e.g., Tuskegee Syphilis Study [8], The Puerto Rico Pill
Trials [9]). This leads to incomplete medical data and distrust of the affected
groups toward the whole healthcare system. [10, 11] When we train machine
learning models on such data, algorithms will incorporate these inequalities, which

1According to the World Health Organization, the official name of the new virus is severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease it causes is COVID-19. [1] I
will in this thesis refer to the virus shortly as coronavirus.

1



CHAPTER 1. WHY ML MODELS (OFTEN) FAIL 2

also happened during the coronavirus pandemic. Many predictions and
recommended decisions of hospital management algorithms led to discriminatory
treatment of patients. [3] To address this issue, we need to inspect the background
and context of data well before developing a model, and we need to make sure that
we understand what the model learns.

The problems pointed out by The Alan Turing Institute are the same ones that
often happen in machine learning projects, and this is a good chance to learn how
to avoid them in the future. They can be loosely separated into data- and
model-related challenges.

1.1 Data-related challenges in machine learning

1.1.1 Critical evaluation of the context of a dataset

The biggest challenge in machine learning is often thought to be developing
algorithms, but creating, curating, and standardizing large datasets can take more
time and resources. We often need to collect data from different sources, use
different equipment, etc., and the chance of human error is high. Except for
benchmark datasets like ImageNet [12], MNIST [13] or CIFAR-10 [14], many
available datasets were not collected with a specific machine learning purpose in
mind. [15, 11] Such datasets sometimes don’t have crucial information about data
collection processes, which makes further analysis difficult.

Further, data depends on the environment in which it was created. Donna
Haraway introduced the concept of “Situated knowledges”, a term that describes
embodied objectivity of scientific knowledge. [16] She argues that there is no “view
from above” where it is possible to see everything, but rather that knowledge
always comes with a certain perspective. [16] Putting this into a data science
perspective, we can talk about situated data systems consisting of data and their
context. [11] To fully understand data, one has to understand the circumstances in
which they were created. This means the data context is also a part of the model.
If the background of a dataset is not carefully examined before training a model,
there is a risk of creating a model that will repeat the same errors or biases
encoded in the dataset. [17, 18, 15, 19]

For example, in the context of the coronavirus pandemic, various countries
released data on the number of cases, confirmed deaths, conducted tests, etc.
When working with such data, we have to check testing conditions because if fewer
tests are carried out, there may be many more cases than officially reported. In
such a case, looking at the excess mortality rate might be more interesting because
it shows a better picture of the situation. However, there might be different
definitions for what counts as death from COVID-19. [20] Finally, it is crucial to
consider whether some data might be missing or or not fully collected, e.g., the
number of confirmed cases might be misrepresented or underreported. [21] This
expert knowledge is important for model development, comparison among
countries, or communication with the public. [22, 23, 11, 24, 25]
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1.1.2 Challenges with benchmark datasets

In machine learning, the quality of a method is typically evaluated by its
performance on a given benchmark set. However, benchmark datasets are not
equally standardized across research fields. [26] Traditionally, the first big curated
datasets have been created in computer vision, where they are still most prevalent
[27, 12, 13]. Collecting data in fields such as medicine, epidemiology, remote
sensing, psychology, etc., is more challenging. [28] For example, it takes a long
time and many resources in a clinical setting to collect, standardize, and publish
data. [29] This process requires medical and data experts as well as legal and
ethical expertise. As a result, datasets in medicine can be heterogeneous and
imbalanced, and models trained on such data can achieve misleading high accuracy
by always predicting the majority class. [29]

However, even if an algorithm has a high prediction accuracy on a benchmark
dataset, there is still a possibility that the method is learning how to “win” the
specific benchmark rather than learning general patterns in data. [30] This
happens in fields with very few benchmark (or regular) datasets. For example, in
epileptic seizure prediction, the EPILEPSIAE dataset [31] has long been used as
one of the benchmarks for new seizure prediction algorithms. Since data in the
field is limited, the performance of many proposed algorithms is only calculated on
the EPILEPSIAE dataset. [32] This is a problem for application in the real world,
e.g., for predicting epileptic seizures in real-time, because such algorithms will not
be able to generalize well.

1.2 Model-related challenges in machine learning

Many successful machine learning methods are black box algorithms, i.e., models
in which humans don’t understand how or what they learn. There are two types of
black box machine learning models: complicated, i.e., models too complex for
humans to comprehend, and proprietary, i.e., models to which the public doesn’t
have access, often due to trade secrets. [33] Interpretability is not needed if the
consequences of imprecise predictions are not critical, like in ad servers. Also,
tasks that are well studied and validated in real applications, with enough
practical experience, such as models for optical character recognition to extract
addresses from envelopes, do not require an interpretable model. [34, 35]

However, all machine learning models perform better during development and
on the same benchmark datasets on which they were trained than in practical
situations on new datasets. This difference is usually acceptable, but problems
arise when predictions are used to justify high stakes decisions. [36, 37, 38, 39] In
such situations, a better understanding of what the model in question learns and
how it combines features for predictions is needed, but black box models are not
designed for this. [33]

For example, during wildfires in California in 2018, Google was using a black
box machine learning model made by BreezoMeter to predict air quality. Usually,
the algorithm has a prediction accuracy of 98.4%. [40] However, during the
wildfires, the model predicted the air quality was “good - ideal air quality for
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outdoor activities” when in reality, ash was in the air and was dangerous to
breathe. [41]

In another example, the government of the United Kingdom (UK) decided to
use an algorithm to assign final grades for A-levels in the summer of 2020 since
schools were closed in the previous term because of the coronavirus pandemic. The
algorithm reduced the grades of students from more impoverished schools and
upgraded the grades of students from private schools, going against already given
school grades. [42, 43] After the backlash from students and the public, the
algorithm had to be abandoned, and teachers instead gave the grades manually.
[42]

These models are proprietary, and because of this, it is impossible to know
whether they are complicated or not. We can only speculate about the potential
causes of these predictions, such as an overfitted model for risk assessment of air
quality or the impossibility of encoding complex variables (e.g., capability and
work of students, teachers’ capacity and assessments, quality of schools, etc.) into
a model without biases.2

Similar examples where black box models for high stakes decisions led to
unintended consequences are:

1. Schufa Holding AG (German for Schutzgemeinschaft für allgemeine
Kreditsicherung, in English General Credit Protection Agency) is a private
company which provides credit ratings in Germany, commonly known as
SCHUFA scores. [44] The scores are used for various situations, like renting
a place to live, credit card applications, making a new Internet contract, etc.
[45, 46] The algorithm for calculating SCHUFA scores is a proprietary black
box. In 2018, non-profit organizations AlgorithmWatch [45] and Open
Knowledge Foundation Germany [47] started the OpenSchufa project. [48]
They asked consumers to upload SCHUFA anonymously to a common
database for research into the algorithm. Investigative journalists from Der
Spiegel and Bayerischer Rundfunk evaluated this data. An investigation
concluded that most of the data used to calculate scores are based on
address, age, and gender. [45, 48] They showed that some people got
negative scores even though they didn’t have negative indicators, such as
debts. [46] Further, they showed that younger people tend to get a lower
score than older people with similar characteristics, which might be a
reflection of the demographic structure of Germany. [49] If this is the case,
such scoring system would not add new information. It is important to note
that the OpenSCHUFA database contains just a small part of a large
database, and it might be distorted (i.e., some groups might be
overrepresented), which would influence the results of the investigation. As
long as SCHUFA is a proprietary black box algorithm, it will be hard to
learn how SCHUFA scores are calculated and whether these assessments are
unbiased. So far, the company has published SCHUFA Simulator, a set of
questions one can answer to see what influences the SCHUFA score. [50] But

2There is also the question of whether or not it is ethical to develop such an algorithm in the
first place because it takes away the agency from students to show their capabilities and assigns
them grades for which they can not trace how they were given.
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the score it provides is only close to, but not exactly equal to the SCHUFA
score, and the simulator does not show how these factors are combined.

2. In recent years, an increasing number of emotional recognition systems, an
extension of facial recognition systems, have been released. [51] These
systems usually use micro-movements of muscles, eye movements, facial
expressions, and changes in the voice to estimate the emotional state of the
subject. Creators of this technology claim that their algorithms can
understand human feelings and intentions, from which they can predict
future behavior.[51] For example, software for the detection of emotions is
being used in high schools in Hong Kong to detect lapses in attention of
students during distance learning. [52] Some companies already use such
systems for assessments of candidates during job interviews or for customers’
reactions on advertising. [53, 51] Frontex, the European Border and Coast
Guard Agency, is currently investigating systems for automated emotional
recognition, which are intended to be employed at the Schengen borders. [54]
Such algorithms are proprietary, and possibly complicated black box models.
Research shows that while such algorithms can decode facial expressions,
they fail to decode and predict feelings or intentions. [55] How people
express themselves emotionally varies a lot and is highly contextual.
Analyzing facial expressions using only black box models is not a reliable
predictor for emotions or intentions. [56, 57] Further, emotional expressions
vary among cultures, and it is not clear that an AI system would be able to
pick up on these differences, if not explicitly designed to do so. [58, 59]

3. Lately, there has been an increasing interest in the application of AI for the
selection of embryos in in vitro fertilization (IVF). The AI has the potential
to evaluate steps in the IVF process better and to make them more
reproducible and faster. [60] Many of the developed algorithms are
proprietary or complicated black box algorithms, or in some cases,
algorithms that combine interpretable features in an uninterpretable way.
[61] This leads to many ethical and technical concerns. The main issue is
that no black box model has been evaluated using randomized controlled
trials, which are necessary for evaluating clinical trials. [61, 62] Further,
most of these black box models were designed to select embryos with a
higher chance of implantation. It might happen that some disadvantageous
traits, like an increased risk of cancer, correlate with higher chances of
implantation. Whether we should choose an embryo with the highest chance
of implantation or an embryo with the best chance of the best life is an
ongoing philosophical debate [63, 64], for which parents and clinicians have
to be involved in the decision. However, black box models do not allow for
shared decision-making with patients. Shared decision-making in medical
systems helps domain experts correct mistakes or unwanted decisions made
by the model and increases patients’ trust. [65, 66, 67] A more in-depth
discussion on this issue and potential solutions involving interpretable
machine learning are given in [61].

In all of the cases, if more interpretable methods had been used instead of black
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box machine learning models, it would have been easier to notice what they
learned and correct mistakes in the pipeline before their widespread use (or
abandonment in the case of the grading algorithm).

1.3 How interpretable machine learning can help

Because of these challenges, there has been an increased interest in interpretable
machine learning. Learning interpretable features and creating interpretable
models has a long tradition in statistics (e.g., linear regression, generalized
additive models, elastic net, etc.). The idea behind these methods is to make
certain assumptions about a probability distribution explicit or to restrict model
complexity, which leads to more inherently interpretable models. The success of
black box machine learning models has led many to believe that interpretable
machine learning methods are “old-fashioned” and incompatible with the demands
of big data. [68] However, cases such BreezoMeter air quality predictions or the
UK grading algorithm show that we also need interpretable models.
Interpretability is often posed opposite to accuracy, but this is not necessarily the
case. Interpretability might help achieve higher accuracy because it makes it
possible to understand the model better and troubleshoot it. [69]

In the last couple of years, more work has been done to define interpretability
[70, 71], to understand the strengths and weaknesses of interpretable methods [34,
72, 35, 73, 71], and to evaluate them. Interpretable machine learning has reached
“the first state of readiness”, i.e., with the development of interpretable methods,
more software for implementing them has been written in the public and private
sectors. [74, 75, 76, 77, 78, 79, 80]

Interpretable machine learning benefits domain experts, decision-makers, and
the general public. Domain experts are often interested in understanding the
dynamics of the process, and it has been shown that people who work with
interpretable algorithms have more trust in the method and their team members.
[81] Providing interpretable machine learning predictions also makes
decision-makers less skeptical of machine learning methods and more willing to
accept them. [82] Finally, humans trust decisions and systems more, if they think
they understand how they work. [33, 83]



Chapter 2

What is interpretable machine
learning

There are various definitions of interpretability in machine learning, depending on
whether the focus is on understanding the given model or understanding the
predictions it makes. Some of them are:

Interpretability is the degree to which a human can understand the
cause of a decision. [84]

Interpretability is the degree to which a human can consistently predict
the model’s result. [85]

We define interpretable machine learning as the use of
machine-learning models for the extraction of relevant knowledge about
domain relationships contained in data. Here, we view knowledge as
relevant if it provides insight for a particular audience into a chosen
domain problem. [71]

An interpretable machine learning model obeys a domain-specific set of
constraints to allow it (or its predictions, or the data) to be more easily
understood by humans. These constraints can differ dramatically
depending on the domain. [69]

Although defitions are diverse, we tend to consider models interpretable if they
share some common properties [86]:

� trust - models that humans feel comfortable using and giving control to
them,

� causality - models which learn causal relationships between variables,

� transferability - models that allow us to transfer learned skills to a new
environment,

� informativeness - models that provide useful information about the real
world and

7
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� fair and ethical decision-making - models that make predictions that
align with human values.

Because of the diverse definitions and properties of interpretable models, there
are different ways to design them. One way is to focus on algorithm transparency,
a property that describes how an algorithm learns relationships between variables
in general. [35] Here the focus is not on interpreting the model for given data or
predictions but on the theoretical understanding of algorithms. Such algorithms,
because of their transparency, are used in decision-making systems. Because the
task in decision-making systems is to choose the best option among several courses
of action, it is helpful to understand how an algorithm works internally. Examples
of highly transparent algorithms are the least squares method, rule lists, decision
trees, etc. [35]

Another way to design interpretable machine learning algorithms is to focus on
local and global model interpretability, which are not properties of algorithms
themselves. [35] Rather, they refer to a set of methods and ways of combining
different approaches to interpret why models make specific predictions for sample
datapoints (local model interpretability) or how the trained model makes
predictions globally by learning relationships between features, learned
components, and their contribution to predictions. [71, 35] However, this is
challenging in models with lots of parameters and high-dimensional data. In such
cases it is often only possible to interpret how parts of the model affect predictions
(global interpretability on a modular level). [35]

Techniques for achieving local model interpretability are usually model-agnostic
methods we use on a subset of data. For example, local interpretable
model-agnostic explanations (LIME) are often used with support vector machines
(SVM), neural networks, random forests, etc., and work well for tabular data, text,
and images. [70, 87, 88] The procedure works as follows: we first select a datapoint
of interest (a point for which we want to have an explanation of the prediction).
We then perturb the input data and get predictions with the original (not
interpretable) model. LIME then trains an interpretable model on the perturbed
input, weighted by how close the new samples are to the datapoint of interest. In
the last step, we explain the prediction by interpreting the local model.1

Similarly, model-agnostic methods are also used to achieve global model
interpretability. The difference here is that we are not interested in why a model
makes certain predictions for specific datapoints, but we want to know how parts
of the model influence predictions. For example, we often want to estimate how
certain features influence predictions. Permutation feature importance is a
model-agnostic method of measuring the decrease or increase in loss of the whole
model when we permute the observations of a feature of interest in the test (train)
data. [89] The method might seem similar to LIME, but the difference is that we
are not interested in replacing a part of a model with an interpretable surrogate
model. Instead, permutation feature importance uses the same model but is tested
(trained) on permuted data for each feature. In this way, the method breaks

1It should be clarified that this is different from training linear models to explain black box mod-
els since we here tweak specific features locally to understand better how they impact predictions.
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dependence between features and we can observe how the loss of the model
changes. If loss increases, it indicates that the permuted the feature is important
for predictions.

2.1 Difference between explainable and interpretable
machine learning

Interpretable machine learning is not the same as explainable artificial intelligence
(XAI). Explainable AI focuses on providing post-hoc explanations of predictions,
independent of whether the employed model is interpretable or not. [71] To
develop an explainable model, one usually trains a new model or parts of the
model on the same data on which the original black box model was trained. The
explainable model should have similar predictions as the black box model, but the
features that these two models learn and how they are combined can be different.
[33] Essentially, the goal of explainable models is not to understand what the
original model does, but to resemble predictions of the original model with a
surrogate model that we understand. [33]

To draw this distinction more clearly, let’s look at a black box model for the
prediction of recidivism, proposed explanatory models, and why the explanatory
models still can’t fully interpret the original model. In 2000, software for
predicting recidivism, known as Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS), was introduced in several American states. The
purpose of the algorithm is to provide a fast, objective, and data-based assessment
of the potential future behavior of defendants. [90] COMPAS uses 137 questions to
assess whether an arrested person is at risk of committing a crime again in the
near future. Questions range from a person’s residence, workplace, and education
level to whether anyone in their family committed a crime. Judges then get the
score and decide whether and how to to use it in sentencing. [90]

After some time, it was noticed that the algorithm assigns higher risk scores to
black Americans who committed minor crimes and lower risk scores to white
Americans who committed major crimes. [90] However, the severity of the
committed crime is not a feature in calculating the COMPAS score, and there are
no explicit questions about the race of defendants. [90, 91, 92, 93] Since the
algorithm is proprietary, its implementation details and complexity are not
provided to the public, and it is unclear whether the algorithm predicts recidivism
in the manner the creators or the public wanted to. 2 [90]

ProPublica, a non-profit organization for investigative journalism, first reported
on COMPAS and made an explanatory model. The investigation concluded that
the algorithm uses race as a defining feature. [91] This assessment is based on a
linear model they developed to explain COMPAS’ predictions. [91] The problem is
that the original algorithm seems to be nonlinear, whereas ProPublica’s model is
linear. [95] Therefore, even though ProPublica’s model can match COMPAS’
predictions well, the linear explanatory model cannot show conclusively what the

2Similar to the UK grading algorithm, there is also a question of whether or not it is ethical to
develop such models in the first place because defendants have not committed new crimes yet. See
[94] for more discussion on this topic.
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black box model intrinsically learns. There are no explicit questions about race,
but other questions ask for information correlated with race (i.e., age, residence,
income, etc.). Relations between these variables and crime are complex and highly
contextual, which the linear model cannot capture. [33, 95] Essentially, we can
learn from the explanatory model that race matters, but we can’t learn how it
matters, i.e., we don’t know how COMPAS combines features for the final score.
Instead of an explanatory model, an interpretable model might be more useful in
this case.

One suggestion that could solve an issue with COMPAS are computer-aided
exploration techniques. They consist of a model and a design interface where
domain experts can change the model and see how their changes influence
predictions. [96, 97, 69, 98] This would include humans in the decision-making,
and they would see better how the model combines the variables instead of purely
relying on COMPAS scores. The inability to assess how predictions are calculated
makes it hard to combine predictions with knowledge outside the database, i.e.,
evidence for or against defendants. Judges are supposed to use the score for their
assessments merely as an additional piece of information. Still, because they do
not know how the model combines different factors, it is impossible to estimate
whether their final assessment would, in reality, decrease the risk of recidivism or
not. If there were an option to see how the model works intrinsically, lawyers and
defendants would have the option to prepare for the trial, and there might be less
bias in the final sentencing.

A theoretical case can be made that it should often be possible to construct
inherently interpretable models. If many machine learning models can perform
similarly on the same dataset, they should include some inherently interpretable
models. Rudin et al. formalize this by the Rashomon set of good models [99, 89],
which is defined as a set of high-performing models on the same dataset. They
argue that if the Rashomon set for a given dataset is large, there must be one
model which is simpler and interpretable, which should be taken in high-risk
decisions instead of the black box model. [69, 100]

2.2 Domain-specific model interpretability

To develop an interpretable model, it is necessary to consider what interpretability
in a given scientific field means. Domain experts often develop interpretable
models by incorporating well-studied features or adding domain-related
constraints. Because data are often high-dimensional, interpretable features are
often constructed using unsupervised learning or dimensionality reduction. For
example, nonnegative matrix factorization (NMF) is a decomposition method that
decomposes a dataset into a (nonnegative) combination of (nonnegative)
components or “patterns”. [101] From the resulting components, domain experts
can choose well-understood features while excluding others, such as noise. The
data can then be represented by a specific combination of these features, which
reduces the dimensionality considerably. [102] This is useful in fields like physics,
bioinformatics, astronomy, etc. Other constraints like sparsity or monotonicity of
variables can be enforced on models with many parameters. For example, if a
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model has many parameters, not all will contribute equally to predictions. And if
we know that a model should learn only a few features but don’t know which ones,
we can use lasso regularization [103] to set less important parameters to zero,
which helps identify relevant features for prediction.

2.3 Challenges for interpretable machine learning

Rudin et al. list ten grand challenges for the field of interpretable machine learning
[69]:

� optimization of sparse models (for tabular data) and scoring systems,

� challenges involving generalized additive models (e.g., how to use them to
troubleshoot complex datasets),

� challenges involving extending case-based reasoning to more complex
datasets,

� supervised and unsupervised disentanglement of concepts in neural networks,

� dimension reduction for data visualization,

� incorporating physics or causal constraints in a model,

� understanding, exploring, and measuring the Rashomon set of accurate
predictive models and

� interpretable reinforcement learning.

I encountered some of these challenges in my projects, like incorporating
physics or causal constraints in a model and dimensionality reduction, as well as
working with limited, heterogenous datasets with specific data context and
field-related constraints. In the following chapters, I will show how we designed
models in three scientific fields: medicine (prediction of epileptic seizures),
epidemiology (prediction of infectious diseases), and environmental sciences
(prediction of leaf area index). The models we created achieve local model
interpretability (prediction of epileptic seizures) and global interpretability on a
modular level (prediction of infectious diseases and prediction of leaf area index).





Chapter 3

Example 1: predicting epileptic
seizures

Epilepsy is a neurological disorder that by current estimates affects 1% of the
global population. [104] It is characterized by sudden seizures varying in length
and intensity, which can lead to physical injuries, stress, and even death. [105]
EEG is a powerful tool for diagnostics and monitoring epileptic seizures. A better
understanding of epileptic seizures would help to anticipate, intervene, and even
prevent them. In particular, AI-based seizure prediction has a lot of potential, and
may help to develop closed-loop EEG devices for seizure prediction and
intervention (e.g., neurostimulation, contacting caretakers). [106] These systems
provide real-time monitoring of patients, giving them time to prepare, ease the
seizure, and help understand epilepsy by collecting more data. [107, 32, 108, 109]
Algorithms for closed-loop settings must be fast, easy to use, and not require a lot
of memory storage. Despite many proposed seizure prediction models, due to
technical difficulties, there have been few studies on implementing a closed-loop
device in the human brain. [110, 111]

Seizure prediction algorithms focus on classifying between “normal” EEG and
the “abnormal” EEG signal minutes before a seizure. Two goals of seizure
prediction models are: to warn patients about upcoming seizures and to help
medical professionals and domain experts understand epilepsy. Patients need an
accurate algorithm that doesn’t miss seizures (low rate of false negatives). Doctors
and researchers are interested in learning about disease dynamics, understanding
the model’s behavior, and using the prediction model to help patients during or
after medical procedures. Therefore, predicting epileptic seizures can inform high
stakes decisions. In this setting, interpretability is important since the
consequences of bad prediction can lead to wrong treatments and distrust of
patients. Also, when using seizure prediction methods in a clinical setting, there is
a question of liability for the decisions made based on their predictions.

In an EEG signal, seizures are distinguished by sudden hyper synchronization.
[105] There are four main segments of EEG signals in epilepsy which correspond to
four states patients can be in:

� interictal - a state between seizures,

13
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� preictal - a state before a seizure,

� ictal - a state during a seizure,

� postictal - a state after a seizure.

There are quite a few data- and model-related challenges when designing seizure
prediction models. First, collecting quality data on epileptic seizures in a clinical
setting is challenging, expensive, and can take a long time. Not every hospital has
the equipment or resources to do it, and there are ethical considerations. Seizures
are rare events, and patients often have to undergo surgery, but we need to collect
a large amount of data containing both interictal and preictal states. The EEG
measurements have to be long enough to get sufficient data, but not so long that
the conditions of patients worsen before the surgery. This leads to heterogeneous
and imbalanced data, with more interictal recordings than preictal or ictal states
collected per patient (which often have different diagnoses), using different EEG
settings. [112, 32, 113] Developed models for seizure predictions must be
patient-specific because of the limitations of the data collection process. This
further limits the amount of available data and makes it hard to generalize the
dynamics of epilepsy. Seizure prediction models also have to be able to deal with
imbalanced datasets while preventing overfitting. Because of these challenges, only
a few big datasets of EEG recordings of epileptic seizures are available for broader
use. The two biggest and most often used ones are: the EPILEPSIAE dataset [31]
and the Epilepsyecosystem dataset [114]. Since most methods are evaluated on one
of the two available datasets, there is a danger of overgeneralizing the datasets and
not learning useful features for potential use in a closed-loop EEG device. [32]

Seizure prediction methods usually combine features derived from EEG signals
(e.g., spectral features, EEG patterns, etc.) and machine learning algorithms like
SVM, decision trees, logistic regression, methods for time-series analysis, or neural
networks. [107, 115, 32, 109, 116] Although there is a recent increase in interest in
interpretable machine learning models for seizure prediction, most combine black
box models and a post-hoc explanation method [117, 118, 119, 120, 121, 122]
rather than designing inherently interpretable models. [123, 124] Here I will show
how we developed a locally interpretable seizure prediction method and summarize
the highlights of our paper.

We wanted to design an interpretable model and started by designing
interpretable features of preictal and interictal states, which we used to classify
between the states. To do so, we extracted the time and frequency components of
intracranial EEG signals for each channel of each state for each patient using
nonnegative matrix factorization, which, as mentioned earlier, is an interpretable
and transparent decomposition method. [125] The components capture the
dominant information from power spectra and detect structure in preictal states,
which we use for classification. Learned time and frequency components are also
informative for domain experts because they can be related to well-understood
physical phenomena. We combined both major datasets, EPILEPSIAE and
Epilepsyecosystem, to ensure that our model is robust.

We combined a linear support vector machine with L1 regularization for
classification. Since SVM is not an algorithmically transparent classifier, we
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compensated for this by using L1 regularization to select informative EEG
channels and weigh their contribution to the prediction. Combining these methods
makes it possible to look at individual measurements, their NMF components, and
the learned weights of L1 regularization. This way, we can see why the classifier
assigns one of the two classes to a particular measurement and achieve local model
interpretability. As the last step, we applied the synthetic minority over-sampling
technique (SMOTE) to mitigate the class imbalance of interictal over preictal
states. Our method produces good results and is computationally inexpensive,
which could lend itself to an application in a closed-loop setting.
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4.1 Abstract

This paper presents a procedure for the patient-specific prediction of epileptic
seizures. To this end, a combination of nonnegative matrix factorization (NMF)
and smooth basis functions with robust regression is applied to power spectra of
intracranial electroencephalographic (iEEG) signals. The resulting time and
frequency components capture the dominant information from power spectra,
while removing outliers and noise. This makes it possible to detect structure in
preictal states, which is used for classification. Linear support vector machines
(SVM) with L1 regularization are used to select and weigh the contributions from
different number of not equally informative channels among patients. Due to class
imbalance in data, synthetic minority over-sampling technique (SMOTE) is
applied. The resulting method yields a computationally and conceptually simple,
interpretable model of EEG signals of preictal and interictal states, which shows a
good performance for the task of seizure prediction on two datasets (the
EPILEPSIAE and on the public Epilepsyecosystem dataset).

4.2 Introduction

The ability to predict epileptic seizures provides an opportunity to intervene in
order to attenuate their effects, or if possible prevent them. In this study we focus
on EEG manifestations of seizures, which are characterized by sudden
hypersynchronization of neurons and last from seconds to minutes. [105] Recently
published studies on seizure prediction use a wide variety of approaches, from time
series analysis (e.g. phase synchronization [126] or bivariate phase synchrony [127])
and spectral features of EEG signals [115, 128] to physiological models of neural

http://epilepsy-database.eu
https://www.epilepsyecosystem.org/register
https://www.epilepsyecosystem.org/howitworks
https://github.com/ostojanovic/seizure_prediction
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activity (e.g. neural mass models[129]) or circadian models [130]. We focus on
spectral measures of EEG signals since they have been successfully used as
features for seizure prediction, and are easily interpretable. [107, 115, 32]

In the field of seizure prediction there are certain conceptional, computational
and data-related challenges. First, using a large number of features for prediction
makes it difficult to interpret their individual contribution. [32] Secondly, the
algorithms for seizure prediction in a clinical setting need to be computationally
efficient. Due to hardware constraints, this applies to closed-loop EEG devices for
seizure prediction and intervention in particular, which have been a recent focus in
the field. [107, 32, 108, 109] Finally, data encountered in the field of seizure
prediction can be high dimensional and heterogeneous (e.g. recorded using many
different channels and types of measurements in addition to EEG, like ECG, EOG
etc), yet suffer from class imbalance (patients spend more time in interictal than in
preictal states) and limited in the number of labeled samples. This is particularly
challenging for the design of a patient-specific model.

In this study we address these issues by developing an easy-to-use,
computationally efficient method for patient-specific seizure prediction. In order to
achieve that, we extract a small set of interpretable features from power spectra
that distinguish a baseline (interictal) EEG activity from a state leading up to a
seizure (preictal state). Interictal states are regular brain activity between
seizures, which can sometimes be interrupted with interictal spiking. [105, 131]
Since seizures are characterized by strong synchronization, they are very
prominent in power spectra of EEG signals. Although preictal states are not
clearly visible in raw EEG signals, multiple studies confirmed the presence of
distinct preictal states using spectral [132, 115, 133], as well as information
measures. [134, 135, 136] For a detailed discussion, see [107] and [32].

Although power spectra capture relevant changes in frequency over time, they
can be very noisy and contain outliers. We thus use nonnegative matrix
factorization (NMF) [102, 101] to decompose power spectra into dominant time
and frequency components, which are later used for seizure prediction.

To mitigate class imbalance, we employ synthetic minority over-sampling
technique (SMOTE) [137], together with linear SVM with L1 regularization, to
assign weights for contributions from each individual channel and eliminate
uninformative channels. The method is applied to a part of the Freiburg
EPILEPSIAE dataset [31], and compared to the Epilepsyecosystem dataset [114].
The developed method is computationally inexpensive and produces good results
while providing insights into the structure of preictal states.
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4.3 Materials and Methods1

4.3.1 Data preparation

Freiburg EPILEPSIAE dataset

The data consist of heterogeneous EEG recordings of five pre-surgical patients
(one female; median age: 29.2) [Tab.4.1] and form a part of the bigger Freiburg
EPILEPSIAE database.[31] Recordings are made at the University Medical Center
Freiburg, over the course of several days (three to nine), between 2003 and 2009.
The sampling frequency varies between 256Hz and 1024Hz. The electrodes that
are used in the recordings include intracranial (depth, strip and grid) and surface
electrodes, together with special electrodes (e.g. ECG, EMG and EOG), whose
number varies between 31 and 122, depending on the diagnosis. In order to
investigate preictal states thoroughly, only intracranial EEG recordings are used.

Since the ability to predict a seizure five minutes before its onset can be useful
for patients with uncontrolled epilepsy [138], we focus on five minute intervals of
preictal and interictal states. In the case of a preictal state, an interval of five
minutes leading up to a seizure, with a 30 seconds seizure horizon is extracted.
Seizure onsets are hand-labeled at the University Medical Center Freiburg. Since
preictal states directly precede seizures, seizure prediction can be realized by
classification between preictal and interictal states.

In the case of an interictal state five minutes intervals are extracted, which are
at least 11 minutes before or after any other seizure. We refer to these intervals of
extracted signals as individual measurement periods. The data are filtered with
the Parks-McClellan optimal equiripple finite impulse response filter to remove
50Hz line noise.

The dataset is separated into training (70%) and validation set (30%) during a
100-fold cross-validation procedure.

Patient’s
number

age sex
number of
channels

sampling
frequency (Hz)

number of
preictal intervals

number of
interictal intervals

1 34 male 48 256 16 88
2 37 female 26 512 6 44
3 18 male 94 1024 8 80
4 42 male 38 1024 6 110
5 15 male 91 256 14 9

Table 4.1. Detailed information about patients the from EPILEPSIAE database.
[31] The number of preictal intervals is the same as the number of seizures.

Epilepsyecosystem dataset

The dataset consists of intracranial EEG recordings of three patients (all females;
median age: 50). [Tab.4.2] Recordings are made at the St Vincent’s Hospital in
Melbourne, Australia as a part of the world-first clinical trial of the implantable

1A software implementation of the presented method is available online at: https://github.

com/ostojanovic/seizure_prediction.

https://github.com/ostojanovic/seizure_prediction
https://github.com/ostojanovic/seizure_prediction


21 CHAPTER 4. PREDICTING EPILEPTIC SEIZURES USING NMF

NeuroVista Seizure Advisory System. [110] In total, 16 electrodes are used for
each patient and sampling frequency is 400Hz. The dataset consists of the public
and the private (benchmark) set. Since labels of preictal and interictal states are
known only for the public set, it is used for developing a model, while the
benchmark set is used in the final stage for comparison with other algorithms for
seizure prediction. [114]

Preictal intervals are ten minute segments which are cut out of recordings
covering one hour prior to seizure with a five minute seizure horizon. (i.e. from
1:05 to 0:05 before seizure onset). Interictal intervals are also ten minute segments
cut out from one hour of recording, which is at least four hours away from any
seizure. Some of the files contain data dropouts which happen when the
intracranial brain implant temporarily fails to record data. This manifests in zero
values of iEEG across all channels at a given time sample. All files that contain
more than 50% of data dropouts are excluded from the further analysis. For files
that contain less than 50% of data dropouts, the corrupt data are deleted and the
rest of the signal is concatenated. The data are filtered with the Butterworth
infinite impulse response filter to remove 50Hz line noise.

The public dataset is separated into training (70%) and validation set (30%)
during a 100-fold cross-validation procedure.

Patient’s
number

age sex
number of

preictal intervals
number of

interictal intervals
number of files
(benchmark set)

percentage of
excluded files

1 22 female 225 500 162 14.9%
2 51 female 216 1688 941 7%
3 50 female 251 1896 679 1%

Table 4.2. Detailed information about the Epilesyecosystem dataset (after
excluding corrupted files). [114] The number of preictal intervals is the same as the
number of seizures in the public dataset, while for files in the benchmark dataset
labels are not publicly known.

4.3.2 Deriving time and frequency components

To identify stereotypical behavior between and ahead of seizures, spectrograms of
each channel [Fig.4.1] (for the Freiburg EPILEPSIAE dataset) are obtained using
the multitaper method [139] with time windows of 10 seconds (which is calculated
by using 50% overlap of a 20 seconds window). For the Epilepsyecosystem dataset,
spectrograms of each channel are calculated using the Fast Fourier Transform. To
correct for baseline activity across frequencies, relative power is calculated by
dividing spectrograms of each channel by the average interictal spectrogram.

Due to the clinical setting and patients’ diagnoses, the sampling frequency
varies among different patients from the two datasets. As a result, the highest
frequency in the spectrograms varies between 128Hz and 513Hz. However, this
difference is unproblematic due to the fact that we develop patient-specific models.
After obtaining spectrograms of every individual measurement period for every
channel, they are visually inspected, and in the case of anomalies (e.g. electrode
detachments, sudden amplitude jumps), excluded from the data.
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Figure 4.1. Example spectrograms of preictal and interictal states.
Baseline corrected spectrograms of a preictal (A) and an interictal (B) individual
measurement period of channel HR1 from patient 1. This channel and individual
measurement period will be used throughout the paper for illustrative purposes, if
not stated otherwise.

4.3.3 Time-frequency decomposition

To examine changes in power spectra, spectrograms of each channel and each
individual measurement period are decomposed into a time and a frequency
component using nonnegative matrix factorization. Originally proposed under the
name “positive matrix factorization”, it is a variant of factor analysis [102], which
is first used on environmental data [125] and later popularized in the application
to face recognition under the current name. [101] For both tasks, NMF is
successful in learning interpretable parts-based representation (e.g. concentrations
of elements, as in [125] or parts of faces, as in [101]) and shown to perform better
than independent component analysis, principal component analysis or vector
quantization.[140, 141, 142] In the field of seizure prediction, NMF has been used
to develop a method for automatic localization of epileptic spikes in children with
infantile spasms [143] and for automatic detection and localization of interictal
discharges.[144]

Nonnegative matrix factorization decomposes a nonnegative matrix V into two
nonnegative low-rank matrices W and H [101]:

V ∼ Ṽ n×m = Wn×r ×Hr×m

Ṽ ij =

r∑︂
a=1

WiaHaj

The outer product Ṽ = WH can be interpreted as a low rank parts-based
approximation of the data in V .[101] We decide on a factorization of rank r = 1 to
get the most constrained model with two vectors, one of which represents temporal
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evolution (time component H) and one of which represents distribution of
frequencies (frequency component W ). [Fig.4.2]
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Figure 4.2. Time and frequency components and its models. An example
of decomposed time (solid blue lines) and frequency components (solid red lines)
and their respective models (dashed lines) of a preictal state (A, C), as well as an
interictal state (B, D). In a preictal state, the time component (A) increases as a
seizure is approaching, while the frequency component (C) has an increase in low
frequencies. Both interictal components (B, D) are steady and are an order of
magnitude lower than their respective preictal components (A, C).

To lessen the influence of outliers and to remove noise in the NMF components,
they are modeled with smooth basis functions using robust regression. The time
component is modeled by a polynomial of second order, while the frequency
component is modeled by nonlinearly logarithmically spaced B-splines of sixth
order to consider the frequency resolution which decreases in higher frequencies.
[Fig.4.2] By modeling each component with smooth basis functions, the most
relevant information is preserved in both domains, while noise is removed.

By calculating the outer product of modeled NMF components as shown in
figure 4.3, time-frequency models can be reconstructed. They capture the most
important information while leaving out the noise and thus provide simplified
intermediate representation of the data, which can be visually compared to the
corresponding spectrograms (see S1A Fig in the appendix). The coefficients of the
modeled time and frequency components therefore convey relevant information
about structure of both states.

4.3.4 Prediction and performance measures

To classify between preictal and interictal states, linear support vector machines
[145] are used. We combine the coefficients of both of the modeled NMF
components across all channels into a feature vector. For example, recordings of
patient 1 in the EPILEPSIAE dataset contain 48 channels with 12 NMF
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Figure 4.3. Obtaining a time-frequency model from the respective
components. The NMF components are shown with solid red and blue lines for
frequency and time, respectively, while their models are shown with dashed lines.
The time-frequency model (center) is an outer product of modeled time and
frequency components.

parameters (9 parameters for the frequency component and 3 parameters for the
time component) each, leading to a dimensionality of 48 · 12 = 576. To account for
the risk of overfitting due to the high number of features, L1 regularization is used.
L1 regularization shrinks coefficients of less important features to zero by adding
the absolute value of magnitude of coefficients as a penalty term to the loss
function. [145]

In both datasets, interictal states are more frequent than the preictal ones,
which leads to an imbalance of classes (c.f. Tab. 4.1 and 4.2). To account for this,
the SMOTE oversampling technique is used. [137] It creates synthetic samples of
the minority class, based on k neighboring points of minority samples (in our case
k = 5). This means that the new synthetic preictal sample is created based on the
five closest preictal samples.

To ensure good generalization of the algorithm, 100-fold cross-validation is used
on a training set (70%) and a validation set (30%). Average measures (accuracy,
sensitivity, specificity, positive and negative predictive values) are reported. Since
the classifier should neither miss nor falsely predict a seizure, we report sensitivity
sensitivity and specificity, as well as positive and negative predictive values. [146]
In the benchmark dataset the area under the curve (AUC) is used for comparison
among other algorithms.

Sensitivity is the probability of a positive test result among those having the
target condition (i.e. the proportion of correctly classified preictal states), while
specificity is the probability of a negative test result among those without the
target condition (i.e. the proportion of correctly classified interictal states). [146]
The positive predictive value (PPV) is the probability of the target condition,
given a positive test result (i.e. the measure of how likely it is that, if the classifier
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predicts a preictal state, a patient is experiencing it), while the negative predictive
value (NPV) is the probability of not having the target condition, given a negative
test result (i.e. the measure of how likely it is that, if our classifier does not predict
a preictal state, a patient is not experiencing it). [146] Full expressions are given
below:

Accuracy =
TP + TN

all samples

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

PPV =
TP

TP + FP

NPV =
TN

TN + FN

where:

TP is a number of samples classified as true positive

TN is a number of samples classified as true negative

FP is a number of samples classified as false positive

FN is a number of samples classified as false negative.

4.4 Results and discussion

4.4.1 Interpretability of the model

Figure 4.2 shows representative preictal and interictal components (of the
EPILEPSIAE dataset), where the modeled NMF components show differences
between the states. Model of the frequency component of a preictal state exhibits
a peak of high activity in lower frequencies, relative to baseline activity. This is in
line with previous findings of a structure below 30Hz (gamma range), which is
informative for seizure prediction.[132, 133] These structural differences are also
visible in recovered time-frequency models (see S2A Fig and S3A Fig in the
appendix).

Average preictal and interictal components of all measurements and electrodes
differ in both datasets, as shown in S4A Fig and S5A Fig in the appendix. On
average, time components of preictal states in the EPILEPSIAE dataset have
higher intensity, and frequency components show increase in lower frequencies
(S4A Fig). Equivalent average components in the public Epilepsyecosystem show
slightly different behavior. Time components of interictal states have somewhat
higher intensity, and frequency components have an increase in lower as well as in
higher frequencies. Since labels for the private Epilepsyecosystem dataset are not
available, it is not possible to analyze the benchmark dataset in the same way.
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Figure 4.4 shows normalized histograms of maximum values of frequency
components of preictal and interictal states for both datasets. In the
EPILEPSIAE dataset most preictal components have maximum in lower
frequencies, and interictal states have maximum in both lower and higher
frequencies (above 100Hz). On the other hand, most maxima of preictal and
interictal components in the public Epilepsyecosystem dataset are below 50Hz as
well as between 150Hz and 200Hz.

This difference in components between datasets can exist due to various
reasons. The part of the EPILEPSIAE dataset used here might have too few
measurements from an each patient. The Epilepsyecosystem dataset has more
measurements, but it still contains data for only three patients. For a better
assessment more data from different patients should be analyzed. In addition, it
should be noted that the part of the EPILEPSIAE dataset used here contains data
of pre-surgical patients and seizures recorded in this setting might not always be
representative of typical epileptic seizures. As it is shown in [147], features of
intracranial EEG signals show high variability after implantation of electrodes and
spatial variability of lower frequency power bands across channels decreases over
time. On the other hand, the Epilepsyecosystem dataset contains recordings from
the world-first clinical trial of the human-implanted NeuroVista seizure advisory
system [110], which might also be more distinguished than other clinical trials.
Lastly, in the EPILEPSIAE dataset the 11-minutes buffer for interictal periods is
used, which might be too short. The study in [148] reveals existence of
“pre-cursors” to seizures (energy bursts in iEEG signals), which suggests that
epileptic seizures might start hours in advance (also shown in [110]). Considering
all of this, the best assessment of differences in preictal and interictal states would
be in a closed-loop seizure prediction setting in real-time, for which the proposed
method would, with appropriate adjustments (e.g. calculating spectrograms of
consecutive time windows instead of short segments) be suitable.

4.4.2 Predictive performance

On the EPILEPSIAE dataset, similar accuracy is achieved for all patients (above
90%). The lowest performance is for the patient 5 (90.4%) and the highest for the
patient 4 (100%), as shown in figure 4.5 and table 4.3. Sensitivity is between 0.8
and 1, while specificity ranges from 0.98 to 1, as can be seen in figure 4.5. A
combination of high values of sensitivity and specificity is achieved for all patients.
Similarly, positive predictive values are between 0.98 and 1, while negative
predictive values are between 0.85 and 1 (c.f. figure 4.5 and table 4.3).

Predictions on the public Epilepsyecosystem dataset are lower than on the
EPILEPSIAE dataset (around 70% for all patients; c.f. figure 4.5 and table 4.3).
The lowest performance is for the patient 1 (74.1%) and the highest for the patient
3 (78.5%). Sensitivity, specificity, positive and negative predictive values for all
patients are still higher than attainable results by a random classifier, but still
considerably lower than on the EPILEPSIAE dataset, which can be seen in figure
4.5. Sensitivity is between 0.57 and 0.75, while specificity ranges from 0.73 to 0.82.
Positive predictive values are between 0.63 and 0.81, and negative predictive values
are between 0.75 and 0.77.
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Figure 4.4. Distribution of maximum of frequency components. Results
of the EPILEPSIAE dataset are shown in the upper row for preictal (A) and
interictal states (B). The lower row shows results for the Epilepsyecosystem
dataset (C for preictal and D for interictal states).

On the benchmark dataset, the highest achieved accuracy is for the patient 1
(71%), and the lowest for the patient 2 (61%). However, other performance
measures drop significantly (sensitivity and positive predictive value are below
0.5). This drop in performance happens with most of other algorithms that are
evaluated on the Epilepsyecosystem dataset [114], but the difference is not always
as big. There might be various reasons for this. In general, it is the harder task to
train a model on one dataset, and then evaluated it on the unseen set.
Furthermore, the class imbalance between the sets might differ, which would
explain the big difference between sensitivity and positive predictive value. It is
also possible that SMOTE algorithm learns noise when oversampling the minority
class in the public dataset. Finally, patients who have a higher seizure frequency
(i.e. seizures per day) seem to have worse seizure prediction performance based on
the original clinical trial. [110]

As mentioned in the Prediction and performance measures, the AUC is used for
comparison with other algorithms on the benchmark set. The average reported
AUC is 0.57 (0.62 for the patient 1, 0.52 for the patient 2 and 0.58 for the patient
3), which places the proposed algorithm on the 65th place (out of current 102
evaluated algorithms). For comparison, the algorithm with the best performance
on the benchmark dataset (which is the combination of extreme gradient boosting,
k-nearest neighbours, generalized linear model and linear SVM) has AUC of 0.8.
[114]
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The reasons for the overall lower performance on both Epilepsyecosystem
datasets can lie in the fact that there are more seizures and more data per patient,
making prediction possibly more challenging by potentially adding more variability
to the data. It should also be noted that the data of three patients from the
Epilepsyecosystem dataset correspond the ones whose seizures are the most
difficult to predict [110].
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Figure 4.5. Evaluation of prediction performance. Results on the
EPILEPSIAE dataset are shown in the upper row(A-C). Results on the public
Epilepsyecosystem are shown in the middle row (D-F) and the results on the
private Epilepsyecosystem dataset (benchmark) are shown in the lower row (G-I).
Performance of each patient is represented by a circle, for accuracy (A,D,G),
specificity-sensitivity plot (B,E,H) and negative and positive predictive value
(C,F,I). Identical colors are used to represent each patient across all nine
subplots. The hatched area represents results attainable by a random classifier.

4.5 Conclusion

Since patients with uncontrolled epilepsy prefer to be advised a few minutes before
a seizure onset [138], we decided to use intervals of five minutes, extracted from
longer recordings of the EPILEPSIAE dataset. However, this method is easily
extensible to longer periods of time, since the length of intervals has no effect on
dimensionality of modeled time components, which is shown by comparing the
proposed method on the Epilepsyecosystem dataset.

Data from additional patients as well as more data from the same patient
could, if available, lead to a better generalization of the model. This however is a
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Patient’s
number

accuracy (%) sensitivity specificity
positive

predictive value
negative

predictive value

1 99.7 0.99 1 1 0.99
2 97.5 0.97 0.98 0.98 0.97
3 99.5 1 0.99 0.99 1
4 100 1 1 1 1
5 90.4 0.8 1 1 0.85

1 74.1 0.75 0.73 0.73 0.75
2 73 0.57 0.81 0.63 0.77
3 78.5 0.75 0.82 0.81 0.77

1 71 0.44 0.76 0.25 0.88
2 61 0.37 0.63 0.06 0.94
3 69.2 0.37 0.72 0.11 0.92

Table 4.3. Performance measures for all patients from the EPILEPSIAE dataset
(upper section), from the Epilepsyecosystem public dataset (middle section) and
Epilepsyecosystem benchmark dataset (lower section)
.

challenge for patient-specific models in general, where data from a single patient
should suffice, and a large number of labeled training examples is not available.

Overall, this study demonstrates the use of nonnegative matrix factorization of
power spectra for a seizure prediction task. The proposed model is conceptually
simple, interpretable and has shown good accuracy on two representative datasets
and lower performance on the benchmark set where improvements in the direction
of coping with class imbalance should be made. A similar approach could be used
for similar tasks such as detection of sleep stages in EEG or the detection of
irregularities in ECG.
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Chapter 5

Example 2: predicting
infectious diseases

Surveillance, prevention, and control of infectious diseases are fundamental tasks
of public health agencies. Predicting the case counts of infectious diseases can
inform public policies and thus help stop the spread, keeping the population
healthy and minimizing potential deaths. [149, 150, 151] Predicting infectious
diseases is about learning how many new infection counts will happen in a given
time frame in the future in different spatial locations. [149] Such models predict
cases in two dimensions: temporal, for which we use time series of cases as an
input, and spatial, for which we use the location of new cases. [152, 153] However,
infectious diseases are not static, and after interaction between cases, new ones will
occur. Because of this, we want to make a model which can learn spatio-temporal
interactions between cases [154, 155] and use this information for predictions.
Besides spatio-temporal interactions, incorporating prior knowledge about diseases,
seasonality, and trends is a great addition to spatio-temporal models. [156, 157]

The challenge in predicting infectious diseases is to make a model from which
domain experts can learn disease dynamics and predict the number of cases and
locations over time (since the public must know whether they need to take
precautious measures). Depending on whether the disease is known and historical
data are available or not, forecasting long into the future can be unreliable. In
such cases, we usually make predictions for the present or near future, known as
nowcasting. [158, 159] It helps us assess the situation since reporting is always
delayed for a couple of days, i.e., the time between the incubation, laboratory
tests, confirmation, and reporting in the database or, in general, delays due to the
weekend and national holidays. [159, 160, 161] Because such epidemiological
predictions can be used to inform policy-making, as in the coronavirus pandemic,
the quality of data directly impacts the quality of decisions. Communicating and
explaining predictions is key for public support of the measures (see Appendix B,
Visualizing the spread of infectious diseases using public health data).

31
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5.1 Properties of spatio-temporal data

Working with epidemiological data poses several challenges. Consider, for
example, the epidemiological data we used here: time series of infection counts in
Germany aggregated by administrative areas that correspond to NUTS3 areas
(Nomenclature of Territorial Units for Statistics). [162] Collecting such data
depends on administrative divisions in a country and data protection laws. For
example, European Union (EU) member states collect epidemiological data on the
NUTS3 level, which are then reported to European Centre for Disease Prevention
and Control (ECDC). [163] NUTS3 regions are defined by Eurostat as areas that
contain between 150,000 and 800,000 people, which is a relatively low resolution.
[164] In Germany, this corresponds to the administrative level of counties (German
Landkreise). While Germany only collects data on the NUTS3 level, other
countries may also collect data on a finer level. For example, Belgium and the
Netherlands collect infection counts on the level of municipalities [165, 166], whose
average size is 20,000 and 50,000 people, respectively. [167, 168] This directly
affects the spatial resolution of predicted infection counts.

Further, administrative divisions can have unusual shapes influenced by
historical boundaries and may contain enclaves and exclaves (see a German
exclave in Switzerland in Fig. 5.1). But diseases spread with human movement
across the boundaries, making it more challenging to model the spatial spread of
infectious diseases. To model spatio-temporal interactions of diseases “on the
ground”, we need to go from the abstract level of neighboring regions down to
their actual boundaries in physical space. However, due to political and
socio-economical transformations, administrative boundaries are also subject to
change, e.g., as the population in cities grows, it is more likely that one area will
split into multiple, and vice versa.

Figure 5.1. An example of an exclave. The German county Konstanz,
marked in red contains an exclave Büsingen am Hochrhein, which is surrounded by
Switzerland (German territory is colored in green). Image credits: OpenStreetMap
under the Open Database Licence (ODbL) 1.0.

When making spatio-temporal predictions, we must first adjust historical data
to changes in boundaries. Since NUTS3 doesn’t change as often as some finer
levels might, we did not have to adjust our data. If we had worked with a finer



33CHAPTER 5. EXAMPLE 2: PREDICTING INFECTIOUS DISEASES

level in Germany, such as districts (Gemeinde), we would have to do so.
In addition to epidemiological data, demographics and socio-economical data

are crucial for making predictions [169, 170, 171], as viruses can spread differently
among age groups or people working different jobs. Data from social media can be
a good and low latency addition to the model (e.g., the mentions of flu on
Twitter). [172] However, one should exercise caution when using data from social
media, since the demographics of users varies among platforms and can be
significantly skewed. [173] Further, social media users show group dynamics that
are not representative of usual human behavior, and it is generally unclear which
data preprocessing and filtering has already been done internally at the companies.
[174, 173].

5.2 Properties of public data

In this thesis, we used public data, which has some special properties. The
Publications Office of the European Union defines public data as:

Open (Government) Data refers to the information collected, produced
or paid for by the public bodies (also referred to as Public Sector
Information) and made freely available for re-use for any purpose. [175]

As such, public data depends on the laws and governments of the country of
origin. Governments can decide the level at which data is collected, which directly
influences the modeling process. Further, governments have power over which data
to collect and which not, which in unstable political and economic situations can
mean that there might be an incentive to misrepresent the data. [21]

Data privacy and people’s attitudes toward sharing their data shape the
locality of data collection and what the public is interested in getting from
predictions of infectious diseases. A study in the UK showed that people are
willing to share their data when the purpose is clear. [176, 177] In situations such
as the coronavirus pandemic, communicating the current situation is crucial in
ensuring the public’s trust. [178] Although the public attitude towards collecting
data varies among European countries [179, 180], publishing and communicating
data on the level of NUTS3 seems to be generally accepted.[181] However, in
Japan, people are more willing to share their data with private companies (like
Apple) than with the government. [182] On the other hand, in South Korea, the
public accepted maps that showed confirmed cases in the country, including
personal information about the infected person and their movement. [183]

5.3 Modeling the spread of infectious diseases

In this project, we developed a general model of the spread and spatio-temporal
interactions of infectious diseases. We tested the model on three diseases with
different characteristics: campylobacteriosis, rotavirus, and Lyme borreliosis. We
made one-week-ahead predictions for each county in Germany. In the model, we
used spatio-temporal epidemiological data of case counts, with additional
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demographical and political information (e.g., whether counties belonged to
eastern or western Germany).

Although domain knowledge is often used in statistical models to model the
spread of infectious diseases [149, 184], they often don’t show how parts of the
model affect predictions. Lately, more machine learning methods combine
epidemiological and other data types, such as environmental data, Google or
Twitter trends, etc., to predict new cases. [185, 186, 187, 188] Interpretability of
such methods usually depends on the type of prediction algorithm.

We designed an interpretable model to predict weekly case counts of three
infectious diseases. Since we explicitly wanted to design one spatio-temporal model
that could be adjusted for different diseases, we opted for a probabilistic
generalized linear model with a Bayesian approach. Generalized linear models are
suitable for predicting infectious diseases since they allow for non-Gaussian
assumptions about the model, which is common in epidemiology. The Bayesian
approach allows us to include domain knowledge as prior modeling assumptions,
which later helps interpret results.

For several reasons, probabilistic modeling and Bayesian statistics are good
choices for designing a model for predicting infectious diseases. First, Bayesian
inference expliclitly combines prior assumptions with available data, which helps
incorporate domain knowledge into the model. [189] The posteriors can be
updated during learning, ensuring that models learn underlying relationships
between variables. Because of this, Bayesian modeling can be used to develop
interpretable machine learning models. [69] Second, Bayesian modeling can handle
limited availability of data, as is often the case in epidemiology. Third, Bayesian
probabilistic models give not only point predictions but rather probability
distribution over predictions and the parameters of the model, which is useful for
estimating the uncertainty of predictions. [189] This is important when basing
high stakes decisions on these predictions and helps us decide whether we need to
collect more data to make predictions less uncertain. Finally, Bayesian modeling
allows to explicitly encode relations between variables. This leads to better
descriptions of the model, especially if we want to learn more about the dynamics
of the disease. [73, 80, 69] Since analytical solutions are complex and require a lot
of computation power, sampling methods like Markov Chain Monte Carlo
(MCMC) can be used, e.g., as implemented in the probabilistic programming
software package PyMC3. [190]

Our model consists of basis functions that capture different factors of the
spread of infections. We use spatio-temporal basis functions to learn interaction
within geographical regions and over time. We also model the trends and
seasonality of each disease and use demographic and region-specific information in
the model. We employed MCMC sampling to learn Bayesian posterior
distributions of model parameters and predcitions.

The model generalizes well and learns distrinct and interpretable
spatio-temporal interaction kernels for each disease. The inferred kernels give
insight into the dynamics of each disease and show how parts of the model affect
prediction, which makes the model globally interpretable on a modular level.
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6.1 Abstract

In this paper, a simple yet interpretable, probabilistic model is proposed for the
prediction of reported case counts of infectious diseases. A spatio-temporal kernel
is derived from training data to capture the typical interaction effects of reported
infections across time and space, which provides insight into the dynamics of the
spread of infectious diseases. Testing the model on a one-week-ahead prediction
task for campylobacteriosis and rotavirus infections across Germany, as well as
Lyme borreliosis across the federal state of Bavaria, shows that the proposed
model performs on-par with the state-of-the-art hhh4 model. However, it provides
a full posterior distribution over parameters in addition to model predictions,
which aides in the assessment of the model. The employed Bayesian Monte Carlo
regression framework is easily extensible and allows for incorporating prior domain
knowledge, which makes it suitable for use on limited, yet complex datasets as
often encountered in epidemiology.

6.2 Introduction

Public-health agencies have the responsibility to detect, prevent and control
infections in the population. In Germany, the Robert Koch Institute collects a
wide range of factors, such as location, age, gender, pathogen, and further specifics,
of laboratory confirmed cases for approximately 80 infectious diseases through a
mandatory surveillance system [162]. Since 2015, an automated outbreak detection
system, using an established aberration detection algorithm [191], has been set in

https://github.com/ostojanovic/BSTIM
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place to help detect outbreaks [192, 193]. However, prevention and control require
quantitative prediction instead of mere detection of anomalies and thus prove more
challenging. For logistical, computational and privacy reasons, epidemiological
data is typically reported or provided in bulk, often grouped by calendar weeks
and counties. Predictions thus have to be made about the number of cases per
time-interval and region, based on a history of such measurements.

Since outbreaks can extend over multiple counties, states or even nations,
spatio-temporal models are typically employed. Some approaches use scan
statistics to identify anomalous spatial or spatio-temporal clusters [194, 195], while
others model and predict case counts as time series or point processes [196, 197].
A major advantage of such predictive models is the additional insight they can
provide into the factors contributing to the spread of infectious diseases.

In general, we distinguish four qualitatively different classes of predictive
features: spatial, temporal, spatio-temporal and (spatio-temporal) interaction
effects. The former three are purely functions of space, time or both, modeling
seasonal fluctuations and trends, geographical influences or localized time-varying
effects, such as region-specific demographics or legislation, respectively. The latter
is an autoregressive variable that captures how an observed infection influences the
number of further infections in its neighborhood over time, which depends on
differences in patients’ behavior, transmission vectors, incubation times and
duration of the respective diseases. Even in the absence of direct contagion,
previously reported cases can provide valuable indirect information for predicting
future cases through latent variables. The effect on the expected number of cases
at a given place and time due to interactions can thus be expressed as a (unknown)
function of spatial and temporal distance to previously reported cases. Particularly
for regions with less available historic data or those strongly influenced by their
neighbors, e.g. smaller counties close to larger cities [198], incorporating the
county’s and its neighbors’ recent history of case counts can improve predictions.

The state-of-the-art spatio-temporal hhh4 method [196, 199] assumes
aggregated case counts to follow a Poisson or Negative Binomial distribution
around a mean value determined by “epidemic” and “endemic” components. The
epidemic component can capture the influence of previous cases from the same or
neighboring counties, e.g. potentially weighted by the counties’ adjacency order,
while the endemic component models the expected baseline rate of cases.

For not aggregated data, the more general twinstim method [196] models the
interaction effects due to individual cases by a self-exciting point process with
predefined continuous spatio-temporal kernel, rather than through a binary
neighborhood relation as in the hhh4 model. Optimizing such a kernel for a
specific dataset provides an opportunity to incorporate or even infer information
about the infectious spread of the disease at hand. Using such smooth spatial
kernel functions in favor of e.g. neighborhood graphs between geographical regions
has the additional benefit, that it can also be applied in domains where the shape
and neighborhood relation between such regions is complex. For example within
Germany counties can contain enclaves, e.g. cities that represent a county of their
own, or even be composed of disjoint parts.

In the following, we present a Bayesian spatio-temporal interaction model
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(referred to as BSTIM), as a synthesis of both approaches: a probabilistic
generalized linear model (GLM) [200] predicts aggregated case counts within
spatial regions (counties) and time intervals (calendar weeks) using a history of
reported cases, temporal features (seasonality and trend) and region-specific as
well as demographic information. Like for the twinstim method, interaction effects
are modeled by a continuous spatio-temporal kernel, albeit parameterized with
parameters inferred from data. Since the aggregated reporting of case counts per
calendar week and county leaves residual uncertainty about the precise time and
location of an individual case, we model times within the respective week and
locations within the respective county as latent random variables. Monte Carlo
methods are employed to evaluate posterior distributions of parameters as well as
predictions, which are subsequently used to assess the quality of the model.

For three different infectious diseases, campylobacteriosis, rotaviral enteritis and
Lyme borreliosis, the interpretability of the inferred components, specifically the
interaction effect kernel, is discussed and the predictive performance is evaluated
and compared to the hhh4 method.

6.3 Materials and methods

We evaluate both the proposed BSTIM as well as the hhh4 reference model on a
one-week-ahead prediction task, where the number of cases in each county is to be
predicted for a specific week, given the previous history of cases in the respective
as well as surrounding counties. Instead of point estimates, we are interested in a
full posterior probability distribution over possible case counts for each county and
calendar week – capturing both aleatoric uncertainty due to the stochastic nature
of epidemic diseases as well as epistemic uncertainty due to limited available
training data. The data for this study is provided by the Robert Koch Institute,
and consists of weekly reports of case counts for three diseases, campylobacteriosis,
rotavirus infections and Lyme borreliosis. They are aggregated by county1 and
collected over a time period spanning from the 1st of January 2011 (2013 for
borreliosis) to the 31st of December 2017 via the SurvNet surveillance system
[162]. Aggregated case counts of diseases with mandatory reporting in Germany
can be downloaded from https://survstat.rki.de. For each of the three diseases, the
data preceding 2016 is used for training the model, while the remaining two years
are used for testing. A software implementation of the BSTI Model presented here
is available online at https://github.com/ostojanovic/BSTIM.

6.3.1 The BSTI Model

The proposed model is optimized to predict the number of reported cases in the
future (e.g. the next week), based on prior case counts. Since epidemiological
count data is often overdispersed relative to a Poisson distribution [201], i.e. the
variance exceeds the mean, we assume counts are distributed as a Negative
Binomial random variable around an expected value µ(t, x) that varies with time

1We use the term “county” to generally refer to rural counties (Landkreise) and cities (kreisfreie
Städte) as well as the twelve districts of Berlin (Bezirke).

https://survstat.rki.de
https://github.com/ostojanovic/BSTIM
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(t) and space (x), and with a scale parameter2 α ≥ 0. The Negative Binomial
distribution has been successfully used in epidemiology [201, 202, 203], since its
variance V = µ+ αµ2 allows to model overdispersion in the data for α > 0, while
including the Poisson distribution as a special case for α → 0.

We further assume that the relationship between each feature fi(t, x) and the
expected value µ(t, x) can be expressed in a generalized linear model of the
Negative Binomial random variable Y (t, x) using the canonical logarithmic link
function. A half-Cauchy distribution is used as a weakly informative prior [204] to
enforce positivity of the dispersion parameter of the residual Negative Binomial
distribution. For all other parameters, Gaussian priors with zero mean and
standard deviation 10 are chosen. Since the linear predictor of the generalized
linear model combines qualitatively different types of data, specifically interaction
effects and exogenous features such as temporal or demographical information, we
employ sensitivity analysis to verify that the chosen (relative) scales for the priors
do not unduly influence the inferred parameters. To this end, we systematically
vary the standard deviation of the prior distribution for the interaction effect
coefficients over the values 0.625, 2.5, 10, 40 and 160. Since we only observe
negligible changes in the posterior parameter distributions (see supplementary S4C
Fig through S6C Fig) and resulting predictions (not shown here) for standard
deviations 10 and above, we conclude that the chosen Normal distribution with
standard deviation 10 constitutes an adequate weekly informative prior. The full
probabilistic model for training can thus be summarized as follows:

α ∼ HalfCauchy(γ = 2) (6.1)

Wi ∼ Normal(µ = 0, σ = 10) (6.2)

µ(t, x) = exp

(︄
N∑︂
i=1

Wifi(t, x)

)︄
· ϵ(t, x) (6.3)

Y (t, x) ∼ NegBin(µ(t, x), α) (6.4)

where:

α is a dispersion parameter

N is the total number of used features

Wi are model weights

fi(t, x) are features varying in time and space

ϵ(t, x) is the exposure varying in time and space

t refers to a time-interval (i.e. one calendar week)

2Due to its common use in combinatorics, the Negative Binomial distribution is often formalized
in terms of parameters r, representing the number of failures in a hypothetical repeated coin flip
experiment, and p, representing the success probability in each trial. This can be trivially extended
to real valued coefficients, and reparameterized in terms of µ and α by setting µ → pr/1−p and
α → 1/r.
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x refers to a spatial region (i.e. one county)

For prediction, the priors over the dispersion parameter and weights are
replaced by the corresponding posterior distribution inferred on the training set.

A schema of our model is shown in Fig.6.1. To capture the interaction effects
between different places over time, a continuous spatio-temporal kernel is
estimated through a linear combination of 16 basis kernels. The individual
contribution due to each of these basis kernels is included into the model as a
feature. Four temporal periodic basis functions are used to capture seasonality and
five sigmoid basis functions (one for each year of available training data) to
capture temporal trends. Four region-specific features (ratio of population in a
county belonging to three age groups and one political component) are used, which
results in 29 features. In addition, the logarithm of the population of each county
in the respective year is used as a scaling parameter (exposure) ϵ.

X
X
X

X
X
X

-
X
X

-
-
X

X
X
X

model A:
model B:
model C:

+ + +exp[ + + + ]·

Figure 6.1. Model scheme. Exemplary contributions from different features,
grouped into interaction, temporal, political and demographical components, each
evaluated in all counties in Germany for campylobacteriosis in the week 30 of 2016.
Each county’s total population is always included as an exposure coefficient. We
consider three models of increasing complexity, A, B and C, that differ in whether
features are included (✓) or not (-). Information about the shape of counties
within Germany is publicly provided by the German federal agency for
cartography and geodesy (Bundesamt für Kartographie und Geodäsie)
(GeoBasis-DE / BKG 2018) under the dl-de/by-2-0 license.

For example, given one parameter sample w = [w1, . . . , w29], inferred from the
training set of campylobacteriosis case counts, the conditional mean prediction
within county x during week t is determined as follows:

µ(t, x) = exp

⎛⎜⎜⎜⎜⎝
16∑︂
i=1

wifi(t, x)⏞ ⏟⏟ ⏞
interaction

+
20∑︂

i=17

wifi(t)⏞ ⏟⏟ ⏞
periodic

+
25∑︂

i=21

wifi(t)⏞ ⏟⏟ ⏞
trend

+
29∑︂

i=26

wifi(t, x)⏞ ⏟⏟ ⏞
region-specific

⎞⎟⎟⎟⎟⎠ · ϵ(t, x)⏞ ⏟⏟ ⏞
exposure

(6.5)
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6.3.2 Monte Carlo sampling procedure

The model described above determines the posterior distribution over parameters
by the data-dependent likelihood and the choice of priors. We want to capture this
parameter distribution in a fully Bayesian manner, rather than summarize it by its
moments (ie. mean, covariance, etc.) or other statistics. Since an analytic solution
is intractable, we use Markov Chain Monte Carlo (MCMC) methods to generate
unbiased samples of this posterior distribution. These samples can be used for
evaluation of performance measures (here deviance and Dawid-Sebastiani score; cf.
section Predictive performance evaluation and model selection), visualization or as
input for a superordinate probabilistic model.

Our model combines features that can be directly observed (e.g. demographic
information) with features that can only be estimated (e.g. interaction effects, due
to uncertainty caused by data aggregation). To integrate the latter into the model,
we generate samples from the distribution of interaction effects features as outlined
in section Interaction effects.

The sampling procedure generates samples from the prior distribution over
parameters and combines them with training data and our previously generated
samples of the interaction effect features to produce samples of the posterior
parameter distribution. These samples from the inferred joint distribution over
parameters are then used to generate samples of the posterior distribution of
model predictions for testing data.

We employ a Hamiltonian Monte Carlo method, No-U-Turn-Sampling[205],
implemented in the probabilistic programming package pyMC3 [190]. To evaluate
proper convergence of the sampling distribution to the desired (but unknown)
posterior distribution, four independent Markov chains are generated and their
marginal distributions compared using the Gelman-Rubin diagnostic R̂ [206],
which assesses the relation between the within-chain and the between-chains
variance.

6.3.3 Interaction effects

Each reported case provides valuable information about the expected number of
cases to come in the near future and close proximity. We suppose that this effect
of an individual reported infection on the rate of future (reported) infections in the
direct neighborhood can be captured by some unknown function
κ(dtime(t⋆, tk), dgeo(x⋆, xk)), which we refer to as interaction effect kernel in the
following, where (tk, xk) refer to the time and location of the k-th reported case
and (t⋆, x⋆) represent the time and location of a hypothetical future case. Here,
dgeo(x, y) represents the geographical distance between two locations x and y,
whereas dtime(t, s) denotes the time difference between two time points t and s.
Thus, κ(·, ·) is a radial, time- and location-invariant kernel, depending only on the
spatial and temporal proximity of the two (hypothetical) cases. For the sake of
simplicity, we assume that interaction effects due to individual infections add up
linearly.

Since κ is not known a-priori for each disease, we wish to infer it from data. To
this end, we approximate it by a linear combination of spatio-temporal basis
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kernels κi,j with coefficients wi that can be inferred from training data:

κ(△t,△x) ≈κ̂(△t,△x) :=
∑︂
i

wiκIi,Ji(△t,△x) (6.6)

where Ii := ⌈i/4⌉, Ji := (i− 1)mod 4 + 1

As the basis functions for the interaction effect kernel, we choose the products
κi,j(△t,△x) := κTi (△t) · κSj (△x) between one temporal (κTi ) and one spatial factor

(κSj ), each (cf. Fig.6.2). As temporal factors, we use the third order B-spline basis

functions κTi = Ni,3 for i = {1, 2, 3, 4} as defined in [207], with the knot vector
[0, 0, 7, 14, 21, 28, 35] (measured in days). The multiplicity 2 of the first knot
enforces κT1 (0) = 0. This results in four smooth unimodal functions, spanning the
overlapping time interval from zero to two weeks, zero to three weeks, one to four
weeks and two to five weeks after a reported case, respectively. Outside these
intervals, the functions are identically zero. Acausal effects (i.e. the influence of a
reported case on hypothetical other cases reported at an earlier time) as well as
effects more than five weeks after a reported case are thus excluded. This accounts
for the typical incubation times for campylobacteriosis [208] and rotavirus
infections [209], and early symptoms of Lyme Borreliosis [210], as well as potential
reporting delays. As spatial factors, we use exponentiated quadratic kernels (i.e.
univariate Gaussian functions) centered at a distance of 0km to a reported case,
with shape parameters σ of 6.25km, 12.5km, 25.0km, and 50.0km. These spatial
kernels are wide enough to cover the typical daily commuting distances within
Germany, which amount to 25km or less for the majority of commuters [211], while
being narrow enough to capture only local effects. See Fig.6.2 for an illustration of
how the basis functions κi,j are constructed.

Since the contributions of individual cases are assumed to sum up linearly, the
total influence of all cases that were previously reported at times and places
(tk, xk), k ∈ 1 . . . n onto the expected rate of cases reported at a later time t and
location x is given by:

16∑︂
i=1

wifi(t, x) where

fi(t, x) :=

n∑︂
k=1

κIi,Ji(dtime(t, tk), dgeo(x, xk)) (6.7)

Each fi(t, x) for i ∈ {1, . . . , 16} is a spatio-temporal function that depends on
all cases reported prior to t, providing us with a total of 16 features for modeling
interaction effects. By determining the corresponding coefficients wi, the fitting
procedure thus allows us to infer an interaction effect kernel κ̂ in a 16-dimensional
parameterized family from data. It should be noted, however, that since the basis
functions κi,j capture strongly correlated and possibly redundant information, the
effective number of degrees of freedom may be well below 16. Since we work with
aggregated data at a spatial resolution of counties and a temporal resolution of



43
CHAPTER 6. BSTI MODEL FOR PREDICTING INFECTIOUS

DISEASES

temporal distance [days]

sp
at

ia
l

d
is

ta
n

ce
[k

m
]

0 10 20 30

0.0

0.5

1.0
0 10 20 30 0 10 20 30 0 10 20 30

−100

−50

0

50

100

−100

−50

0

50

100

−100

−50

0

50

100

0.000.050.10
−100

−50

0

50

100

Figure 6.2. Spatial and temporal basis functions for interaction kernel.
The inferred interaction kernel is composed of a linear combination of
spatio-temporal basis functions (four-by-four grid of contour plots), each of which
is a product of one spatial (left column) and one temporal factor (top row).

calendar weeks, the exact time and location of an individual case report, as well as
time and location of a hypothetical future case, are conditionally independent
random variables given the county and week in which they occur. Because of this
epistemic uncertainty, the features fi(t, x) derived in equation 6.7 are thus random
variables themselves. To deal with this uncertainty, the twinstim model proposed
in [196] suggests to replace these features by their expected values, which can be
numerically approximated efficiently. Here, instead of using such point-estimates,
which might lead the model to underestimate its uncertainty, we want to
incorporate the features fi(t, x) directly into our probabilistic model and thus need
to account for their full probability distribution.

While this distribution is intractable to calculate analytically, we can generate
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unbiased samples from it through rejection sampling: For a case reported in a
given calendar week and county, possible sample points of a precise time and
location can be independently generated by uniformly drawing times from within
the corresponding week and locations from a rectangle containing the county,
rejecting points that fall outside the county’s boundary. By randomly drawing a
sample time and location for each reported case, we can thus generate an unbiased
sample of the (unavailable) data prior to aggregation that accurately reflects the
uncertainty caused by the aggregation procedure. Using these resulting sample
times and locations in place of tk and xk in equation 6.7 yields unbiased samples of
the features fi(t, x), which are in turn used when generating samples of the model’s
posterior parameter distribution (cf. section Monte Carlo sampling procedure).

It bears repeating that what we refer to as interaction effect features in this
paper are thus in fact latent random variables due to the epistemic uncertainty
caused by aggregated reporting of infections by counties and calendar weeks.

6.3.4 Additional features

Infection rates vary in time due to natural processes, such as seasons and climate
trends, evolution of pathogens and immunization of the population, as well as
societal developments such as scientific and technological advancement and
medical education. Within Germany these effects may not differ much across space
and can thus be included into the model as feature functions fi(t) that only
depend on time. For modeling yearly seasonality, four sinusoidal basis functions
(ie. sin (2π · t · ωyearly), sin (4π · t · ωyearly), cos (2π · t · ωyearly), cos (4π · t · ωyearly))
are used as temporal periodic components, where ωyearly = (1 year)−1. Slower
time-varying effects are subsumed in a general trend modeled by a linear

combination of one logistic function
(︁
ie.
(︁
1 + exp

(︁
− t−τi

2 · ωweekly

)︁)︁−1)︁
centered at

the beginning of each year (τi) with slope 1/2 ωweekly, where ωweekly = (1 week)−1.
Due to the historical division between eastern and western Germany, and their

different developments, some structural differences remain, such as unemployment
rate, density of hospitals and doctors, population density, age structure etc. [212,
213] To account for such systematic differences, a political component, which we
refer to as the east/west component in the following, is introduced which labels all
counties that were part of the former German Democratic Republic as 1 and
counties that were part of the Federal Republic of Germany as 0. Since Berlin itself
was split into two parts, yet todays counties don’t accurately reflect this historic
division, counties within Berlin are labeled with an intermediate value of 0.5.

Since diseases can affect children and elderly in different ways, yearly
demographic information about each county is incorporated into the model. The
logarithm of the fraction of population belonging to three age groups (ages [0− 5),
[5− 20) and [20− 65)) is used. The total population of each county acts as a
scaling factor for the predicted number of infections3.

3The age group of 65 years and above accounts for the remaining share of the population and
thus is a redundant variable with respect to the other three age groups and the total population.
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6.3.5 Predictive performance evaluation and model selection

To evaluate the predictive performance of the model, forecasts of the number of
infections are made one calendar week ahead of time for each disease and each
county. To determine the relevance of different features, model selection is
performed on the training dataset between three models of different complexity
[Fig.6.1]:

model A - includes interaction and temporal (periodic and trend) components,

model B - includes interaction, temporal and political components,

model C - includes interaction, temporal, political and demographic components.

The Widely Applicable Information Criterion [214](WAIC, also referred to as
Watanabe-Akaike information criterion, is applied to the posterior distribution
over parameters and predictions from the training set to determine which
combination of features (i.e. model A, B or C) minimizes the generalization error.
Similar to the deviance information criterion, WAIC assesses the model’s ability to
generalize by estimating the out-of-sample expectation, while penalizing a large
effective number of parameters. This is relevant here since modeling interaction
effects introduces multiple features that capture redundant information. However,
rather than evaluating the log-posterior at a parameter point-estimate, the WAIC
calculates the empirical mean over the entire posterior distribution, which leads to
a better estimate of the out-of-sample expectation [215], and is therefore ideally
suited for sampling-based approaches.

Different error measures are applied to evaluate the fit of the predictive
distribution for the test set to observations. Deviance of the Negative Binomial
distribution (i.e. the expected difference between the log-likelihood of observations
and the log-likelihood of the predicted means) is used as a likelihood-based
measure and the Dawid-Sebastiani score (a covariance-corrected variant of squared
error, cf. [216]) is included as a distribution-agnostic proper scoring rule.

To evaluate the performance of the model presented here as well as an hhh4
model implementation for reference, we compare the resulting distributions of
scores across counties.

6.3.6 The hhh4 model reference implementation

We use an hhh4 model for Negative Binomial random variables, implemented in
the R package “surveillance”[217], with a mean prediction composed of an
epidemic and an endemic component. The epidemic component is a combination
of an autoregressive effect (models reproduction of the disease within a certain
region) and a neighborhood effect (models transmission from other regions). The
endemic component models a baseline rate of cases due to the same features as
described above. The reference model is trained and evaluated on the same
datasets as the BSTIM.
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6.4 Results and discussion

Testing models of varying complexity (see Fig.6.1) reveals that the most complex
model (model complexity C, including interaction effects, temporal, political as
well as demographical features) generalizes best as measured by WAIC for all three
different tested diseases (campylobacteriosis, rotavirus and borreliosis). [Tab.6.1]
For the remainder of this text, we thus focus only on the full model variety C. The
posterior parameter distribution inferred from the training data can be analyzed in
itself, which provides valuable information about the disease at hand as well as the
suitability of the model. Subsequently, it is used to generate one-week-ahead
predictions for the test data.

model campylobacteriosis rotavirus borreliosis

A 423279.3 349182.37 31359.62
B 420172.1 339143.27 (31359.62)
C 420010.64 338219.46 30643.49

Table 6.1. Training set WAIC scores for the three tested diseases and the three
levels of model complexity. Since for borreliosis the model is trained and evaluated
only within the western state of Bavaria, the east/west feature is constantly zero,
and the models A and B thus coincide.

For each model configuration and disease, the sampling procedure is run until a
total of 1000 valid samples of the joint posterior distribution have been generated,
which each requires approximately four hours of run-time on a conventional
desktop machine4. The sampling procedure converges to the same posterior for all
independent chains, as can be seen by inspecting the posterior marginal
distributions of each parameter in the supplementary figures S1C Fig to S3C Fig,
which is quantified by the Gelman-Rubin diagnostics shown in supplementary
figure S10C Fig.

6.4.1 The inferred model

The procedure outlined above produces samples from the posterior parameter
distribution, which in turn provides a probability distribution over interaction
kernels. Due to the large number of free parameters (16) involved (see Fig.6.2), the
family of parameterized kernels is flexible enough to capture different
disease-specific interactions in time and space. Despite the fact that much more
complex interaction effect kernels could be learned, the kernels inferred from data
appear to factorize into a specific spatial and temporal profile for each disease.
The mean interaction kernel for campylobacteriosis (see Fig.6.3, 1A) shows the
furthest spatial influence over up to 75 km, whereas rotavirus (see Fig.6.3, 2A) and
borreliosis (see Fig.6.3, 3A) are more localized within a radius of up to 25 km.
Borreliosis exhibits longer lasting interaction effects, extending up to four weeks.
Despite the fact that borreliosis is not contagious between humans, this is
consistent with a pseudointeraction effect due to a localized, slowly changing latent

4Utilizing 4 cores of an AMD Ryzen 5 1500x processor.
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variable such as the prevalence of infected ticks or other seasonal factors. The
kernel for campylobacteriosis shows a clear drop in the third week after an
infection, which might indicate recovery from the disease, but we advise caution
against overinterpretion of this negative interaction.
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Figure 6.3. Learned interaction effect kernels. Kernels for
campylobacteriosis are shown in 1A-C, for rotavirus in 2A-C and for borreliosis
in 3A-C. Mean interaction kernels are shown in the row A, while rows B and C
show two random samples from the inferred posterior distribution over interaction
kernels.

Looking at individual samples from the respective kernel distributions (see
Fig.6.3, rows B and C) reveals a degree of uncertainty over the precise kernel
shape for the different diseases: while there is little variation in the kernel shape
inferred for rotavirus, there is uncertainty about the temporal profile of
interactions for campylobacteriosis.

The seasonal components (see Fig 6.4) for campylobacteriosis and borreliosis
show a yearly peak in July and June, respectively. In the case of rotavirus the
incidence rate is higher in spring with a peak from March to April. The learned
trend components capture the disease-specific baseline rate of infections, which
remains stable throughout the years 2013 to 2016. While there is little uncertainty
in the seasonal component, there is a high degree of uncertainty in the constant
offset of the trend component. The effect of combining both contributions within
the model’s exponential nonlinearity results in higher uncertainty around larger
values.
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Figure 6.4. Learned temporal contributions. Periodic contributions over the
course of three years (2013-2016) for all three diseases are shown in the row A,
trend contributions in the row B and their combination in the row C. Red lines
show the mean exponentiated linear combination of periodic or trend or both
features through the respective parameters. Dashed lines show random samples
thereof; the shaded region marks the 25%-75% quantile.

For campylobacteriosis and, to a lesser extent, rotavirus reported incidence
rates are higher in regions formerly belonging to eastern Germany (see Fig. 6.5).
The parameters inferred for demographic components (see Fig. 6.5) show the role
that age stratification plays for susceptibility. For all three diseases, a larger share
of children and adolescents (ages 5-20 years) in the general population is indicative
of increased incidence rates. Additionally, working-age adults (ages 20-65 years)
appear to increase the incidence rate of borreliosis. It should be noted that this
does not necessarily imply an increased susceptibility of the respective groups
themselves, but could instead be due to latent variables correlated with age
stratification, such as economic or cultural differences. The pairwise joint
distributions reveal strong (anti-)correlations of the coefficients associated with the
demographic and political components. E.g. the coefficient associated with age
group [20-65) is strongly correlated with the coefficient associated with the
east/west component, which implies ambiguity in the optimal choice of parameters.

The posterior probability over the dispersion parameter α (see Fig.6.5) is
tightly distributed around the respective disease specific means. With small values
of α, the distribution of case counts for campylobacteriosis approaches a Poisson
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Figure 6.5. Learned weights for political and demographic components.
Plots of the pairwise marginal distributions between inferred coefficients for three
age groups and the east/west component for all three diseases are shown in row
A. The marginal distribution of each coefficient shows a narrow unimodal peak,
yet the pairwise distributions show that the individual features are clearly not
independent. Row B shows the inferred posterior distributions of the
overdispersion parameter α for three diseases. Values of α obtained using the hhh4
reference model are indicated with a dashed black line. The inferred values for the
dispersion parameter α are different, yet of similar magnitude, between the two
models.

distribution, whereas the corresponding distributions for rotavirus and borreliosis
are over-dispersed and deviate more from Poisson distributions.

6.4.2 Predictive performance

The one-week-ahead predictions are shown in Fig.6.6, for two selected cities
(Dortmund and Leipzig for campylobacteriosis and rotavirus, Nürnberg
(Nuremberg) and München (Munich) for borreliosis), together with the
corresponding prediction from the reference hhh4 model [217] fitted to the same
data. A choropleth map of Germany (or the federal state of Bavaria in the case of
borreliosis) shows the individual predictions for each county in one calendar week
as an example. See also supplementary figures S8C Fig, S9C Fig and S10C Fig for
predictions for 25 additional counties.

The BSTIM fits the mean of the underlying distribution of the data well. For
rotavirus and borreliosis, it appears to overestimate the dispersion for the cities
shown in Fig.6.6 as indicated by most data points falling within the inner
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Figure 6.6. Predictions of case counts for various diseases by county.
Reported infections (black dots), predictions of case counts by BSTIM (orange
line) and the hhh4 reference model (blue line) for campylobacteriosis (column 1),
rotavirus (column 2) and borreliosis (column 3) for two counties in Germany
(for campylobacteriosis and rotavirus) or Bavaria (borreliosis), are shown in rows
A and B. The shaded areas show the inner 25%-75% and 5%-95% percentile.
Row C shows predictions of the respective disease for each county in Germany or
the federal state of Bavaria in week 30 of 2016 (indicated by a vertical red line in
rows A and B). Information about the shape of counties within Germany is
publicly provided by the German federal agency for cartography and geodesy
(Bundesamt für Kartographie und Geodäsie) (GeoBasis-DE / BKG 2018) under
the dl-de/by-2-0 license.



51
CHAPTER 6. BSTI MODEL FOR PREDICTING INFECTIOUS

DISEASES

25%-75% quantile. This may be due to a too high dispersion parameter α (cf.
Fig.6.5) or uncertainty about model parameters. It should be noted, however, that
the optimal dispersion parameter itself may vary from county to county, whereas
our model infers only one single value for all counties together. The resulting
predictions for all three diseases are smoother in time and space (cf. the
chloropleth maps in Fig.6.6) than the predictions by the reference hhh4 model. We
attribute this to the smooth temporal basis functions and spatio-temporal
interaction kernel of our model.

To quantitatively compare the performance of both models, we calculate the
distributions of deviance and Dawid-Sebastiani score over all counties for BSTIM
and the hhh4 reference model as shown in Fig.6.7. Both measures show a very
similar distribution of errors between both models for all three diseases, as it can
be seen in table 6.2. Only for borreliosis, the hhh4 model appears to be more
sensitive to outliers.

1 2
0

1

2

d
ev

ia
n

ce
d

is
tr

ib
u

ti
on

campylob.

0 1 2 3
0

1

2

rotavirus

0 1 2
0

1

2

borreliosis

0 5
0.0

0.2

0.4

D
S

sc
or

e
d

is
tr

ib
u

ti
on

0 10 20
0.0

0.1

0.2

0.3

−5 0 5 10
0.0

0.2

0.4

hhh4 model

proposed model

1A 2A 3A

1B 2B 3B

Figure 6.7. Evaluation of prediction performance. The distribution of
deviance over counties is shown in row A for BSTIM (blue) and the reference
hhh4 model (red) for all three diseases. The corresponding distribution of
Dawid-Sebastiani scores is shown in row B.

disease score BSTIM hhh4

campylob. deviance 1.11 ± 0.3 1.11 ± 0.26
DS score 2.49 ± 1.17 2.47 ± 1.06

rotavirus deviance 1.03 ± 0.32 1.04 ± 0.3
DS score 2.08 ± 2.17 2.1 ± 2.54

borreliosis deviance 0.81 ± 0.27 0.85 ± 0.27
DS score 0.74 ± 1.54 1.63 ± 2.24

Table 6.2. Deviance and Dawid-Sebastiani score (mean ± standard deviation) for
all three diseases and both BSTIM and the hhh4 model.
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6.4.3 Benefits of probabilistic modeling for epidemiology

Probabilistic modeling relies on the specification of prior probability distributions
over parameters [190]. In the context of epidemiology, this makes it possible to
incorporate domain knowledge (e.g. we know that case counts tend to be
overdispersed relative to Poisson distributions, but not to which degree for a
specific disease) as well as modeling assumptions. This is particularly relevant for
diseases with limited available data (e.g. those not routinely recorded through
surveillance), where appropriately chosen priors are required to prevent overfitting.
The framework can easily be extended to include additional features or latent
variables. For example, we introduce precise locations and times of individual
cases as latent variables, given only the counties and calendar weeks in which they
occurred.

Probabilistic models as discussed here provide samples of the posterior
distribution of parameters as well as model predictions. This allows for analysis
that is not possible with point estimation techniques such as maximum likelihood
estimation. In epidemiology, datasets can be small, noisy or collected with low
spatial or temporal resolution. This can lead to ambiguity, where the observations
could be equally well attributed to different features and thus different model
parameterizations are plausible. While maximum likelihood estimation in such a
situation selects only the single most likely model, Bayesian modeling captures the
full distribution over possible parameters and predictions, and thus preserves
information about the uncertainty associated with the parameters of the model
itself. Analyzing the parameter distribution can thus help identify redundant or
uninformative features. For example, an inspection of the posterior marginal
distributions of the model parameters in the supplementary figure S1C Fig shows,
that e.g. the first parameter associated with the trend component, that constitutes
an additive “bias” term, is subject to larger variance, which could indicate, that
this coefficient is redundant given the other features and might inform further
investigation.

Samples from the inferred parameter distributions are afterwards used to derive
samples of predicted future cases. The resulting predictions thus incorporate both
noise assumptions about the data as well as model uncertainty. This can be
relevant for determining confidence intervals, in particular in situations where
model uncertainty is large. The samples of the predictive distribution can in turn
be used for additional processing, or if predictions in the form of point estimates
are desired, they can be summarized by the posterior mean.

6.4.4 Possible extensions

To account for overdispersion in the data, we use a Negative Binomial distribution
in this study. Other choices are possible, e.g. zero-inflated distributions [197, 201]
or quasi-Poisson distributions [218], each of which has a different implication for
the resulting model. Since the Negative Binomial distribution assigns more weight
to smaller counts relative to quasi-Poisson [218], the latter may be a more
adequate choice when accurately predicting higher counts, e.g. during outbreaks,
is critical. If there are differences between individual counties, that are suspected
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to lead to varying degrees of overdispersion, the overdispersion parameter α of the
Negative Binomial distribution could also be chosen to vary in time and space like
the corresponding mean µ [219, 220].

Whereas spatio-temporal interaction effects are here modeled as a function of
geographical proximity, the kernel’s composite basis functions make it possible to
use alternative spatial distance measures, e.g. derived from transportation
networks for people or goods [221]. For diseases where the kernel clearly factorizes
into a single temporal and spatial component, a simpler spatial kernel function
with a parameter for the bandwidth could be chosen. This allows including further
prior assumptions or constraints, e.g. strict non-negativity or power law
characteristics of interactions [222].

Due to the flexibility of the probabilistic modeling and sampling approach,
additional variables can be easily included and their influence analyzed (e.g.
weather data, geographical features like forests, mountains and water bodies, the
location and size of hospitals, vaccination rates, migration statistics, socioeconomic
features, population densities, self-reported infections on social media [172], work,
school and national holidays, weekends and large public events). For features
where precise values are not known, probability distributions could be specified
and included in the probabilistic model, which could improve the model’s estimate
of uncertainty. For example, since the precise locations and times of individual
infections are not publicly known, we simply assume a geographically and
temporally uniform distribution of cases within the given county and calendar
week. The conditional probability distributions could be refined by incorporating
additional information (e.g. weekends and population density maps). However,
precise information about place and time of infections are available to local health
agencies. The model presented here could readily be implemented there to use this
more accurate data.

In this study, we assume that the presented model, due to time-varying features
as well as interaction effects is flexible enough to model the dynamics of the
diseases in question throughout the year. There may, however, be influential latent
variables that cannot be explicitly included as exogenous variables, in particular
for diseases with very pronounced epidemic outbreaks. In such cases, the
‘outbreak’ stage of the disease could be modeled separately from the baseline
stage, thereby increasing the degrees of freedom in the model. This has been
demonstrated for dengue fever [197], where Markov switching is employed to
detect sudden changes in the expected number of cases and provide early warnings
when such a state transition occurs.

6.5 Conclusion

In this paper, a probabilistic model is proposed for predicting case counts of
epidemic diseases. It takes into account a history of reported cases in a spatially
extended region and employs MCMC sampling techniques to derive posterior
parameter distributions, which in turn are incorporated in predicted probability
distributions of future infection counts across time and space.

For all three tested diseases (campylobacteriosis, rotavirus and borreliosis) the
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same model, using interaction effects, temporal, political and demographic
information, performs well and produces smooth predictions in time and space. For
each disease, the inferred spatio-temporal kernels capture the specific interaction
effects in a single function, that can be visualized and interpreted, and can be
applied regardless of the topology of counties or their neighborhood relationships.
A comparison with the standard hhh4 model, which uses maximum likelihood
estimation instead of Bayesian inference, shows comparable performance. At the
expense of higher computational costs than the point estimate used in hhh4, the
sampling approach employed here provides information about the full posterior
distribution of parameters and predictions. The posterior parameter distribution
provides information about the relevance of the corresponding features for the
inferred model, and helps in identifying redundant features or violated model
assumptions. The inferred features of our model are interpretable and their
individual contribution to the model prediction can be analyzed: spatio-temporal
interactions reveal information about the dynamic spread of the disease, temporal
features capture seasonal fluctuations and long-term trends, and the assigned
weights indicate relevance of additional features. The posterior predictive
distribution also accounts for the uncertainty about parameters, e.g. due to
simplifying model assumptions or a lack of data, rather than just the variability
inherent in the data itself. This additional information is valuable for public-health
policy-making, where accurate quantification of uncertainty is critical.
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Chapter 7

Example 3: predicting
environmental variables

Environmental scientists often have to reason about complex phenomena
influenced by many factors. One of the typical applications of remote sensing is
predicting the leaf area index (LAI). LAI is a unitless measure (m2m−2) of a
plant’s one-sided leaf surface area relative to the soil surface area. [223] Since it
characterizes the photosynthetic performance of plants, the size and density of the
crop’s canopy, it is a good indicator of a plant’s growth, health, and stand
productivity. [224, 225, 223] It is, therefore, often used in modeling in agriculture
and environmental sciences. [225, 226, 227, 228] LAI is influenced by many factors,
like the type of soil or crop, weather conditions (e.g., the amount of precipitation,
sunshine duration), etc. [229, 230] These factors vary throughout the crop’s life
cycle, meaning that environmental scientists have to measure other variables
simultaneously, over a long period of time. The measurements are often carried
out in different locations or climate zones. This results in heterogeneous data, and
there might be few measurements for a particular location or year. Therefore, an
algorithm for the estimation of environmental variables has to be able to deal with
heterogeneous data.

We developed an interpretable model for predicting the leaf area index of white
winter wheat for which we used simultaneous measurements of LAI and reflectance
spectra of white winter wheat in two locations over four years. Here, the biggest
challenge was working with data with such systematic differences while preserving
the important information from measurements to make an accurate predictive
model. Besides accounting for systematic differences in data, we also wanted to
include domain knowledge in the model to understand how measured variables (in
our case, different wavelengths of the recorded spectra) affect predictions of LAI.
Given those reasons, we chose a similar Bayesian approach as in chapter Example
2: predicting infectious diseases.

However, different from the prediction of infectious diseases, we chose a
hierarchical model to predict LAI. Bayesian hierarchical models are a class of
models that allow parameters to vary on multiple levels of abstraction. In our
case, it means the model parameters for different fields and years can vary around
a common value, which preserves similarities among the groups of measurements,

55
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while allowing for specific differences between the datasets. This property makes
Bayesian hierarchical models particularly suitable for environmental sciences [231],
where they have been used to assess many phenomena such as the effects of
climate change through land surface phenology [232, 233, 234, 235] or for
estimating indicators such as Normalized Difference Vegetation Index [236].

We first modeled reflectance spectra using spline basis functions with adaptive
knot placement. [237] This captures the association between LAI and the spectral
reflectance at various wavelengths. We then developed three different Bayesian
hierarchical generalized linear models of varying complexity. The first model is a
baseline model where all data is pooled together, and there are no distinctions
between fields and years of measurement. The second model adds a bias parameter
for each dataset, which accounts for the variation in scale between the datasets.
The third model further adds a bias parameter for each year. The model infers a
full posterior distribution over model parameters for each model to provide a full
posterior predictive distribution over LAI values. We again use MCMC sampling
implemented in the probabilistic programming software package PyMC3 [190] to
infer posterior distributions of all model parameters and predictions. We further
compute feature importance (see chapter What is interpretable machine learning)
as a causal method to break dependence between correlated features and calculate
the relative change in the model’s error before and after breaking that dependence.
In this way, we can evaluate the contribution that our model assigns to each
feature of modeled reflectance spectra.

In general, each model has a relatively good performance of LAI predictions. In
addition to predicting LAI, all three models learn an interpretable kernel-like
function of reflectance spectra. The main difference between the models is their
complexity and how well the inferred kernel function describes the model. With
feature importance we can see how parts of reflectance spectra (which correspond
to physical phenomena) contribute to predictions, which makes the model globally
interpretable on a modular level. Our analysis showed that adding a bias
parameter for each dataset greatly improves the model, while adding a bias
parameter for each year increases the complexity of the model with little
additional gain.
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8.1 Abstract

Environmental scientists often face the challenge of predicting a complex
phenomenon from a heterogeneous collection of datasets that exhibit systematic
differences. Accounting for these differences usually requires including additional
parameters in the predictive models, which increases the probability of overfitting,
particularly on small datasets. We investigate how Bayesian hierarchical models
can help mitigate this problem by allowing the practitioner to incorporate
information about the structure of the dataset explicitly. To this end, we look at a
typical application in remote sensing: the estimation of leaf area index of white
winter wheat, an important indicator for agronomical modeling, using
measurements of reflectance spectra collected at different locations and growth
stages. Since the insights gained from such a model could be used to inform policy
or business decisions, the interpretability of the model is a primary concern. We,
therefore, focus on models that capture the association between leaf area index
and the spectral reflectance at various wavelengths by spline-based kernel
functions, which can be visually inspected and analyzed. We compare models with
three different levels of hierarchy: a non-hierarchical baseline model, a model with
hierarchical bias parameter, and a model in which bias and kernel parameters are
hierarchically structured. We analyze them using Markov Chain Monte Carlo
sampling diagnostics and an intervention-based measure of feature importance.
The improved robustness and interpretability of this approach show that Bayesian
hierarchical models are a versatile tool for the prediction of leaf area index,
particularly in scenarios where the available data sources are heterogeneous.

https://github.com/ostojanovic/bayesian_lai
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8.2 Introduction

The leaf area index (LAI) is a unitless measure (m2m−2) of the one-sided leaf
surface area of a plant relative to the soil surface area. [223] It characterizes,
among other variables, the photosynthetic performance of plants [224, 225, 223],
the size and density of the crop’s canopy and thus serves as an important indicator
for the plant’s growth stage and stand productivity [238, 226, 227, 228, 239]. It
plays a major role in meteorological, ecological, and agronomical modeling [240,
241, 242, 243, 244, 245], as well as for studying the influence of climate change on
crop growth [246, 247].

Various non-destructive methods exist to measure or estimate LAI directly
[248], but they typically require taking a large number of manual measurements in
the field. Since this is a laborious process and it can be difficult to control for
confounding variables such as weather, alternative faster approaches to infer LAI
from indirect measures, e.g., spectroscopy and (hyper-)spectral imaging, have been
investigated [226, 249, 250, 230]. A common approach makes use of vegetation
indices (VIs), which can be computed from distinct wavebands of spectral
measurements, to estimate LAI [251]. These measures, while well understood and
easy to calculate, have several limitations. For example, most of them are sensitive
to more than one plant parameter (e.g., LAI and chlorophyll content) [252, 253],
and especially for wheat crops, the non-linear relationship between numerous VIs
and the LAI can lead to saturation for moderate to high LAI values (LAI > 3)
[254, 255]. We instead use a Bayesian, spline-based regression method that utilizes
the entire hyperspectral reflectance measurement to predict LAI and provides
uncertainty estimates over all model parameters.

However, the relationship between LAI and spectral reflectance is also affected
by other factors, such as the crop type, phenology, sun illumination, local
micro-climate, the type of soil, or the amount of precipitation [229, 230], and it
may vary throughout the life cycle of the crop. These effects can be included in
spatio-temporal models of LAI [256, 257, 234, 235, 258], which can be applied to
data from aerial or satellite surveillance. This has the potential to greatly simplify
monitoring crop growth across large or remote areas [259, 260, 261].

But the annotated training data required for such spatio-temporal models, i.e.,
matched measurements of reflectance spectra, ground-truth LAI, and potential
confounding variables, is not available for every location and crop. For example,
the data used in this study consists of distinct datasets of corresponding LAI
measurements and reflectance spectra, each set acquired on a single field over a
period of one or two days. In this situation, the amount of labeled training data
that can be acquired is too limited to fit either a full spatio-temporal model or a
separate model for each field and/or growth stage. It is possible, in principle, to
train a single model that generalizes across these conditions by simply pooling
multiple datasets that were acquired under different conditions (see [262], for
example). However, since the association between each data point and the specific
dataset it belongs to (and thus its location and time) is lost in the pooling process,
such a model is likely to perform worse than a spatio-temporal model or a field-
and growth-stage-specific model, given sufficient training data. Ideally, we would
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like to find a compromise between these two extremes, i.e., between a single model
trained on the pooled data on the one hand and an independent model for each
dataset, on the other hand, that allows us to generalize over all the available
datasets yet makes specifically adjusted predictions for each dataset. To this end,
we propose a hierarchical, parameter-efficient Bayesian model, which implicitly
accounts for the influence of location and time by allowing the model parameters
to vary across different datasets.

Bayesian hierarchical models similar to the one suggested here are especially
appealing for environmental sciences [231], where they have seen increasingly
widespread use. For example, several recent studies applied Bayesian hierarchical
models to time series of multispectral satellite images in order to assess the effects
of climate change through land surface phenology [232, 233, 234, 235] or other
indicators such as Normalized Difference Vegetation Index [236]. A similar remote
sensing approach has been used to predict LAI and its spatio-temporal evolution
for bamboo [263] and other forests [264, 265]. For agronomical models of the LAI
of food crops such as rice [266], Brazilian Cowpea [267] or white winter
wheat [268], local multispectral measurements are often used instead of – or in
addition to – satellite images. In most of these studies, Bayesian hierarchical
models are used to impose prior domain knowledge, combine multimodal data
sources, and integrate data collected at multiple resolutions of space and/or time,
all of which ultimately improve prediction performance. By contrast, our primary
goal is to show how Bayesian hierarchical models and associated tools can be used
to construct and diagnose simple and interpretable models for heterogeneous
datasets, which commonly occur in environmental sciences.

Based on these considerations, we develop a Bayesian hierarchical model
according to the following steps: (1) we filter the spectral measurements to remove
noise, (2) apply basis splines with adaptively placed knots to extract features from
the spectra, (3) train a Bayesian hierarchical model to predict LAI from these
features on labeled data, (4) select and validate the best performing model, (5)
and estimate the importance of the individual features for prediction. Our model
learns an easily interpretable general relationship between reflectance spectra and
LAI, as well as the dataset-specific deviations from that baseline. By using a
variant of Markov Chain Monte Carlo (MCMC) sampling, we can incorporate
domain knowledge or regularization through prior distributions of the parameters
and provide a full posterior probability distribution over these parameters, which
allows the quantification of uncertainty. We compare two variants of this
hierarchical approach with a non-hierarchical alternative and find that it indeed
offers a favorable trade-off between prediction accuracy and model complexity.

8.3 Methods

8.3.1 The dataset

We evaluate our proposed model on a combination of four datasets, totaling 191
pairs of measured reflectance spectra (see also Supplementary Material, Figure
S1D for examples) and corresponding measurements of the LAI on fields covered
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by white winter wheat (lat. Triticum aestivum).
Each pair of measurements was taken on a different square plot of size

50 cm× 50 cm. The LAI values of each plot were measured multiple times in a
non-destructive way and averaged to a single value per plot. Five reflectance
spectra were acquired and averaged for each plot using a spectroradiometer from a
height of 1.4m above ground with a nadir view and converted to absolute
reflectance values using a reflectance standard of known reflectivity (Spectralon,
Labsphere Inc., USA). The data were collected on four different fields in different
years, corresponding to different stages in the plants’ growth cycle, and there are
minor differences in the data collection procedure.

The first two sampling areas, which we call Field A and Field B in the following,
are located near Köthen, Germany, which is a part of one of the most important
agricultural regions in Germany. The region is distinctly dry, with 430mm mean
annual precipitation due to its location in the Harz mountains. The mean annual
temperature varies between 8 ◦C to 9 ◦C. The study area has an altitude of 70m
above sea level and is characterized by a Loess layer up to 1.2m deep that covers a
slightly undulated tertiary plain. The predominant soil types of the region are
Chernozems, in conjunction with Cambisols and Luvisols. At two locations in this
region, 57 spectral measurements were recorded on 7th to 8th May 2011 using two
ASD FieldSpec III spectroradiometers (ASD Inc., USA) with 25◦ field of view
optics. Another 74 measurements were taken on 24th to 25th May 2012, using one
ASD FieldSpec III (ASD Inc., USA) and one SVC HR-1024 spectroradiometer
(Spectra Vista Corporation, USA) with 14◦ field of view. For each location, the
corresponding LAI was measured non-destructively with a SunScan device
(Delta-T Devices Ltd., USA) in 2011 and an LAI 2000 (LI-COR Inc., USA) in
2012, and, respectively, five and four LAI measurements were averaged per plot.
Data from this study area was also used and described in more detail in [262].

The other two sampling areas, called Field C and Field D in the following, are
located near Demmin, Germany. The region has a mean annual precipitation of
550mm, and a mean annual temperature of 8 ◦C. Albeluvisols interspersed by
Haplic Luvisols dominate the sand-rich area. The observed area is south of the
river Tollense, where the ground elevation drops from 70m to 7m due to glacial
moraines causing high variability in soil conditions. At two locations in this region,
26 spectral measurements were recorded on 5th June 2015, and another 34 on
10th May 2016 using SVC HR-1024i spectroradiometer (Spectra Vista
Corporation, USA) in nadir view 1.4 m above the ground using 14◦ field of view
optics. In this case, six measurements of LAI (taken with LAI 2000 (LI-COR Inc.,
USA)) were averaged for each plot.

The recorded spectra cover wavelengths in the range from 350 nm to 2500 nm,
of which we use the range from 400 nm to 1350 nm (for details see table 8.1). We
preprocess these spectra by smoothing with a first-order Gaussian filter with width
σ = 10nm.

For a summary of these parameters, see table 8.1.
In the following, we reference specific subsets of this data. We introduce the

following notation: all spectra-LAI-pairs for field j ∈ {1, . . . , 4} are numerically
indexed by the set J j , where J1, J2, J3, J4 correspond to the measurements from
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Field A Field B Field C Field D

collection date 7th to 8th May 2011 24th to 25th May 2012 5th June 2015 10th May 2016
measurements 57 74 26 34

location Köthen, Germany Demmin, Germany
LAI device SS1 SunScan LAI-2000 LAI-2000

spectral device ASD FieldSpec III SVC HR-1024 SVC HR-1024i
field of view 25◦ 14◦ 14◦

measurement height 1.4m above ground
reflectance standard Spectralon, Labsphere Inc., USA

spectral range measured 350 nm to 2500 nm
spectral range used 400 nm to 1350 nm at a resolution of 1 nm, smoothing with σ = 10nm

LAI range 0.5 to 3.32 1.14 to 6.16 1.72 to 7.46 0.48 to 5.25

Table 8.1. Parameters of the dataset and the collection procedures.

Field A, Field B, Field C, and Field D, respectively. We denote the ith ∈ J j

reflectance spectrum from dataset j by the function Rj
i (λ) of the wavelength

λ ∈ [400 nm, 1350 nm], and the corresponding measured LAI value by Y j
i .

8.3.2 Feature extraction from reflectance spectra with a spline
basis

The data collection and preprocessing steps outlined above result in reflectance
spectra of wavelengths 400 nm to 1350 nm at a resolution of 1 nm. Since this
representation is much too high dimensional for direct use, we extract the most
important information into a low dimensional representation by computing the
inner product between the preprocessed reflectance spectra and a set of eleven
cubic basis splines (B-splines) with adaptively placed knots (see figure 8.1).

The positions κi, i ∈ {1, . . . , 11} of the inner knots, which determine the shape
of the individual basis splines, are chosen such that the cumulative absolute
curvature Q(κi+1)−Q(κi) of the average reflectance spectrum is equal between
any two successive knots i and i+ 1. We compute the absolute curvature q(λ) by
convolving the average reflectance spectrum R̄ with the second derivative of the
Gaussian function g, and then compute the absolute value thereof1. Formally, we
can express this as follows:

1This is equivalent to computing the absolute curvature of the smoothed average reflectance
spectrum g ∗ R̄.
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Figure 8.1. Adaptive knot-placement for B-Splines. (A) For the measured
reflectance spectra Ri(λ), (B) we calculate the mean absolute curvature q(λ). (C)
We then find knot positions such that the integral Q(λ) of this measure between
any two successive knots κi, κi+1 is identical. (D) The result are 11 cubic spline
basis functions bk(λ) with non-uniformly spaced knots.
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10
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The eleven basis functions bk, k ∈ {1, . . . , 11} are generated from this knot
vector κ using the standard Cox-DeBoor algorithm [269], where the multiplicity of
the first and last knot is three, i.e., all basis functions go to zero at their respective
start and end knots. The last basis function b12, which originates at knot κ10, is
not used. This heuristic algorithm results in a proportionally larger number of
knots, and thus higher spatial resolution, where the reflectance spectra have the
largest absolute curvature and hence “have most structure”; see also [237, 270,
271]. For each of the data-subsets j ∈ {1, . . . , 4}, we can then compute our model’s
feature or design matrix Xj using these basis functions bk(λ):

(Xj)i,k = ⟨Rj
i , bk⟩ =

∫︂ 1350 nm

400 nm
Rj

i (λ)bk(λ)dλ, ∀i ∈ J j , k ∈ {1, . . . , 11} (8.1)

8.3.3 Bayesian Markov Chain Monte Carlo regression for
predicting LAI

Our primary objective is to construct a simple, interpretable model that can
reliably predict the LAI value of a wheat plot directly from a corresponding
reflectance spectrum. We are additionally interested in analyzing the model’s
confidence, how well it generalizes, and which features it relies on most to make a
prediction. Since the total available data is limited and stems from four
heterogeneous datasets, prior constraints are required to prevent overfitting.

In order to meet all of these requirements, we design three different
(non-)hierarchical Bayesian generalized linear models (GLM) [272, 273] of different
complexity. For each of these, we infer a full posterior distribution over model
parameters from training data and use this to provide a full posterior predictive
distribution over LAI scores on testing data. To generate representative samples
from these probability distributions, we use a specific type of Hamiltonian Monte
Carlo sampling, namely No-U-Turn-Sampling [205] (NUTS), as implemented by
the probabilistic programming package pyMC3 [190].



65 CHAPTER 8. BAYESIAN HIERARCHICAL MODELS FOR LAI

b w X1 X2 X3 X4
data
(spectrograms)

parameters σ µ1 µ2 µ3 µ4 latent
variables

Y 1 Y 2 Y 3 Y 4
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Figure 8.2. Dependency graph of the baseline model. For each dataset j
(encoded in the feature matrix Xj and corresponding labels Y j), the prediction
depends on the same three shared parameters b, w and σ. Circles represent
random variables, rectangles represent deterministic variables, filled shapes
represent observed variables.

Model 1: A baseline model with pooled data

As a baseline (see figure 8.2), we construct a simple generalized linear model,
which we apply to all of the datasets j ∈ {1, . . . 4} together. This model merely
pools all available data but does not account for any systematic differences that
might exist between the individual datasets. We assume the logarithm of the
observed LAI scores to be normally distributed around an affine linear predictor µj

with deviation σ, which is a model parameter with log-normal prior. The predictor
µj is computed by the matrix-vector product between the dataset’s feature matrix
Xj and the model’s weight vector w = (w1, . . . , w11), plus an additional bias
parameter b. Including the unknown deviation parameter σ, the model thus has a
total of 13 free parameters to be inferred from data. The individual parameters wk

and b have normal priors with standard deviation 1 and 11, respectively, to allow
the individual bias term to counteract the effect of all 11 weights, if necessary. The
baseline model is described by equation 8.2.

log(σ) ∼ Normal(0, 1)

b ∼ Normal(0, 11)

wk ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
µj = Xjw + b, ∀j ∈ {1, . . . , 4}

log(Y j
i ) ∼ Normal(µj

i , σ), ∀j ∈ {1, . . . , 4}, i ∈ Ij

(8.2)
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Figure 8.3. Dependency graph of the hierarchical model with dataset-specific
bias terms. The predictions for each dataset j depend on an individual bias
parameter bj , which in turn depends on the shared mean bias parameter b∗.

Model 2: A model with hierarchical bias

Our second model (see figure 8.3) extends the baseline model by an additional bias
parameter bj for each dataset and thus has a total of 17 free parameters. Due to
the logarithmic link function, this additional parameter per dataset allows
accounting for the overall variation in scale between the four different datasets.
But rather than setting each parameter bj independently (and thus adding three
full degrees of freedom), we constrain them to be clustered around a common bias
value b∗, which replaces the bias term b in the baseline model. Therefore, the prior
for the new variables bj is a Normal distribution centered at b∗ with an order of
magnitude smaller standard deviation of 11/10 = 1.1. The affine linear predictor
µj then depends on the dataset-specific bias term bj . The hierarchical bias model
is described by equation 8.3.

log(σ) ∼ Normal(0, 1)

b∗ ∼ Normal(0, 11)

bj ∼ Normal(b∗, 1.1) ∀j ∈ {1, . . . , 4}
wk ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
µj = Xjw + bj , ∀j ∈ {1, . . . , 4}

log(Y j
i ) ∼ Normal(µj

i , σ), ∀j ∈ {1, . . . , 4}, i ∈ Ij

(8.3)
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Figure 8.4. Dependency graph of the hierarchical model with dataset-specific
bias and weight terms. The predictions for each dataset j now depend on an
individual bias parameter bj and weight vector wj , which in turn depend on the
shared bias parameter b∗ and the shared weight vector w∗, respectively.

Model 3: Full hierarchical model

Our third model (see figure 8.4) extends the second model even further by also
allowing the model weight vector w to vary for each dataset. Just like we did for
the bias terms, we introduce the new parameter vectors wj , and we constrain the
individual parameters wj

k to be clustered around the corresponding common values
w∗
k with standard deviation 0.1. This increases the model’s degrees of freedom by

an additional 44 parameters (11 for each dataset), resulting in a total of 61 free
parameters. The affine linear predictor µj then depends on a dataset-specific
weight vector wj and a dataset-specific bias term bj . The full hierarchical model is
described by equation 8.4.

log(σ) ∼ Normal(0, 1)

b∗ ∼ Normal(0, 11)

bj ∼ Normal(b∗, 1.1) ∀j ∈ {1, . . . , 4}
w∗
k ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}

wj
k ∼ Normal(w∗

k, 0.1) ∀k ∈ {1, . . . , 11}, j ∈ {1, . . . , 4}
µj = Xjwj + bj , ∀j ∈ {1, . . . , 4}

log(Y j
i ) ∼ Normal(µj

i , σ), ∀j ∈ {1, . . . , 4}, i ∈ Ij

(8.4)
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8.3.4 Model selection using Pareto-Smoothed Importance
Sampling

To get an unbiased estimate of our model’s generalization error from the very
limited available data, we would like to perform leave-one-out cross-validation
(LOO-CV) and compute the expected log posterior predictive density (ELPD) for
new data. [274] Unfortunately, this is a prohibitively expensive computation when
combined with MCMC sampling. However, the generated samples and their
associated log-likelihood values contain sufficient information to estimate the
LOO-CV ELPD by directly weighing the samples. This procedure is called
Pareto-smoothed importance sampling (PSIS) [274] . Combining these two
methods, PSIS and LOO-CV, yields a validation method called
PSIS-LOO-CV [274], which is beneficial in situations like this, where an MCMC
sampling-based model is trained on a small dataset. As a result, we get for each
model the ELPD score, which we use to compare the three proposed models, a
parameter η, which can be interpreted as the effective number of degrees of
freedom in the model, and the so-called Pareto shape parameters ki, which assess
for each data point i in the dataset, how much it affects the ELPD estimation. For
data points where ki exceeds 0.7, the PSIS-LOO-CV estimate becomes unreliable,
which can also indicate an under-constrained model or an outlier in the data [274].

8.3.5 Evaluation of feature importance

To estimate the importance that our model assigns to each feature of the
reflectance spectra, we calculate a model-agnostic measure of feature
importance [89] called model reliance (MR). Here, the importance of an individual
feature is calculated as the relative change in the model’s error when the
individual observations of only that feature are shuffled, compared to the error on
non-shuffled data. This causal intervention intentionally breaks the dependence
between different correlated features. Therefore, MR, unlike correlation analysis, is
a causal tool to diagnose the model rather than the data. This is relevant here
because the different features of our model are computed by taking the inner
product between the reflectance spectra and a set of overlapping not independent
basis functions and are hence certainly correlated. We use the same loss function
as for the model selection, namely ELPD. Since this measure already estimates the
logarithm of a quantity of interest (the posterior density), we use the difference
between shuffled and non-shuffled ELPD instead of their ratio to estimate the
logarithm of the MR for the posterior density. Because we are only interested in
qualitatively ranking features by their importance, we normalize the resulting
importance value of each feature by their average. To improve the robustness of
this measure, the shuffling is repeated multiple times (here, ten times), and the
results are averaged. Repeating this procedure for each feature of a model yields
positive scores for ranking all features by their importance.
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8.4 Results

In this section, we evaluate each of the three models presented above, namely the
non-hierarchical model, the model with hierarchical bias term, and the full
hierarchical model.

8.4.1 Model predictions

First, we visualize the models’ accuracy and ability to generalize in a
model-agnostic way by directly plotting predictions against the corresponding
measured “ground-truth” values. For this purpose, we randomly select 80% of all
available data (the training set, shown in blue) to infer model parameters, which
we then use to predict the LAI for the remaining 20% of the data (the test set,
shown in green). Due to the probabilistic nature of our models, a full posterior
predictive distribution is given for each data point, which we summarize in
figure 8.5 (A),(C), and (E). We can observe that all three models make
reasonable predictions, i.e., that the predicted LAI grows in proportion to the
measured LAI. Because all our generalized linear models assume that the
logarithms of the LAI scores are homoscedastic, the standard deviation of the
predictive distribution increases with the measured LAI, as well. Rather than the

raw residuals rji = Ŷ
j
i − Y j

i , we therefore compute the relative residuals r̃ji = rji/Y j
i ,

each normalized by the corresponding measured LAI value Y j
i , and summarize

them in the cumulative histograms shown in figure 8.5 (B),(D) and (F). For all
three models, the relative residuals are similar between training and test set, which
indicates that they generalize well.

8.4.2 Model comparison

To quantify the generalization error of all three models more accurately, we use the
PSIS-LOO-CV method on all available data to estimate the ELPD on novel data.
This procedure yields several highly informative measures, which are summarized
in table 8.2. To verify the convergence of the sampling procedure for each model,
we compare the marginal posterior distribution of each parameter across multiple
chains and find no discrepancies or divergences (see also Supplementary Material,
Figure S2D, Figure S3D, and Figure S4D). We can see that the highest ELPD
(indicating the lowest generalization error) is achieved for the two hierarchical
models, with little difference between them (−157.8 and −157.0, respectively, with
a standard deviation of ≈ 11.5 each). Suppose, for the sake of argument, that for a
similar dataset, we would select models based purely on the ELPD. In that case, it
might be a matter of chance to pick the model with only a hierarchical bias term
(as in this case) or the full hierarchical model.

However, due to the limited amount of training data and considering that the
number of parameters ranges from 13 for the non-hierarchical baseline model to 17
for the model with hierarchical bias term to 61 for the full hierarchical model, we
are also concerned with model complexity and the risk of overfitting. Since
LOO-CV estimates generalization error directly, it does not need to explicitly
penalize a large number of parameters, which is a significant advantage when
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Figure 8.5. Model predictions of LAI. For the three models, (A), (C) and
(E) plot for each data point (training data in blue and testing data in green) the
predicted LAI values against the measured LAI values. Error bars indicate the
interquartile range of the predictive distributions. Dots represent the expected
value. The gray line shows the optimal predictions; the best 50% of model
predictions lie within the gray cone around it. (B), (D), and (F) show the
cumulative distribution function of the residuals, each normalized by the
corresponding measured LAI value for training and testing data (blue and green
lines). The gray areas show the same interquartile range as the cones in (A), (C),
and (E).
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Pareto k
model ELPD #params. η (-Inf, 0.5] (0.5, 0.7] (0.7, 1] (1, Inf)

Naive -185.5±12.2 13 13.3 191 0 0 0
Hier. Full -157.8±11.5 61 24.9 180 8 3 0
Hier. Bias -157.0±11.5 17 15.0 187 3 1 0

Table 8.2. Comparison of the three models using PSIS-LOO-CV. The
ELPD ± one standard deviation are listed for each model. #params denotes the
number of parameters, η denotes the effective number of parameters. For each
model, we show the number of data-points for which the Pareto shape parameter k
falls into either of four different intervals.

comparing Bayesian hierarchical models. Instead, it allows us to estimate the
model complexity of the three models by the so-called effective number of
parameters η, which provides some intuition about how many degrees of freedom
the model has to approximate the available data. As we see in table 8.2, η = 13.3
is quite close to the parameter count of the non-hierarchical model on the pooled
dataset. This only increases slightly to η = 15.0 for the hierarchical bias model,
even though it has four additional parameters. However, adding another 44
parameters for the full hierarchical model increases η substantially to 24.9.

Since PSIS-LOO-CV emulates conventional LOO-CV, it provides additional
information that can help us understand how prone each model is to overfitting:
For each data point, the procedure yields the shape parameter k of a Pareto
distribution, which indicates whether estimating the generalization error for that
data point is reliable (k ∈ [−∞, 0.7], ideally k ≤ 0.5), potentially unreliable
(k ∈ [0.7, 1]) or entirely unreliable (k ∈ [1,∞]).[274] As table 8.2 shows, the full
hierarchical model struggles with PSIS-LOO-CV for three data points, which may
indicate that the model is more prone to overfitting to these potential “outliers”
(see also Supplementary Material, Figure S5D).

As these numbers suggest, the model with a hierarchical bias term is the best
choice because it is barely more complex than the non-hierarchical model, yet it
performs at least as well as the full hierarchical model.

8.4.3 An interpretable kernel function

As outlined above, all three models derive their predictions of LAI from a weighted
linear combination of features, which we compute by taking inner products
between the measured reflectance spectra and a set of B-spline basis functions.
These linear operations can be equivalently expressed as taking the inner product
between each reflectance spectrum and an inferred kernel function κj(λ), which
provides a different, more interpretable perspective on the model.

To motivate this equivalent perspective, we look at how the reflectance spectra
affect the linear predictors µj

i of the respective GLMs in equations 8.2 to 8.4,
ignoring the contribution of the inferred bias terms here. For all three models2, we

2To simplify notation, we write wj and bj for the (possibly) dataset-specific weight and bias
terms, and set wj = w or bj = b for models that don’t make these dataset-specific distinctions.
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Figure 8.6. Inferred kernel function and feature importance. (A) shows
the posterior distribution of the inferred kernel function. The black line represents
the expected kernel. We can relate several ranges of the reflectance spectrum to
physical phenomena, namely effects due to green leaf pigment (400 nm to
700 nm [275, 276]) and photosynthetic capacity (495 nm to 680 nm, peak at
670 nm [277, 275, 276]) and the red edge region (690 nm to 720 nm [278]) in the
visible light range, as well as the canopy’s water content (1150 nm to
1260 nm [279], peak absorption at around 1200 nm [277, 280]) in the near-infrared
range. (B) shows a stem-plot of the relative importance of each feature
(enumerated; normalized by the average feature importance) as well as the
resulting estimated importance of each wavelength.
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can use equation 8.1 to rewrite the contribution of the features extracted from the
ith reflectance spectrum Rj

i of the jth dataset as follows:

µj
i − bj =

∑︂
k

(Xj)i,kw
j
k

=
∑︂
k

⟨Rj
i , bk⟩w

j
k

= ⟨Rj
i , κ

j⟩ where κj(λ) =
∑︂
k

wj
kbk(λ)

(8.5)

Since the parameters wj
k are random variables, the kernel functions κj are

random variables, samples of which can be generated by combining the (static)
basis functions bk with samples of wj

k. Figure 8.6 (A) shows the distribution of the
inferred kernel function for our model of choice, i.e., the hierarchical bias model
(for the other two models, see Supplementary Material, Figure S6D, and Figure
S7D). By analyzing this kernel function, we can identify regions of the reflectance
spectrum that contribute positively or negatively (e.g., around λ ≈ 700 nm and
λ ≈ 1300 nm) to the predicted LAI score, and relate them to physical mechanisms.

8.4.4 Feature importance

In addition to the sign and magnitude of each feature’s contribution (which are
determined by the inferred weights; c.f. Supplementary Material, Figure S2D to
Figure S4D), we are also interested in how important each individual feature is for
the model’s prediction. We quantify this via MR as described above. Figure 8.6
(B) shows that, except feature four, all features are indeed important for the
prediction accuracy of the model. The low importance of feature four centered
around 730 nm is likely due to the narrow domain of basis function b4 (see
figure 8.1 (D)), which indicates that this feature could be removed or an
alternative knot-placement procedure could be chosen to reduce model complexity.

8.5 Discussion

Our results confirm that using a Bayesian hierarchical model not only leads to an
improvement in the prediction accuracy over a non-hierarchical approach, but
more importantly, it yields several qualitative benefits regarding interpretability,
model complexity, and robustness.

One important benefit of the Bayesian hierarchical approach is that an
appropriate choice of priors and model structure allows us to integrate additional
model parameters without excessively increasing model complexity. For example,
the number of spectral features used in our model directly determines the scale of
the respective spline basis functions, which determines the resolution of our kernel
function. This can create a trade-off between a model with lower spectral
resolution and a model with a larger number of parameters. In the Bayesian
approach, we can choose the model with more parameters without the risk of
overfitting if we formalize our uncertainty and prior assumptions about the
parameters appropriately. This is particularly important for hierarchical models,
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where we might want to add a large number of parameters to account for the
specific variations in each subset of the data. Compare, for example, our full
hierarchical model with its 61 parameters to the non-hierarchical baseline model
with 13 parameters. Here, the addition of 48 new parameters only increases the
effective degrees of freedom of the model by 11 and appears to increase the risk of
overfitting only moderately. In our hierarchical bias model, we directly incorporate
the fact that each of the four data subsets was recorded at a different growth stage
of the plants, which affects the expected LAI, and hence requires a separate bias
parameter. However, by simultaneously inferring the shared prior distribution over
these separate parameters, we can ensure that the prediction on any one subset of
the data benefits from the information contained in all the others. Of course, a
non-hierarchical model can also benefit from heterogeneous data (see e.g. [262]),
but it may fail in subtle ways if systematic differences between the data subsets
obscure the relevant associations within each dataset. 3 In general, Bayesian
hierarchical models allow us to conveniently include additional information about
the dataset, domain knowledge, and regularizing priors, all of which can help to
reduce the model’s effective degrees of freedom. For the often small and
heterogeneous datasets used in environmental sciences [231], this can be a major
advantage over alternative machine learning approaches such as Random Forest
Regression [282, 283] or Deep Learning [284, 285, 286], which may require
prohibitive amounts of training data due to their typically large number of
parameters.

We employ MCMC sampling to generate unbiased samples of the full posterior
distributions over parameters and predictions, which allow us to use additional
diagnostic tools and error measures. For example, we can directly estimate
posterior densities, credible intervals, and even generalization errors via
sample-based methods such as PSIS-LOO-CV, which are more broadly applicable
than information criteria such as the Akaike Information Criterion (AIC), the
Widely Applicable Information Criterion (WAIC), or the Bayesian Information
Criterion (BIC) [287]. In particular, we saw that a hierarchical model might have a
considerably larger number of parameters with a comparatively minor increase in
model complexity, making any form of regularization based directly on the number
of parameters difficult. Besides better diagnostics, sample-based measures can also
provide insights about the data itself, e.g., indicating which data points are
potential “outliers” that the model is susceptible to (see Supplementary Material,
Figure S5D).

In addition to descriptive statistics, we also estimate feature importance using
an intervention-based model-agnostic method that artificially breaks the
dependence between naturally correlated features. Thus, we can infer exactly
which features the model relies on for its prediction – independently from the

3In Supplementary Material, Figure S6D, we show that this is indeed the case here, as wavelength
around 1200 nm lead to a pronounced dip in the kernel function when data from multiple datasets
is pooled, but this association disappears if the model is instead fit to any individual dataset.
Looking at the pooled dataset, we would therefore be led to conclude that lower spectral power
around 1200 nm is a strong predictor of higher LAI. While this is correct on the artificially pooled
dataset, it appears to be incorrect on any individual datasets. This may be an instance of Simpson’s
paradox [281], which suggests that a hierarchical model is more appropriate here.
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magnitude of the respective parameters. Such information can help domain
experts identify potential problems, e.g. if supposedly relevant features are
ignored, or irrelevant features are relied on. This simple example shows how
methods from causal analysis [288] can help explain or interpret the model in
qualitatively different ways than descriptive statistics alone.

Because we use a generalized linear model, we can additionally analyze and
interpret the model’s linear predictor directly in the measurement space. Since the
individual features are extracted from the spectra using B-spline basis functions,
this linear predictor is just an inner product between a reflectance spectrum and a
kernel function plus an additive bias term. Due to the logarithmic link function,
the bias term ultimately has a scaling effect on the LAI predictions. The kernel
function directly shows which wavelengths are associated with higher LAI, e.g.,
short wavelengths of the visible spectrum and much of the near-infrared spectrum,
or lower LAI, e.g., around 600 nm to 750 nm. These results can be directly linked
to physical phenomena and examined with domain knowledge. For example, the
positive association for short wavelengths in the range 400 nm to 550 nm may be
attributable to the effect of green leaf pigment, which reflects light in the range
400 nm to 700 nm [275, 276]. Similarly, the pronounced drop around the red edge
(690 nm to 720 nm [278]), which is related to the plants’ chlorophyll content [289,
290], total nitrogen [291, 292] and yield [293, 294], may be attributed to the plants’
photosynthetic capacity (495 nm to 680 nm [277, 275, 276]) that peaks at around
670 nm.

Finally, we opted for a simplistic, interpretable model of LAI as a function of
spectral power, but the hierarchical Bayesian modeling approach makes it easy to
extend the proposed model further. For a larger dataset, the model complexity
could be increased, either by choosing broader priors or by increasing the number
of parameters to improve its accuracy, or the additional measurements could be
used to reduce the uncertainty over the model’s parameters. The data used in this
study consists of measurements taken at four distinct locations and points in time.
By allowing the specific parameters for each of these datasets to vary
independently around a shared set of global parameters, we thus indirectly account
for the combined effect of location and time. If a much larger number of datasets is
used, their spatio-temporal distribution could also be taken into account explicitly,
for example, by forcing the specific parameters of the datasets to be correlated,
depending on their proximity in time and space, through an appropriate choice of
a joint prior distribution. This approach leads to a full spatio-temporal model,
which could also predict LAI on crop sites for which no training data is available.
One could also include additional levels of hierarchy (e.g., to extend the model to
other related plant species or different geographical regions), or other factors such
as soil moisture content [295], the influence of climate change and CO2
concentration on crop growth [246, 247], the effects of warming asymmetry due to
climate change [296], effects of microclimate [297], the influence of the amount of
soil conditioner on the crops [298], and ammonium level in the soil.



CHAPTER 8. BAYESIAN HIERARCHICAL MODELS FOR LAI 76

Acknowledgments

We would like to thank our reviewers for their detailed and constructive feedback,
which helped to improve this manuscript.



Chapter 9

Conclusion

In this thesis, I developed three prediction models for tasks from different scientific
fields: prediction of epileptic seizures (medicine), prediction of infectious diseases
(epidemiology), and predictions of the leaf area index (remote sensing /
environmental sciences). Although they are from different fields, they face similar
challenges, from data collection and understanding domain-specific context to
developing interpretable machine learning models that yield good predictions.
This thesis shows possible ways to tackle these challenges. To do so, I followed
four principles that I think are invaluable when working on interdisciplinary data
science projects.

1. Work on a challenging real-world problem with a real-world dataset

Although benchmark datasets are very beneficial for developing machine
learning models [28], the full potential of data science can only be explored
when we go from benchmark to real-world datasets. Working on real-world
datasets is more challenging, but it pays off in the long run because models
developed on real-world datasets need to tackle more issues early on, e.g.,
how to build a model with limited or heterogeneous datasets. This helps
because big curated datasets are not equally prevalent across research fields.
[26]

2. Actively communicate and collaborate with domain experts

In a collaboration between data scientists and domain experts, data
scientists come from “the outside”. Using their modern and interesting tools
can help confront the challenges and phenomena of different scientific fields.
But this only brings benefits when it is supported by domain expertise. Only
domain experts understand the challenge thoroughly and can help others
understand what the desired outcome of the model should be. Their help in
interpreting data context and phenomena is crucial for model development
and for understanding the implications of the model.

3. Incorporate data context diligently

Data is situated in the environment in which it was created. [16, 15] To
understand the data completely, one must know how and why it was

77
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collected and created and whether something was omitted. Incorporating
data context is crucial because it helps to account for the specifics of the
data and to avoid drawing unsupported conclusions.

4. Focus on interpretable models with components that can be visualized and
understood

In this thesis, I wanted to make models that would, besides offering accurate
predictions, help us understand the underlying phenomena, which would also
benefit domain experts. To do so, I focused on the interpretability of
machine learning models. The interpretable components of the three models
I developed can be visualized and interpreted by domain experts, which
brings added value and distinguishes them from other models in the
respective fields.

Here I want to briefly recount how I applied these principles in all three
publications.

9.1 Predicting epileptic seizures

In the paper “Predicting epileptic seizures using nonnegative matrix factorization”,
we showed the challenges of working with data from the clinical setting. Collecting
medical data is, in general, time-consuming and takes a lot of resources, especially
when recording epileptic seizures. Since epileptic seizures are rare events, even
more time is needed to record them than usual, but the well-being of patients also
limits the time frame. To then detect them, we need special handling of data since
we are interested in events that would, in other settings, be seen as outliers. The
task is further complicated since predictions have to be patient-specific, which
limits the amount of data even further. One type of error is also more dangerous
than the other (failing to warn about seizures is more dangerous than falsely
predicting seizures).

To incorporate this challenging data context, we collaborated with one of the
leading experts in seizure prediction, Dr. Levin Kuhlmann from Monash
University in Melbourne. He helped us with applying our model to the
Epilepsyecosystem dataset and added valuable domain expertise for interpreting
preictal components. Our joint paper “Predicting epileptic seizures using
nonnegative matrix factorization” has been, according to Google Scholar, cited 24
times by the end of January 2023.

To address the challenge, we started with the simple idea of using spectral
analysis and decomposition to find distinctive features of preictal states, which we
visualize and use as a defining feature for classification. We do this with
nonnegative matrix factorization to learn the time and frequency components of
each state. Although NMF learned interpretable differences in preictal and
interictal states, this by itself wouldn’t be enough to predict rare events. To
further enhance our model, we used the SMOTE sampling technique to oversample
preictal states during classification and to lessen the influence of interictal states.

Our paper shows that learning interpretable features of preictal and interictal
states is possible. We specifically show how NMF lends itself to interpretable
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machine learning as a part of feature design. These results have a dual purpose:
classification between preictal and interictal states, and learning about the
dynamics of epileptic seizures. We tested our locally interpretable model on two
real-word datasets: the EPILEPSIAE dataset [31] and the Epilepsyecosystem
dataset [114], and showed that it yields good results on both.

9.2 Predicting infectious diseases

In the paper “A Bayesian Monte Carlo approach for predicting the spread of
infectious diseases”, we showed how to approach data collection and data privacy
challenges in epidemiology. Here we worked with real-world spatio-temporal data
of three diseases. We showed how Bayesian models can be used to predict
infections in time and space and learn the dynamics of various diseases. The paper
demonstrates that it is possible to design transparent Bayesian models that are
globally interpretable on a modular level.

During the project, we collaborated with the experts from the Signale Group of
the Robert Koch Institute, Dr. Alexander Ullrich and Dr. Stéphane Ghozzi, who
helped us with their domain expertise in epidemiology and working with real-world
spatio-temporal data. As a part of the project, I have spent two months at the
institute, where we developed and implemented the first version of the BSTIM
model. There I had first-hand experience with how epidemiological data are
monitored and collected, and I learned what domain experts are interested in
learning from the model. Our joint paper A Bayesian Monte Carlo approach for
predicting the spread of infectious diseases has been, according to Google Scholar,
by the end of January 2023, cited more than 25 times. Further, I have presented a
poster Visualizing the spread of infectious diseases using public health data at the
EU Data Viz conference in 2019, organised by the Publications Office of the
European Union. There I presented how to communicate epidemiological data and
predictions of our model to the public, and the advantages such a model can bring.

As described in chapter Example 2: predicting infectious diseases,
epidemiological data is at the intersection of spatio-temporal and public data, and
developing machine learning models for such data relies heavily on data context.
We addressed the data context in all steps of the process, from data preparation
and analysis to the choice of our basis functions.

Spatio-temporal data are also quite different from other data types common in
machine learning, such as images. We showed that probabilistic modeling and
Bayesian statistics are good choices for spatio-temporal data since we can
incorporate prior information in both dimensions. Our basis functions learn
interactions in space and over time, as well as trends and seasonality of all three
modeled diseases. Similar to my prior work on predicting epileptic seizures, our
model has two outcomes: spatio-temporal kernels that we can visualize show us
the disease dynamics, and we get predictions for each county and week. The
interpretability that spatio-temporal kernels bring is the main strength of our
model and distinguishes it from similar models in the field. We showed that it is
possible to create an interpretable model that yields accurate predictions on par
with a commonly used state-of-the-art model hhh4.
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9.3 Predicting environmental variables

In the third paper, “Bayesian hierarchical models can infer interpretable
predictions of leaf area index from heterogeneous datasets”, we applied a
hierarchical Bayesian model to learn spatio-temporal differences within real-world
heterogenous datasets in remote sensing. We first show how to use spline-based
modeling of reflectance spectra to construct interpretable features and combine
them in Bayesian hierarchical models to connect physical phenomena to LAI
predictions. The paper demonstrates that it is possible to design a transparent
and globally interpretable model on a modular level for accurate LAI predictions.

In this project, we collaborated with Dr. Bastian Siegmann from Jülich
Research Centre and Dr. Thomas Jarmer from the Institute of Computer Science
in Osnabrück, which provided us with data and gave valuable domain expertise.
This was the first project where I worked on environmental variables, and having
domain experts helped us conceptualize what interpretability could bring when
inferring LAI from the reflectance spectra.

Data in this example consists of simultaneous measurements of reflectance
spectra of white winter wheat and corresponding LAI. The measurements were
carried out in four different years in two different fields. The data has a spatial and
temporal component. However, it is not spatio-temporal data in the same sense as
in the previous example of predicting infectious diseases. The epidemiological data
we used for the BSTIM model is a time series of weekly infection counts. Here,
data consists of discrete points in time, measured over a couple of days, in different
fields, and multiple years, making data heterogeneous and limited.

Similar to the prediction of epileptic seizures, we started by designing simple
and interpretable features, the modeled reflectance spectra. The splines with
adaptive knots find points with “the most structure” in spectra, which we then use
in a Bayesian hierarchical model. We show that Bayesian hierarchical models are
well suited for incorporating the data context of limited and heterogenous datasets
because, besides incorporating domain knowledge, they can also learn specific
differences between datasets. This property is especially valuable in environmental
sciences, where measurements are often taken from different locations and
monitored over time. As in previous examples, our model has two outcomes, an
interpretable kernel function of reflectance spectra, which we visualize, and LAI
predictions. The kernel functions show regions of spectra that contribute positively
or negatively to LAI predictions, which can be related to physical phenomena and
understood by domain experts.

9.4 Broader conclusions from this thesis

Besides the impact of each paper in the respective field, I wanted this thesis to
tackle broader issues, such as showing the importance and the advantages of
collaborating with domain experts, recognizing the value of data context, and
showing the potential of interpretable machine learning. While working on the
projects, I came to more general conclusions, which can be summarized as:
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1. Collaboration takes effort

In all of the projects, I have collaborated with domain experts. I think the
collaborations strengthen the models and the papers. However, collaboration
on an interdisciplinary project can be challenging. Besides differences in
scientific fields and their methods, there can be distrust of domain experts
towards the new methods, especially black box models. [82] Using
interpretable methods leads to more trust between the team members [81],
which makes domain experts more likely to accept the proposed method.

2. Real-word data is “messy”, but using an interpretable model can help

In the projects, I worked with data types like time-series, spatio-temporal,
public, and environmental data. We showed that the focus on
interpretability most benefits the fields where data is limited or hard to
collect. As previously described, real-world datasets are often heterogenous,
limited, or contain meta information that would be hard for black box
models to learn. By focusing on interpretability, we can incorporate the data
context of such datasets, which significantly helps during the model
development and for the interpretation of results.

3. Performance is not all that matters

All of the models in this thesis have two outcomes: interpretable functions or
components that give insight into the dynamics of the process, and
predictions of the variable of interest. The experience of working with
domain experts showed that they are interested in more than the high
performing model. By focusing on interpretable models with components
that can be visualized and understood, we help domain experts learn
something new about the phenomena and add more value to the model.

4. The systematic approach enforced by interpretable machine learning allows
us to make informed decisions about the model

We can have more control during the model development by choosing an
interpretable machine learning model in which we incorporate data context
and domain expertise. This leads to a better understanding of what the
model learns and how it uses features for predictions, which is crucial in
troubleshooting and developing new versions of the model. Finally, it helps
us understand and anticipate how predictions will be perceived, which is
important for communicating results to the broader audience.

5. Data science is not a linear process

The data science life cycle is an iterative, non-linear process. [71] Starting
from identifying problems to data collection, processing, and analysis to
developing and deploying a model, it can take a lot of iterations between the
steps. Interpretable models make it easier to go back and forth between the
steps, which makes the whole process faster and more transparent. [69]
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9.5 Data science in the private sector

A noticeable difference between data science and other scientific fields is its
multidisciplinary focus, because its methods are applicable to various domains.
[28, 299] Even though the beginning of the field traces back as far as the 1960s,
marked by the publication of “The Future of Data Analysis” by John Tukey [299],
we can witness an increase in attention to data science and its possibilities
following the rise of computing power and the interest of the private sector in
predictive modeling. [99] The private sector brought further attention to data
science by making large datasets publicly available, which became the foundation
for benchmarking. [28]

This puts data science in a delicate position at the intersection of public and
private interests. Data science is often directly influenced by the interests and
needs of the private sector because it usually has more resources, especially
companies large enough to have own research departments. Even though the
private sector initially popularized black box models, I think interpretable machine
learning can equally benefit the industry.

Since I have experience working in both the public and the private sector, I
have noticed several differences between academia and industry that are worth
mentioning here. The biggest difference comes from how the models are used and
what happens with the predictions afterwards. Academia is concerned with
researching new machine learning methods, their theoretical development, and
testing new approaches. On the other hand, the industry focuses on producing and
deploying well-established machine learning methods. A company or its clients
further use the results to make business decisions.

It is possible to profit from the intellectual property of models and predictions,
i.e., a company can sell machine learning models (like COMPAS, see chapter What
is interpretable machine learning) or predictions (like weather predictions by
BreezoMeter, see chapter Why machine learning models (often) fail). The
difference is when a third party uses the model (in the case of COMPAS), there is
no clear responsibility for wrong predictions. [33] A company that develops a
model typically takes no responsibility for how a third party uses it or its
outcomes. They also don’t have the incentive to increase the model’s transparency
or interpretability, since disclosing the model’s details would reveal trade secrets.

On the other hand, a company that sells predictions will often get more
questions asking for explanations or justifications for trends in the data. This can
be in the form of public outrage, as in the case of the UK grading algorithm (see
chapter Why machine learning models (often) fail), or as business questions from a
client that bought the data. In such situations, it is very useful to be able to go
back to the model and see why it made specific predictions. Here, interpretable
machine learning or a general focus on interpretability and transparency could
prove valuable. Nevertheless, as long as there is no legal framework that requires
companies to provide explanations in a standardized way, the share of
responsibility for damages and harm caused by wrong predictions will remain
unclear. [33] This is where I expect more pressure from the public or users.
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9.6 The future of interpretable machine learning

9.6.1 The importance of AI regulations

Although there has been more research interest in interpretable machine learning
in recent years, legal, technological, and ethical challenges in the field still require
attention. The current lack of incentive to create interpretable models mainly
comes from two factors: the intellectual property of black box models, and
undefined responsibility for predictions of black box models. [69] As long as it is
possible to profit from individual predictions and the intellectual property of
proprietary black box models, there is no financial incentive to develop and offer
interpretable machine learning models on the market. [33, 69] And as long as there
is neither financial nor legal incentive for the transparency of machine learning
algorithms on the market, there will be fewer interpretable models.

A way to change this is to enforce laws requiring algorithmic transparency for
high stakes decisions. Currently, no country or entity enforces such laws. However,
in 2018 the EU implemented the General Data Protection Regulation (GDPR),
which forces companies, governments, and other entities to inform users of their
data collection. [300, 301] Article 22 of GDPR states that “data subjects” (i.e.,
users) should not be subjected to automated decisions and that users, in general,
have “a right to explanations.” [302] However, it is not clearly stated that provided
explanations must be accurate or what the explanations should look like. [303]
The EU is currently working on a draft of a new, more detailed law that would
require providers and users of AI systems in high stakes decisions to follow more
strict rules on data, governance, transparency, human oversight, accuracy, and
security. [304, 305] The law would explicitly prohibit AI systems that cause harm
or exploit vulnerabilities of groups of people. [306] Further, the EU’s AI Liability
Directive, a law planned to be enforced in a couple of years, would make it possible
for people to sue companies if they can prove that their AI harmed them.1 [308]

The White House Office of Science and Technology Policy recently released The
Blueprint for an AI Bill of Rights. [309] It is a white paper that describes five
principles for the design, use, and deployment of automated systems. The
principles say that AI systems should be removed if proven that they cause harm
or are ineffective. Users should not face discrimination from algorithms, and they
should be protected from “abusive data practices” and have agency over how their
data are used. Further, users should also know when an automated system is used,
understand how it contributes to the outcome, and it should be possible to opt out
of AI systems where a human alternative would be better. [309] However, this is
not (yet) legislation but just a set of guidelines for companies and entities. [310]

China has, since March 2022, enacted some regulations for explainable AI. [311]
The law is known as Internet Information Service Algorithmic Recommendation
Management Provisions, and it was drafted by the The Cyberspace
Administration of China. [311] It requires that providers of recommendation
services uphold users’ rights. For example, the law prohibits using personal
characteristics to offer different prices for a product. [312] The law further requires

1However, some non-governmental organizations worry that the hurdle to prove something like
this would be too high for consumers, which would reduce the effectiveness of the law. [307]
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that the applications do not promote content that encourages addictive behavior.
This is a general requirement and could influence how social media works, but so
far, there has not been much visible change. [313]

The public in the countries mentioned above also calls for more transparency in
AI systems, which in turn influences governments to put more pressure on
regulating AI. Researchers will have to focus more on interpretable machine
learning because it seems likely that machine learning models will have to comply
with upcoming and stricter laws in the future.

However, interpretable machine learning models are not fair by default, and
building interpretable models might seem more complicated. [69] They also shift
responsibility for the predictions to the model creators, but companies might be
afraid of that.

On the other hand, interpretable machine learning can help design more ethical
models, since they give more control to the model creators because they can see
how the model works internally. Black box models have to deal with the same
data complexities and challenges, but they usually show their shortcomings only
after we already deployed them. [69] Because of this, the investment in
interpretable machine learning pays off in the long term, and particularly in high
stakes decisions.

9.6.2 The importance of multidisciplinarity

Another aspect that I think is important for the future development of the field is
the possibility of applying similar data science tools to various tasks and
collaborating with other scientific fields. This is also the aspect I wanted to show
in this thesis by collaborating with domain experts from three scientific fields. The
knowledge exchange should go both ways since also data science can benefit a lot
from experiences in other fields. Here I will mention two concepts that I think will
prove useful in the future: datasheets for datasets and science about data science.

First, starting from data and handling large datasets, AI researcher Timnit
Gebru has suggested “datasheets for datasets”. [314] The concept is inspired by a
common practice in electrical engineering: datasheets are instruction manuals for
electronic components containing their operating characteristics, test results,
recommended usage, and similar. [314] The idea is to provide a sheet with
additional information for every dataset to ease the usage and provide the most
accurate contextual information. Datasheets should contain information about the
creation of a dataset, collection processes, and potential adjustments during data
collection, e.g., what has been excluded from the dataset and why. Knowing the
limitations of datasets is essential, and that contextual knowledge can help us
build better models to analyze the data.

The authors argue that such datasheets would address the needs of data
creators, data consumers, policy makers, investigative journalists, or other
individuals. Data creators would have a standardized method of creating a
dataset, which would include careful consideration of the process and the
environment they want to collect data about, how to maintain the dataset, the
implications of using the data, etc. Data consumers would have information about
data context, which they can use for model development. Policy makers and other
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individuals (who don’t necessarily have a background in data science) would have
easier access to datasets. They could better understand their impact or the impact
of machine learning models trained on these data. Datasheets for datasets would
also help with the reproducibility of machine learning results, increase
transparency, and would, in the long run, help with accountability and
interpretability. Some researchers have already published datasheets with their
datasets [315, 316, 317], and companies such as Microsoft, Google and IBM have
internally created pilot versions of datasheets. [314]

Second, to standardize the field of data science, statistician David Donoho
suggests the creation of a new scientific field he calls “science about data science”.
[28] The field should focus on two main aspects: collection and curation of datasets
and meta-analysis of methods. It should further introduce methods for
meta-analysis, standardization, and rigorous evaluation of results. [28] He writes:

Data scientists are doing science about data science when they identify
commonly occurring analysis/processing workflows, for example, using
data about their frequency of occurrence in some scholarly or business
domain; when they measure the effectiveness of standard workflows in
terms of the human time, the computing resource, the analysis validity,
or other performance metric, and when they uncover emergent
phenomena in data analysis, for example, new patterns arising in data
analysis workflows, or disturbing artifacts in published analysis results.
The scope here also includes foundational work to make future such
science possible - such as encoding documentation of individual
analyses and conclusions in a standard digital format for future
harvesting and meta-analysis. As data analysis and predictive modeling
become an ever more widely distributed global enterprise, “science about
data science” will grow dramatically in significance.[28]

Science about data science would also help with reproducibility in machine
learning and academia in general. Standardizing methods for data collection and
analysis of workflows would also increase transparency and interpretability in
machine learning. However, this is a great challenge which requires a lot of time
and resources. A good example of data standardization is the Observational
Medical Outcomes Partnership Common Data Model, which is an open
community data standard for clinical data. [318]

Finally, I think the machine learning community has to work closely with
researchers who study the impact of technology and automated decisions on our
lives in the following years. Unfortunately, there has been a common sentiment in
the machine learning community that it does not need input from other scientific
fields to create high quality solutions. Geoffrey Hinton famously said in 2016: “We
should stop training radiologists now, it’s just completely obvious within five years
deep learning is going to do better than radiologists.”. [319] Six years later, the
number of radiologists increased by 7% in the US, and (only) around 30% use AI
as help in their work. [320] Similar was expected from AI during the coronavirus
pandemic, yet most models are still unsuitable. [2, 3, 4, 5] I think this perceived
exceptionalism is wrong: machine learning can not be successful in isolation. To
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create useful solutions and to use AI more extensively, we need to take the
concerns of the public and government requirements seriously, work with domain
experts, and develop more interpretable machine learning models.
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A.2 S2A Fig.
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A.4 S4A Fig.
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A.5 S5A Fig.
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Visualizing the spread of infectious diseases 
using public health data

Institute of Cognitive Science

Predictions of case counts for various diseases by county. Reported infections (black dots), predictions of case counts by BSTIM (orange 

line) and  the hhh4  reference model  (blue  line)  for  campylobacteriosis  (column 1),  rotavirus  (column 2)  and borreliosis  (column 3)  for  two 

counties in Germany (for campylobacteriosis and rotavirus) or Bavaria (borreliosis), are shown in rows A and B. The shaded areas show the 

inner 25%75% and 5%95% percentile. Row C shows predictions of the respective disease for each county in Germany or the federal state of 

Bavaria in week 30 of 2016 (indicated by a vertical red line in rows A and B). 

Publichealth agencies have the responsibility 
to detect, prevent and control infections in the 
population.  The  Robert  Koch  Institute  [1]  in 
Germany  collects  a  wide  range  of  factors, 
such as  location, age, gender, pathogen, and 
further  specifics,  of  laboratory  confirmed 
cases  for  approximately  80  infectious 
diseases  through  a  mandatory  surveillance 
system [2]. This data is publicly available, but 
in  order  to  be  useful  for  a  broader  public,  it 
should  be  processed  and  presented  in  an 
interpretable  form,  using  data  visualizations 
and interactive tools. 

We develop a single model  for predictions of 
infectious  disease  cases  in  all  counties  in 
Germany. To present the results of the model 
and  to  communicate  potential  risks  of 
infection,  disease  prediction  maps  show  a 
broad overview of the disease development in 
space,  while  plotting  prediction  curves 
together  with  collected  data  points  show  the 
disease development in time.

Bayesian spatiotemporal 
interaction model

The  presented  Bayesian  spatiotemporal 
interaction model (BSTIM) [3] is a probabilistic 
model which predicts aggregated case counts 
within  counties  and  calendar  weeks.  To  this 
end, publicly  available  health  data,  region
specific and demographic data are used. We 
evaluated  the  BSTIM  on  a oneweekahead 
prediction  task  for  two  diseases 
(campylobacteriosis  [4]  and  rotaviral  enteritis 
[5]) across Germany and for Lyme borreliosis 
[6]  across  the  federal  state  of  Bavaria.  The 
BSTIM model  predicts  how many people  are 
expected  to  become  infected during  the next 
week,  in  each  county  (shown  in  the  upper 
figure).  In  addition,  it  provides  uncertainty 
estimates,  which  give  a  sense  of  how 
confident  the  model  is.  Domain  experts,  in 
addition to model predictions, can access the 
dynamics  and  evolution  of  diseases. 
Visualizing  learned  model  components 
(shown  in  the  lower  left  figure)  allows  to 
inspect  how  diseases  spread  in  time  and 
space,  while  visualizing  learned  trends  and 
seasonality  (shown  in  the  lower  right  figure) 
allows  to  see  temporal  evolution  of  diseases 
over  the  years.  This  transparency  and 
interpretability of machine learning models 
increase  scientific  understanding  and  safety 
[7]. 

Key points:
• We develop and present a probabilistic model for 
prediction of infectious disease cases 

• Prediction  maps  or  risk  awareness  maps  are 
beneficial  for  communicating  a  message  to  the 
public

• Visualizations  of  components  of  a  prediction 
model are useful for domain experts for assessing 
the dynamics of diseases

• The  machine  learning  system  for  prediction  of 
infectious  diseases  should  at  the  same  time 
optimize for two aspects:

• the prediction accuracy, 
• interpretability
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C.1 S1C Fig.
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Marginal posterior distributions of all parameters for
campylobacteriosis. For each of four Markov chains, the mean (dot), the range
from the 25% to 75% percentile (thick horizontal lines) as well as the 2.5% to
97.5% percentile (thin horizontal lines) are shown. For all parameters, these
summary statistics of the marginal distribution are similar across all four chains,
indicating convergence of the MCMC sampling scheme (see also supplementary
S7C Fig).
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C.2 S2C Fig.
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Marginal posterior distributions of all parameters for rotavirus. For
each of four Markov chains, the mean (dot), the range from the 25% to 75%
percentile (thick horizontal lines) as well as the 2.5% to 97.5% percentile (thin
horizontal lines) are shown. For all parameters, these summary statistics of the
marginal distribution are similar across all four chains, indicating convergence of
the MCMC sampling scheme (see also supplementary S7C Fig).
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C.3 S3C Fig.
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Marginal posterior distributions of all parameters for Lyme
borreliosis. For each of four Markov chains, the mean (dot), the range from the
25% to 75% percentile (thick horizontal lines) as well as the 2.5% to 97.5%
percentile (thin horizontal lines) are shown. For all parameters, these summary
statistics of the marginal distribution are similar across all four chains, indicating
convergence of the MCMC sampling scheme (see also supplementary S7C Fig).
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C.4 S4C Fig.
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Sensitivity analysis for campylobacteriosis. Marginal posterior
distributions of all parameters are shown for five different scales
σWIA

= {0.625, 2.5, 10.0, 40.0, 160.0} (color coded), which includes the special case
σWIA

= 10 (see also supplementary S1C Fig) as used throughout this paper. For
priors with standard deviation larger than 2.5, there is little qualitative change in
the posterior distribution.
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C.5 S5C Fig.
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Sensitivity analysis for rotavirus. Marginal posterior distributions of all
parameters are shown for five different scales σWIA

= {0.625, 2.5, 10.0, 40.0, 160.0}
(color coded), which includes the special case σWIA

= 10 (see also supplementary
S2C Fig) as used throughout this paper. For priors with standard deviation larger
than 2.5, there is little qualitative change in the posterior distribution.
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C.6 S6C Fig.
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Sensitivity analysis for Lyme borreliosis. Marginal posterior distributions
of all parameters are shown for five different scales
σWIA

= {0.625, 2.5, 10.0, 40.0, 160.0} (color coded), which includes the special case
σWIA

= 10 (see also supplementary S3C Fig) as used throughout this paper. Here,
the choice of prior has considerably more impact on the posterior distribution than
for campylobacteriosis (see supplementary S4C Fig) or rotavirus (see
supplementary S5C Fig), for both of which more training data is available. For a
narrow prior with standard deviation 0.625, the interaction effect coefficients
appear to be strongly regularized towards zero.
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C.7 S7C Fig.
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Convergence Diagnostics of MCMC chains. Gelman-Rubin diagnostics
(red dots) for all parameters for campylobacteriosis (1A), rotavirus (2B) and
borreliosis (3C). The values all lie close to 1.0 for all parameters, indicating
convergence of the sampling procedure.
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C.8 S8C Fig.
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across Germany. Reported infections (black dots), predictions of case counts by
BSTIM (orange line) and the hhh4 reference model (blue line) for
campylobacteriosis for 25 counties in Germany. The shaded areas show the inner
25%-75% and 5%-95% percentile.
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Predictions of case counts for rotavirus for various counties across
Germany. Reported infections (black dots), predictions of case counts by BSTIM
(orange line) and the hhh4 reference model (blue line) for rotavirus for 25 counties
in Germany. The shaded areas show the inner 25%-75% and 5%-95% percentile.
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Predictions of case counts for borreliosis for various counties across
Bavaria. Reported infections (black dots), predictions of case counts by BSTIM
(orange line) and the hhh4 reference model (blue line) for borreliosis for 25 counties
in Bavaria. The shaded areas show the inner 25%-75% and 5%-95% percentile.
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D.1 Figure S1D
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Reflectance spectra from the four datasets. Solid lines show five randomly
selected spectra from each dataset. The dashed lines show the average for the
respective dataset, and the gray regions show the value range (from minimum to
maximum) for each wavelength.
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D.2 Figure S2D
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Marginal parameter distribution of baseline model

Marginal posterior distributions of all parameters of the baseline model.
For each of four Markov chains, the mean (dot), the interquartile range from the
25% to 75% quantile (thick horizontal lines) as well as the 2.5% to 97.5% quantile
(thin horizontal lines) are shown. For all parameters, these summary statistics of
the marginal distribution are similar across all four chains, indicating convergence
of the MCMC sampling scheme.
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D.3 Figure S3D
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Marginal posterior distributions of all parameters of the hierarchical bias
model. For each of four Markov chains, the mean (dot), the interquartile range
from the 25% to 75% quantile (thick horizontal lines) as well as the 2.5% to 97.5%
quantile (thin horizontal lines) are shown. (C) to (F) show the differences between
the shared bias parameter b∗ and the dataset-specific bias parameters bj . For all
parameters, these summary statistics of the marginal distribution are similar across
all four chains, indicating convergence of the MCMC sampling scheme.
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D.4 Figure S4D
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Marginal posterior distributions of all parameters of the full hierarchical
model. For each of four Markov chains, the mean (dot), the interquartile range
from the 25% to 75% quantile (thick horizontal lines) as well as the 2.5% to 97.5%
quantile (thin horizontal lines) are shown. (B) to (E) show the differences between
the shared weight parameters w∗

k and the dataset-specific weight parameters wj
k,

and (G) to (J) show the differences between the shared bias parameter b∗ and the
dataset-specific bias parameters bj . For all parameters, these summary statistics of
the marginal distribution are similar across all four chains, indicating convergence
of the MCMC sampling scheme.
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D.5 Figure S5D
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coded), the shape parameter exceeds the critical value of 0.7 and PSIS-LOO-CV
becomes unreliable. (B) shows the reflectance spectra corresponding to these four
datapoints (solid lines, color-coded) as well as the mean reflectance spectra of the
respective datasets (dashed lines).
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D.6 Figure S6D

Inferred kernel for baseline model. (A) shows the kernel of the baseline model
when fit to the entire pooled dataset. For reference, (B) through (E) show the dif-
ferent kernels that the baseline model would infer from each of the four datasets in
isolation. We can see large, qualitative differences between the five shown kernel
functions. In particular, the pooled data results in a kernel function with a sizeable
dip around a wavelength of 1200 nm, which is entirely absent from any of the kernels
inferred for the individual datasets. This indicates that systematic differences be-
tween the datasets might introduce spurious associations between spectral features
and LAI predictions, which pose a risk for misinterpretation. This effect is avoided
entirely by a full hierarchical model (see Figure S7D) and much reduced by the
hierarchical bias model (see figure 6).
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D.7 Figure S7D

Inferred kernel for full hierarchical model. (A) shows the shared kernel func-
tion of the full hierarchical model, and (B) through (E) show the specific kernel
functions inferred for each dataset. The inferred dataset-specific kernels deviate
only little from the shared kernel, yet in contrast to the baseline model in Figure
S6D, there is no pronounced dip around the wavelength 1200 nm.
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Alexander Torres Prieto. “Spatio-Temporal Modeling of Zika and Dengue
Infections within Colombia”. In: International Journal of Environmental
Research and Public Health 15.7 (2018). issn: 1660-4601. doi:
10.3390/ijerph15071376. url:
https://www.mdpi.com/1660-4601/15/7/1376.
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