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Abstract—The documentation of historical remains and cultural
heritage is of great importance to preserve historical knowledge.
Many studies use low-resolution airplane-based laser scanning and
manual interpretation for this purpose. In this study, a concept
to automatically detect terrain anomalies in a historical conflict
landscape using high-resolution UAV-LiDAR data was developed.
We applied different ground filter algorithms and included a spline-
based approximation step in order to improve the removal of low
vegetation. Due to the absence of comprehensive labeled training
data, a one-class support vector machine algorithm was used in an
unsupervised manner in order to automatically detect the terrain
anomalies. We applied our approach in a study site with different
densities of low vegetation. The morphological ground filter was
the most suitable when dense near-ground vegetation is present.
However, with the use of the spline-based processing step, all filters
used could be significantly improved in terms of the F1-score of the
classification results. It increased by up to 42% points in the area
with dense low vegetation and by up to 14% points in the area with
sparse low vegetation. The completeness (recall) reached maximum
values of 0.8 and 1.0, respectively, when taking into account the
results leading to the highest F1-score for each filter. Therefore,
our concept can support on-site field prospection.

Index Terms—Historical terrain anomalies, machine learning,
splines, UAV-LiDAR.

I. INTRODUCTION

A. Airborne and UAV-LiDAR in Historical Landscapes

THE detection and documentation of the remains of histori-
cal conflicts is of enormous relevance for their preservation

and the retention of knowledge, the creation of commemorative
landscapes and the understanding of their significance in histor-
ical contexts. This allows for a discussion of memory culture
in order to address issues of practices of remembrance, which
are an important component in the process of forming cultural
heritage [1]. However, landscapes of memory are undergoing
constant physical as well as discursive transformation for ex-
ample due to anthropogenic land use, processes exacerbated by
climate crisis or illegal excavations. This makes documentation
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of the historical remains even more important in order not to
lose the cultural heritage irretrievably. In this context, conflicts
of modern history, e.g., World War I and World War II, are
becoming more important within the focus of investigations
in conflict landscape studies, as the traces of these conflicts
are increasingly threatened to disappear or being transformed
beyond recognition. Documenting and investigating these his-
toric sites of conflicts through an interdisciplinary approach is
therefore relevant not only in order to broaden the perspectives
on those landscapes, but also to preserve cultural heritage and to
question and, if necessary, to refute narratives that may emerge
over time [2], [3], [4].

In this context, many experts rely solely on on-site prospect-
ing, however, fieldwork alone is often not sufficient since it is
time-consuming and labor intensive. Remote sensing has the
potential to provide spatially distributed information on land
surface over large areas in near real time, and thus can help
overcome these limitations [1], [2], [3], [4], [5].

A wide variety of sensor technologies has been used for this
purpose over the last years [6]. Laser scanning technology [light
detection and ranging (LiDAR)] has become one of the most
significant sensing technologies in recent years when investigat-
ing landscapes where historical remains exist or are suspected
to exist. The laser penetrates the vegetation cover to a certain
extent and in this way can obtain information about the ground
surface even in vegetated areas. This is particularly important
in areas with historical remains. These are less affected by
erosion processes if they are located below vegetation cover
than in open terrain. Therefore, they are often better preserved
in vegetated areas [7], [8], [9]. In the context of cultural heritage
and historical remains, remotely sensed LiDAR data were used
in various studies, e.g., for the identification of ancient cultural
heritage like pit structures or cave entries [10], [11] or research
on conflict-related battlefield sites [4], [12], [13].

Laser scanning from aircraft-mounted systems (often referred
to as airborne laser scanning, ALS) is already widely used for
archaeological and cultural heritage applications [6]. For several
years, unmanned aerial vehicles (UAV)-based laser scanning
has established itself in the remote sensing community. While
this technology is already used in various environmental remote
sensing studies [14], [15], [16], [17], it is rarely used in the
context of archaeological and cultural heritage applications [5],
[18]. Its systematic use with respect to the UAV flight param-
eters for scanning historical terrain features in different types
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of vegetation was investigated [19]. In terms of achievable
resolution, it should be noted that the absolute number of data
points per square meter is significantly lower for ALS than for
UAV-LiDAR. The latter can achieve point densities that are ten
times higher than those of aircraft mounted laser systems [4],
[19]. In addition, the laser footprint is much larger when using
ALS (in the order of decimeters) than when conducting laser
scans from a UAV (in the order of centimeters) [19]. Of course,
this is also a measure of how detailed the Earth’s surface and
objects are captured by the system [20]. As a consequence,
UAV-LiDAR data are becoming increasingly popular due to its
higher spatial resolution and therefore a greater level of detail
compared to ALS.

However, many studies in the context of cultural heritage
and historical remains—including the abovementioned
articles—rely primarily on visual interpretation of the data,
which is a time-consuming and subjective task. The prior
knowledge, level of expertise or interest of a specialist
can influence the outcome of a manual interpretation [21].
Therefore, the main focus of this study is to propose a concept
for automatic mapping of terrain anomalies in a historical
conflict landscape using UAV-LiDAR data. The term terrain
anomalies refers to man-made structures with regular shape.
Specifically, this study focuses on terrain anomalies that are
the result of historical conflicts, in this case dugouts created by
soldiers, which are called foxholes (see Section II).

B. Background and Related Work

New challenges arise in order to automatically detect histor-
ical terrain anomalies using UAV-LiDAR:

As a first step, it is necessary to perform ground filtering,
which means to separate ground from nonground to create
digital terrain models (DTM) from the LiDAR data. Several
ground filter algorithms exist [22], however, for the case of
UAV-LiDAR, it is well known that many established algorithms
can fail in complex terrain situations with strong low vegeta-
tion influence [19], [23]. Unlike aircraft-based laser scanning
data, many small on-ground features, such as low vegetation,
are likely to be captured by UAV-based laser scanning due to
its higher spatial resolution. Removal of low vegetation from
UAV-derived point clouds is an active field of research [24], [25],
however, most studies deal with the use of photogrammetric
point clouds instead of using LiDAR.

In the context of remote sensing and cultural heritage, the
identification of terrain anomalies is often based on a manual,
visual image interpretation. Nevertheless, a few authors used
(semi-) automatic mapping techniques (see Lambers et al. [26]
for an overview). For instance, Due Trier and Pilø [27] and
Toumazet et al. [21] followed template matching approaches
that are based on estimating the similarity between a predefined
model and the input image. Magnini et al. [28] used object-based
image analysis (OBIA) techniques to detect shell craters from
World War I from airborne LiDAR. Sevara et al. [29] compared
semisupervised object-based and pixel-based classification ap-
proaches to identify archaeological features from ALS datasets.
Some recent studies rely or are partially based on machine
learning approaches for archaeological object detection [30],

[31], [32]. More recently, deep learning methods, e.g., convo-
lutional neural networks, have been introduced in the context
of remote sensing [33]. These methods were successfully used,
for example, to derive crop parameters from UAV data [34],
[35]. Studies [36], [37], [38] use deep learning approaches for
archaeological and historical feature detection.

In remote sensing, nonterrestrial laser scanners are primar-
ily used on one of the following platforms, aircraft-mounted
(airborne, ALS) or UAV-based. Many of the abovementioned
studies in the context of automated mapping of historical terrain
anomalies use ALS data for their investigations. In contrast, this
study focuses on the use of UAV-based laser scanning. With
regard to the use of UAV-LiDAR, however, the circumstances
are completely different. The areas that can be covered by
UAV-based systems are, of course, only a fraction as large as
those that can be scanned by aircraft-mounted systems. Under
good conditions, a LiDAR drone might be able to cover a few
dozen hectares per day, which is only a fraction of the area
that could be scanned by an ALS system in the same time (in
the order of several square kilometers). This inevitably leads
to the fact that there are only very few ground truth objects in
a study area, and consequently only few training data available
for the algorithms to be used. However, supervised classification
algorithms rely on the creation of appropriate training samples,
which is considered a key factor for the classification result. This
also applies to many machine learning algorithms, especially
deep learning, because they learn from the properties of the
training samples. As outlined previously, these datasets are often
not available in the context of historical / archaeological remains,
especially not when using UAV data in small areas of only a few
hectares. Other approaches, such as template matching-based
procedures usually also rely on prior knowledge of the expected
objects. Lambers et al. [26] emphasized that this can be prob-
lematic, especially for objects that are subject to transformation
processes. Furthermore, OBIA-based methods often have the
disadvantage that several parameters or thresholds are included
in the detection and classification procedure (see e.g., [27], [28],
[32]).

Therefore, support vector machines (SVMs) as well as one-
class classifiers could be of interest. SVMs are generally con-
sidered a suitable machine learning approach when only limited
training data are available [39]. This is also supported by the fact
that only one class of interest—“terrain anomaly”—is involved
in this classification problem. In these cases, a SVM can be
defined as so-called one-class classifier: one-class support vector
machines (OC-SVM), first introduced by Schölkopf et al. [40],
were successfully applied to classify satellite data [41], [42],
[43], [44], [45] for a variety of purposes.

C. Research Objectives

In this study, we propose a concept to map terrain anomalies
in conflict landscapes using UAV-LiDAR data. The proposed
approach combines ground filter algorithms with spline-based
approximation of the terrain surface in order to reduce the effect
of vegetation close to the ground. OC-SVM are used to map the
terrain anomalies in the UAV-LiDAR data. In order to evaluate
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Fig. 1. Location of the research area.

the potential of such a concept and its suitability for detecting
historical terrain anomalies, we focus on the following research
questions.

1) Can the results of ground filter algorithms be improved by
spline-based approximation in terms of the recognizability
of the terrain anomalies?

2) Is it possible to detect terrain anomalies by using a OC-
SVM?

3) What impact do different vegetation densities and different
filtering techniques have on the detection results?

Therefore, the main contribution of this study is the de-
velopment of a workflow for detecting terrain anomalies in a
historical conflict landscape with UAV-LiDAR data. It includes
the evaluation of different ground filters as well as a machine
learning-based anomaly detection methodology.

II. STUDY SITE AND DATA ACQUISITION

A. Study Area

The research area is located in the Eifel region in western Ger-
many: the Kall Valley (municipality Hürtgenwald, see Fig. 1).
In November 1944, the US Army fought here against the Wehr-
macht. As a result of several retreats in the steep terrain, which is
difficult to access, the American soldiers had created a number
of dugouts, known as “foxholes,” to protect themselves from

enemy fire [46]. Remains of these rather roundish dugouts can
still be found today as terrain anomalies in the Kall Valley [4].

Specifically, the research area is located south-east of the vil-
lage Vossenack and is mainly oriented in a north-south direction
(see black box in Fig. 1). The area is partly covered by trees and
is characterized by spatially differentiated low vegetation. In this
valley section, we select two subareas as our study areas, each
about 0.5 hectares in size. Study area #1 is characterized by dense
near-ground vegetation (bushes and shrubs, which are present
throughout the whole year) and deciduous forest. Study area #2
is an area in the Kall Valley where near-ground vegetation is less
pronounced. Vegetation, such as ferns, dominate this area, but
they are more prominent in summer than in winter. Since the data
acquisition took place during winter season (see the following),
the effect on the data acquisition is limited. Besides, individual
trees are present in this area. Fig. 2 shows some sample photos
of the two selected study sites. At the bottom of Fig. 2, three
examples of terrain anomalies that were found in the Kall Valley
during on-site prospection are shown.

B. Data Acquisition

Table I summarizes the properties of the study areas, the flight,
and scan parameters of the UAV-based data acquisitions and
the achieved resolutions (point density and mean point spacing)
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Fig. 2. Photos of the research area (photos taken on March 6, 2021 by M. Adam, M. Storch).

TABLE I
CHARACTERISTICS OF THE STUDY AREAS, LASER SCANNING PARAMETERS, AND PROPERTIES OF THE RESULTING POINT CLOUDS

of the resulting LiDAR point cloud datasets. UAV-LiDAR data
were acquired in the two study sites with different low vegetation
densities during winter season on March 6, 2021. The flight
and scan parameters are kept identical at both study sites (see
Table I): The system used for data acquisition is a RIEGL
miniVUX-1 UAV laser scanner with a pulse repetition frequency
(PRF) of 100 kHz mounted on a DJI Matrice 600 carrier drone.
A flying altitude of 50 m above ground level (AGL) was chosen
in order to keep the distance to the trees in the study area large
enough and to ensure a permanent line of sight between the
drone pilot and the UAV during the entire flight. In addition,

the laser footprint is still small enough (less than 10 cm in
diameter) when scanning from this altitude to allow detailed
capturing of the Earth’s surface [19]. Combining this with a
flight speed of 3 m/s results in an average laser shot density
of approx. 100 laser pulses per square meter. The actual point
density achieved is higher due to the multiple return capability of
the LiDAR-system. It is very likely that there are multiple return
echoes for each laser pulse emitted, especially in areas with
vegetation. On average, the point density ranges between 248
and 298 points per square meter in the resulting datasets, which
corresponds to a mean horizontal point spacing of approx. 6 cm.
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Fig. 3. Flowchart illustrating the entire workflow of terrain anomaly detection.

The point density achieved is comparable to that of other studies
involving UAV-based laser scanning in vegetated areas [47],
[48].

Ground truth data, which in this case means the positions of
known terrain anomalies, is acquired by visual interpretation
of the data, supported by on-site prospection in the study area.
Because the terrain in the Kall Valley is steep, predominantly
densely vegetated, and therefore very difficult to access, an
accurate total station survey of the shape of terrain anomalies
cannot be undertaken. It is, therefore, limited to point-by-point
approximate positioning of the existing anomalies using GNSS
measurements.

III. METHODOLOGY

The methodology developed in this research consists of sev-
eral steps. First, a preprocessing of the data is performed in
the form of ground filtering. Three different filter algorithms
are tested. Their results are further improved by computing a
spline surface (see Section III-A). A differential morphological
profile (DMP) is then created to increase the information content
of the data and extract terrain features with specific shape
and different size (see Section III-B). Subsequently, machine
learning-based anomaly detection is implemented by applying
a OC-SVM classification to the data in an unsupervised manner
(see Section III-C). Finally, quantitative and qualitative valida-
tion is performed (see Section III-D). Fig. 3 depicts a flowchart
illustrating the entire workflow of terrain anomaly detection.

A. Data Preprocessing

First, the generation of a DTM from LiDAR data requires
a separation between ground and nonground data points, the

Fig. 4. Principle of removing near-ground vegetation from the filtered LiDAR
data by calculating a smoothing spline surface. Then, only the LiDAR data points
below the surface are used for DTM calculation (profile view).

so-called (ground) filtering. A variety of different filter algo-
rithms exists and the choice of the filter algorithm is crucial in
terms of the quality of the derived DTM [49]. Therefore, we test
three different filter algorithms: The simple morphological filter
(SMRF, Pingel et al. [50]), which is based on morphological
operations, the cloth simulation filter (CSF, Zhang et al. [51]),
which is based on simulating a rigid cloth on top of the inverted
point cloud to identify ground points, and the adaptive triangu-
lated irregular network filter (ATIN, Axelsson [52]), which uses
a TIN-based approach to determine the ground surface.

However, the filtering algorithms may have problems filtering
out low vegetation from the data [19], [22], [23], which is
especially a problem when using high-resolution UAV-LiDAR
data. Hence, the filtering procedure needs to be improved by
removing LiDAR points that represent low vegetation that could
not be successfully removed by the ground filter algorithms used.

Therefore, we propose to approximate (smooth) the ground
surface by using splines. We apply regularized splines with
tension because they are characterized by the fact that they do
not pass exactly through the input data. Instead, the terrain is
approximated with a nonrigid surface of minimal curvature.
For a more thorough mathematical discussion on the funda-
mentals of the smoothing problem, spline interpolation, and the
application of regularized splines with tension to terrain surface
approximation, the reader is referred to [53], [54], [55], [56],
[57].

After calculating the spline surface, all LiDAR data points that
are located above the generated spline surface are removed. They
form the noise caused by low vegetation, whereas the details
of interest that must be preserved are the downward terrain
anomalies (this principle is illustrated in Fig. 4). The remaining
ground points are then used to calculate the final DTM.

B. Multiscale Decomposition of the DTMs

Unlike, for example, multispectral or hyperspectral remote
sensing data, which already consist of a large number of spectral
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bands, a DTM derived from the LiDAR height information is a
single-band dataset. Therefore, in order to increase the infor-
mation content of the data according to the objective of terrain
anomaly detection, a multiscale decomposition by using a DMP
is performed. The principle of DMP was proposed by Pesaresi
and Benediktsson [58]. Although it was originally developed
for segmentation and classification of high-resolution satellite
images [58], [59], [60], its principle was also used for classifying
ALS [61] and photogrammetric UAV point clouds [62].

A DMP consists of a sequence of operations from mathemat-
ical morphology. Opening (erosion followed by dilation) and
closing (dilation followed by erosion) operations are used to
highlight terrain structures of certain shape. In order to capture
terrain anomalies of different extent, the size of the structuring
element is increased step by step. The DMP is then formed by
calculating the difference between two consecutive iterations.
The components of the DMP are subsequently the input data for
the terrain anomaly detection with machine learning.

C. Unsupervised Anomaly Detection Using Machine Learning

As outlined in the introduction, SVM are generally considered
suitable for the cases where only limited training data are avail-
able [39]. This study aims on the detection of terrain anomalies,
i.e., the separation of anomalous and nonanomalous pixels. As
there is only one class of interest (i.e., the “terrain anomalies”),
the use of one-class classifier is interesting. A general overview
to one-class classifiers in the context of remote sensing is for
example given in [63]. In this study, a OC-SVM is used. A brief
description is given in the following.

OC-SVM for novelty detection was proposed by Schölkopf
et al. [40]. Like normal SVMs, these are based on the com-
putation of a separating hyperplane with the largest possible
separating region in a higher dimensional feature space. How-
ever, OC-SVM tries to separate the data points xi seen during
training from the origin, maximizing the distance to the origin.
The underlying minimization function is

min

{ ||w||2
2

+
1

νN

N∑
i=1

ξi − ρ

}
(1)

with w and ρ being the weight vector and the offset of the sepa-
rating hyperplane. Thereby (w · φ(xi)) ≥ ρ− ξi applies, which
means that each data point xi seen during training should be
situated in the positive region, i.e., in the region separated from
the origin by the hyperplane (mapped into a higher dimensional
feature space by applying φ, see the following). The slack vari-
ables ξi ≥ 0 and the regularization parameter ν ∈ (0, 1] control
the number of misclassifications during training. N depicts the
number of observations.

Having calculated the separating hyperplane, the decision
function for the classification stage then becomes

f(x) = sgn

{
N∑
i=1

αiK(x, xi)− ρ

}
(2)

with αi being the Lagrange multipliers and the function
K(x, xi) = φ(x)Tφ(xi) being the kernel, which uses the trans-
formation function φ to map to a higher dimensional feature
space. The function f returns positive for a sample that is similar
to those seen during training (nonanomalous), negative for an
anomalous data point [40]. A Gaussian radial basis function
kernel function K(x, xi) = exp(−γ||x− xi||2) is used for the
OC-SVM as this is a widely used kernel type and is common
among other related studies [41], [42], [43], [63].

Classifiers, such as OC-SVM, are usually trained only with
data from the positive class. OC-SVM, therefore, belongs to
the group of so-called P-classifiers [63]. In this case, positive
class means terrain without terrain anomaly. However, due to
limited ground truth data, no labeled dataset is available. Conse-
quently, when training the OC-SVM, it cannot be excluded that
anomalous pixels (negative class) are also part of the training
data. When using P-classifiers, it is usually assumed that the
negative class is uniformly distributed [64]. Hence, an important
parameter that has to be tuned when training a OC-SVM as
introduced by Schölkopf et al. [40], [65] is the parameter nu.
It is often depicted with the Greek letter ν, see (1), and acts
as the regularization parameter [66]. It sets an upper limit of
margin errors during training by allowing a certain percentage
of the training data to be treated as anomalies (negative class).
The other training samples are part of the positive region [42],
[66]. Parameter values for the parameter ν between 1% and 5%
should be suitable in case the positive and negative classes are
well separable [43], [63]. Otherwise, this could lead to a high
number of false positives (FP) or false negatives (FN) in the
classification result. Since the distribution of terrain anomalies
or their magnitude is not known in advance and an unsupervised
approach is to be followed, different values for this parameter
need to be tested for each application case.

Each dataset is divided into n patches. The training and
classification procedure is run multiple times in order to be
independent of the spatial distribution of training and test data.
In each iteration, two thirds of the patches are used to train the
OC-SVM. The respective model is then used to independently
predict the remaining third of the data patches. This procedure
is repeated until all possible combinations of patches have been
used once for training. With a total number of n patches and two
thirds used for training in each iteration, the total number of pos-
sible combinations is

(
n

2n/3

)
, where each pixel is independently

predicted 1
3

(
n

2n/3

)
times.

The signed distance to the separating hyperplane averaged
per pixel over all iterations is used for the final classification
decision. If this distance is negative, the pixel in question is
classified as an anomaly. Therefore, since several trained clas-
sifiers are combined, the chosen approach can be categorized as
an ensemble classifier [67], [68]. Finally, a majority filter and a
morphological closing operation are applied in order to remove
individual noisy pixels.

D. Validation

The ground truth data, i.e., the known positions of terrain
anomalies, are used for validation. Since the classification
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anomaly versus no anomaly is a binary one-class problem, it
is common to use quantities, such as true positives (TP), false
positives (FP), and false negatives (FN), for accuracy assess-
ment. TPs are correctly detected anomalies, FPs are incorrectly
detected anomalies, FNs are missed anomalies (present in the
reference data but not in the classification output). Subsequently,
the following accuracy measurements can be derived [69], [70]:

Completeness or Recall =
TP

TP + FN
(3)

Correctness or Precision =
TP

TP + FP
(4)

F1-Score = 2 · Completeness · Correctness
Completeness + Correctness

. (5)

Each of these accuracy measures can take values between 0
and 1. By varying the OC-SVM parameter ν, several results
are obtained per study area and filter (see experimental setup
in Section IV-A). In order to test whether the results differ
significantly or whether the differences are coincidental, a paired
t-test is performed for each case. This statistical test may only
be used if the differences are normally distributed. Therefore,
a Shapiro–Wilk test of normality is applied to the residuals
beforehand.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Three different filters (SMRF, CSF, and ATIN) are applied
to the UAV-LiDAR data. Filtering with SMRF and CSF is
implemented in point data abstraction library (PDAL), filtering
with ATIN is performed using the software Agisoft Metashape,
whose ground point classification tool is based on the ATIN
algorithm [71], [72]. The parameterization of the ground filters
is done as follows.

For the filter SMRF the maximum window radius parameter
should typically be 10 m or greater, and the slope tolerance
should not be lower than 0.1 [50]. In combination with this
we set the cell size to 0.2 m, which results in a maximum
elevation threshold of 1 m (0.1× 0.2× (10/0.2)). This roughly
corresponds to the vertical extents of the foxholes, i.e., the terrain
anomalies of interest in our study area. The final classification
threshold is then set to 0.1 m similar to comparable study sites
with steep/sloping terrain in other related studies [71], [73].

The parameterization for the CSF follows the specifications
given in e.g., Zhang et al. [51] and Serifoglu Yilmaz et al. [71].
The maximum number of iterations is set to 500 and the rigidness
parameter is set to 1 for steep terrain. We set the cloth resolution
to 0.2 m and the classification threshold to 0.1 m similar to the
SMRF cell size and threshold parameterization.

For the ATIN filter, Klápště et al. [72] proposed to set the
initial grid size to at least 25 m. Specifically, this parameter is
intended to resemble the size of the largest nonground object in
the area, which corresponds in our study site to groups/clusters
of trees, so this value should be suitable. The maximum angle
parameter should be set to the mean slope of the area [71], which
in our case is approx. 20◦. The maximum distance parameter is

set to 1 similar to the maximum elevation threshold of SMRF,
which resembles the possible elevation change in the terrain due
to the terrain anomalies. This value also corresponds to the ATIN
parameterization used in e.g., [71], [72].

Subsequently, in order to improve the filter results by remov-
ing misclassified low vegetation, we propose the use of splines
(see Section III-A). For each filtered point cloud a spline surface
is generated using GRASS GIS, and the points that are above
the surface are removed. The procedure of data preprocessing
is illustrated in Fig. 5 in a 25 m × 1 m transect taken from study
area #1, which is visualized three dimensionally. The original
point cloud data (a) contains a lot of dense vegetation. It is filtered
(b), but there still remain a certain number of points representing
low vegetation. A spline surface is calculated (c) and all data
points above it are removed (d), which results in a smooth ground
surface where the terrain anomalies stand out clearly. Then DTM
are calculated by rasterizing the resulting point clouds [both
without (b) and with (d) applying the spline-based processing in
order to compare the effect achieved by the splines]. In each case,
the minimum height value per raster cell is used, and the raster
resolution is determined by the average horizontal point spacing.
Empty cells are interpolated using inverse distance weighting.
This rasterization procedure is performed with PDAL.

In the next step, the DMP (Section III-B) is calculated from
each derived DTM with a circular shaped structuring element
because the historical terrain anomalies of interest (foxholes)
in the Kall Valley are round shaped. The radius of the DMP is
increased in 1 m increments from 1 m to 5 m in order to extract
both small and larger terrain anomalies. Since it is based on both
opening and closing, this creates a total of ten bands. The DMP
is calculated using SAGA GIS.

Subsequently, the normalized bands are the input for the OC-
SVM classification. For this purpose, each study area is divided
into 12 patches. In this way, each patch is about 10 000 pixels in
size. As outlined in Section III-C, the training and classification
procedure is run multiple times, each time using two thirds of the
patches for training and one third being independently predicted.
Having 12 patches and using two thirds of the data for training
in each iteration, the total number of possible combinations is
495, where each pixel is independently predicted 165 times. For
the regularization parameter of the SVM, values between 1%
and 5% are tested in 0.005 increments. Since we follow an
unsupervised ensemble-based approach here, the Kernel param-
eter γ is not additionally varied. Instead, it is kept at its default
setting, which is the reciprocal of the number of features. The
OC-SVM classification is implemented in a Python script, using
the OC-SVM package from the Scikit-learn library [74].

For validation, the classification result is transferred into a
vector dataset. In this way, adjacent pixels marked as anomalous
(−1) together form a polygon representing a terrain anomaly
in the result dataset. The positions of known terrain anomalies
are available as point geoobjects (see Section II). To account
for the possible inaccuracy of GNSS positioning during on-
site prospection, an anomaly detected by the classifier is still
classified as TP if it intersects a circle with one meter radius
around a known reference position in the ground truth dataset.
In case a terrain anomaly in the classification result has spatially
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Fig. 5. Procedure of data preprocessing in an exemplary section of the data. A 3-D view of a 25 m × 1 m transect of study area #1 is shown. The following steps
are depicted. (a) Original UAV-LiDAR point cloud data, which contains a lot of dense vegetation. (b) Apply ground filter, still several points remain that represent
low vegetation. (c) Calculate spline surface (the orange 3-D surface). (d) Remove points above the spline surface, the remaining points form a smooth ground
surface where the terrain anomalies stand out clearly.

more than one equivalent in the reference dataset, it is counted
once as TP and the remaining times as FN. Likewise, in the
case that an anomaly in the reference dataset has more than
one correspondence in the classification result, it is counted
once as TP and the remaining times as FP. Finally, the accuracy
measurements completeness, correctness, and the F1-score are
calculated.

B. Terrain Anomaly Detection

The validation results are shown in Fig. 6. Subfigure (a)–
(c) refer to study area #1 with dense near-ground vegetation
together with individual tree cover, subfigures (d)–(f) refer to
study area #2 with sparse near-ground vegetation and hardly

any tree cover. In each subfigure in Fig. 6, the results of the
classification without prior smoothing of the respective ground
points (light orange box plots) are compared in pairs with the
results of the classification with prior application of the spline-
based approach (dark green box plot). Each box plot shows the
range of the completeness, correctness and the F1-score as the
SVM parameter ν runs from 1% to 5% in 0.005 increments for
the respective dataset. Thus, nine paired values are included in
each of the plots.

In some of the plots, no whiskers (indicating the range from
the minimum value to the first quartile Q1 and the range from the
third quartile Q3 to the maximum value) and/or no horizontal
line (indicating the median value) are visible. This is due to
the fact that the validation is done on an object-by-object basis
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Fig. 6. Results of the OC-SVM terrain anomaly detection. Each box plot shows the distribution of completeness, correctness, and the F1-score as the SVM
parameter ν iterates from 1% to 5%. The light orange plots depict the results without spline-based processing of the filter results, the dark green plots depict the
results with spline-based processing of the filter results. For those validation quantities marked with *), the differences between the two means are statistically
significant (α = 0.05).

rather than pixelwise. For example, the validation dataset for
study area #1 contains ten anomalies. This means that, e.g., the
completeness can only take values in 0.1 steps in its value range.
In this way, for instance, it can occur that the minimum value is
equal to Q1 or the maximum value can be equal to Q3 (so that
one or both whiskers disappear) and/or the median is equal to
Q1 or Q3 (so that the horizontal line is not visible).

When comparing the results of the two study areas, it is
noticeable that the detection of the terrain anomalies in the study
area with less pronounced vegetation (area #2) has generally
higher accuracy values than in the area with dense vegetation
(area #1). It can be observed that in both study areas, a value
of 1.0 could be reached for the completeness, the maximum
value for the correctness, however, is 0.55 in area #1, and 0.83 in

area #2. The F1-score reaches a maximum value of 0.57 in
area #1, and a maximum value of 0.81 in area #2.

The detailed results for the two study areas underline the effect
of the different filters and splines on the final terrain anomaly
detection. In area #1, there is dense vegetation close to the ground
and individual tree cover. The SMRF algorithm Fig. 6(a) already
achieves an F1-score of 0.46 and a completeness of 0.8 without
the spline-based smoothing of the terrain points. The results are
improved in terms of the quality measurements by using the
splines. The completeness reaches values of 1.0. In contrast to
this, the sole use of the two other filters CSF and ATIN, Fig. 6(b)
and (c) is limited in terms of the quality measurements, e.g.,
resulting in F1-scores of 0.08 (CSF) and 0.16 (ATIN). However,
the results are improved by the additional use of the splines. For
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TABLE II
RESULTS FOR THE OC-SVM PARAMETERIZATION LEADING TO THE HIGHEST F1-SCORES

example, a completeness of 0.7 (CSF) or 0.8 (ATIN) is achieved,
the F1-score ranges from 0.29 to 0.5 (CSF) and from 0.25
to 0.57 (ATIN). The differences with respect to the completeness
when using SMRF or CSF Fig. 6(a) and (b) are remarkable,
however, their residuals are not normally distributed. Therefore,
the significance test could not be applied here. Except for the
correctness when using SMRF, the differences between the
two mean values in all other cases are statistically significant
(α = 0.05) for area #1.

In study area #2, which is characterized by hardly any tree
cover and only sparse near-ground vegetation, the filter methods
SMRF and CSF Fig. 6(d) and (e) already achieve completeness
values of more than 0.7 without the spline-based processing, and
even more than 0.8 when ATIN is used Fig. 6(f). The correct-
ness reaches values of at most 0.83 (SMRF), 0.45 (CSF), 0.63
(ATIN), the F1-score reaches values of at most 0.69 (SMRF),
0.51 (CSF), and 0.67 (ATIN). After applying the spline-based
processing step to the ground points, improvements are ob-
served with respect to the correctness and the F1-score for the
algorithms CSF (correctness 0.65, F1-score 0.65) and ATIN
(correctness 0.72, F1-score 0.74). The additional use of the
splines also improves the performance of the SMRF filter in
terms of the F1-score (0.81) and the completeness (1.0). The
improvements achieved by applying the spline approximation
are statistically significant for the completeness when using
SMRF, for the correctness when using CSF or ATIN and for
the F1-score, independent of the filter algorithm used.

Table II summarizes the results for the OC-SVM parameteri-
zations that lead to the highest F1-scores in our study areas. As an
example, Fig. 7 shows maps with the classification results using
CSF as the filter method. On the left-hand side on each figure,
hillshade visualizations of the DTMs are shown to illustrate the
visual differences between the filter results without and with
applying the spline-based processing step. On the right-hand
side, the OC-SVM anomaly detection results for each DTM are
presented. Pixels colored in black have a value of −1 and thus
indicate an anomaly. The locations of known terrain anomalies
from the ground truth datasets are marked by red circles. The
terrain anomalies in study area #1 are mainly lined up in a row
from north-west to south-east. In study area #2, they are spatially
more evenly distributed.

The smoothing effect achieved by applying the spline-based
processing step is visible by looking at the hillshade visualiza-
tions of the filter results without and with the splines. Besides,
elongated objects are visible in both study areas, especially in

area #2. They were not eliminated by the filter algorithm, but
obviously removed during the spline-based processing step.

In the right-hand side column [see Fig. 7(b), (d), (f), and
(h)], the OC-SVM anomaly detection results are depicted. Each
anomaly (spatially contiguous black pixels) that intersects one
of the red circles of the ground truth dataset represents a correct
classification, i.e., a TP. An anomaly in the classification result
that has no spatial correspondence to an object of the ground
truth dataset is counted as FP. Likewise, if an object from the
ground truth dataset has no equivalent in the classification result,
it is counted as FN. The visual interpretation of the results
in study area #1 underlines the (significant) increase in both
completeness and correctness, which was already confirmed
by the quantitative validation in Fig. 6 and Table II. When
comparing the results with the highest F1-score, the values
achieved when using CSF increase from 0.2 (without splines)
to 0.5 (with splines) for the completeness and from 0.05 to 0.5 for
the correctness. This is also confirmed by a visual interpretation
of the results shown in Fig. 7(b) and (d). The total number of
misclassified anomalies is reduced (FP), which increases the
correctness [see (4)], however, at the same time a few more
terrain anomalies were correctly labeled as anomaly (more TP,
fewer FN), which leads to higher values for the completeness
[see (3)].

Contrary to study area #1, the completeness does not improve
in study area #2 when using CSF Fig. 6 and Table II, however,
the correctness increases from 0.42 to 0.65 when comparing the
results with the highest F1-score, respectively. Hence, Fig. 7(f)
and (h) shows how the number of falsely detected objects de-
creases in the classification result.

V. DISCUSSION

In this study, the problem of mapping historical terrain anoma-
lies with UAV-LiDAR data was addressed. We proposed a work-
flow that is based on the extension of commonly used filters by
splines as well as OC-SVM to map the terrain anomalies. Three
research questions were stated at the beginning relating to i)
the spline-based approach, ii) the general performance of the
OC-SVM, and iii) the impact of the low vegetation.

The qualitative improvements achieved by using the spline
approximation are already confirmed by a visual interpretation
of the hillshade visualizations of the DTMs. Fig. 7 illustrates this
using the CSF filter as an example. In study area #1 Fig. 7(a)
and (c), the noise caused by the dense near-ground vegetation
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Fig. 7. Classification results using CSF as the filter method, without and with splines. Study area #1: (a) CSF (hillshade). (b) OC-SVM classification result of (a).
(c) CSF with subsequent spline-based processing (hillshade). (d) OC-SVM classification result of (c). Study area #2: (e) CSF (hillshade). (f) OC-SVM classification
result of (e). (g) CSF with subsequent spline-based processing (hillshade). (h) OC-SVM classification result of (g).
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could be drastically reduced by applying the additional spline-
based processing. The terrain anomalies would not be visually
identifiable without improving the filter result. In study area #2,
elongated objects were still present in the DTMs after the initial
filtering [Fig. 7(e)]. These are attributable to deadwood, because
deforestation processes took place in the Kall Valley in the
past years [4]. Other studies confirm that laser scanning is a
widely used remote sensing method to detect coarse woody
debris [75], [76], however, improper filtering of the LiDAR
data can be problematic when trying to separate ground from
deadwood [77]. After applying the splines to the filter result
[Fig. 7(g)], the deadwood structures are removed from the data.

Furthermore, it can be quantitatively stated that the F1-score is
always higher when using splines than without using splines (it is
up to 42% points higher in area #1 and up to 14% points higher in
area #2, see Table II). The spline-based processing step thus pro-
vides an additional benefit in this regard and apparently works
well in this type of terrain. This confirms the research presented
by Mongus and Žalik [78]. The authors also consider splines
to be a suitable method for surface interpolation, especially in
order to filter areas with steep slopes and vegetation. However,
they used ALS data with lower resolution (approx. 0.5–3 points
per square meter) on a different scale. Overall, it can be assessed
that the extension of common ground filters by splines highlights
the terrain anomalies in the DTM. Including the spline-based
approximation of the terrain surface into the filtering process
proofs useful in order to remove low vegetation and thus better
identify terrain anomalies.

Moreover, we have investigated the general performance of
a OC-SVM to automatically detect terrain anomalies. We de-
veloped an OC-SVM methodology in an unsupervised manner.
The input features were generated by calculating a DMP from the
DTMs. By applying this procedure to the different DTMs, terrain
anomaly detection was performed and validation quantities of
the classifications were calculated. Similar to e.g., [43], [63], we
tested values between 1% and 5% for the OC-SVM parameter ν,
which acts as the regularization parameter by allowing a soft
margin to a certain extent. Also in our two study sites, the choice
of this parameter in this range of values leads to acceptable (study
area #1) or good (study area #2) results. Setting the parameter
even higher would mean allowing more misclassifications, i.e.,
more anomalous pixels, during the training phase. This would
lead to more terrain anomalies being detected as such in the
classification result afterward (increasing of the completeness),
but would generally also result in more FP (decreasing of the
correctness). Conversely, setting the parameter ν even lower
would result in a less permeable margin, making the model less
general. Thus, fewer pixels would be reported as anomalous in
the classification stage, decreasing the completeness but poten-
tially increasing the correctness. In both cases, however, there
would be no substantial improvement in terms of the F1-score,
but this accuracy measurement should always be considered as
well. Assuming the entire image is classified as anomalous, this
would result in a completeness of 1.0, but of course such a result
would not be usable at all. Hence, increasing or decreasing the
parameter ν further would not produce more useful results for
this application.

Although the computation time of the proposed workflow
was not focus of this study, the runtime can be easily reduced:
Since the final classification decision is based on several SVM
instances, which all work independently and are only brought
together at the end (ensemble classifier), the method can easily
be parallelized.

In our final research questions we investigated the impact of
different densities of near-ground vegetation on the detection
results and the performance of different filter techniques. In
general, the removal of near-ground vegetation LiDAR data
points positively affects the classification results. In both study
areas, the F1-score increases significantly.

In study area #1, where dense near-ground vegetation is
present, the validation measurements increase significantly
when using CSF or ATIN together with the spline-based ap-
proach. This does not apply to SMRF in study area #1. This
filter algorithm apparently generates a better filter result in this
situation than the other two. SMRF is the only algorithm that
reaches a completeness value of 1.0 after applying the splines
(the completeness is 0.8 when taking into account the highest
F1-score). From this it can be concluded that SMRF is more
suitable than the CSF method or the TIN-based ATIN filter
when a lot of dense low vegetation is present in an area. This is
confirmed to some extent by the research presented in [19], [72],
who also consider the morphological-based ground filter SMRF
more suitable for this type of terrain situation (terrain with slopes
and dense low vegetation) than the other filters. Nevertheless, it
can be stated that by applying the spline-based approach in order
to remove low vegetation, we were able to improve the other two
filter results in such a way that they become more comparable
in terms of the F1-score.

In study area #2, where ground-level vegetation is much less
abundant than in area #1, the classifications of the different filter
results are more similar to each other from the outset. Therefore,
the negative impact of the vegetation on the terrain anomaly
detection is lower when compared to study area #1, and the
filters CSF and ATIN generate more adequate results. However,
deadwood was still present in the initial filter results (see the
previous). Its removal apparently leads to less misclassifications
of the OC-SVM, thus increasing especially the correctness. The
completeness was not significantly increased when using CSF
or ATIN. On the contrary, the opposite is true for SMRF: The
completeness could be significantly increased up to a value
of 1.0. Applying the splines to the results of SMRF results in
more terrain anomalies being detected as such, which confirms
the abovementioned statement.

There are deciduous trees present in study area #1, whereas
there are hardly any trees in study area #2. However, it is unlikely
that the tree population influenced the results of this study. Laser
scanner beams penetrate the vegetation up to a certain extent [7],
and since the data acquisition took place in winter during leaf-
off season, the presence of defoliated deciduous trees plays
a subordinate role for the scanning of terrain anomalies [19].
Deforestation has only been occurring more frequently in recent
years [4], so that longer-term processes, such as soil erosion can
be ruled out. Therefore, the differences described previously are
attributed to the low vegetation.
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In summary, with respect to this research question, ground-
level vegetation and its removal have an impact on the de-
tectability of historical terrain anomalies. This contrasts to some
extent with the results of Bollandsås et al. [79]. The authors
stated no significant effect on the detection rate of historical
remains when smoothing the DTM, however, they use ALS
data instead of UAV-based LiDAR data. On the one hand, their
ALS data has point densities that range between 1− 10 points
per square meter, which is 10− 100 times lower than the point
density of the UAV-based LiDAR data that we acquired in the
Kall Valley. On the other hand, the laser footprint diameter
on the surface—which is also a measurement of how detailed
the surface and objects can be captured [20]—is much higher
for airplane-based laser systems than for UAV-based systems
(in the order of decimeters versus centimeters [19]). For these
two reasons, a drone-based laser scanning system accordingly
captures more detailed, smaller objects from the outset, which
then correspondingly also include low objects (i.e., deadwood)
or vegetation near the ground. The challenges of the filtering
procedure to separate terrain from nonterrain points are therefore
different from those of airplane-based systems, which explains
the differences to the study mentioned previously. Of course,
in general, a drone-based system can detect smaller historical
terrain anomalies than an aircraft depending on the different
spatial resolution, therefore the scale for the application of the
systems should be considered.

The detailed validation underlines the general suitability of
the proposed workflow for detecting historical terrain anomalies
with UAV-LiDAR data. It is noticeable that the achieved values
for the completeness are generally higher than the correctness,
i.e., no or only a few terrain anomalies were missed by the clas-
sification (FN/error of omission that influences the complete-
ness), whereas the approach tends to misclassify nonanomaly
objects as anomalies (FP/error of commission that influences
the correctness). In order to serve as an effective support for
subsequent fieldwork and reduce the time spent on the field, it
is more important to detect as many anomalies in an area as
possible than to produce as few FP as possible. An experienced
historian or geographer could easily verify if an object from
the classification dataset is indeed a terrain anomaly, or if it
turns out to be a FP. All objects included in the classification
result would only have to be examined once in the field. On the
contrary, errors of omission would be much more difficult to
detect when being on-site. Theoretically, the entire area would
always have to be examined for FN, which would mean that the
classification result would no longer provide any added value. A
similar estimate of the impact of the different error types on the
suitability for archaeological/historical purposes can be found in
e.g., [21], [27], [29]. Therefore, we can state that our approach
is applicable to support on-site prospection.

Further research could mainly address the following three
aspects. First, the applicability of the methodology for terrain
anomalies with other shapes could be investigated. On the one
hand, this can refer to the shape of the objects from a bird’s
eye view (e.g., rectangular instead of round). By adjusting the
DMP by using a rectangular structuring element instead of a
circular one, it will be possible to extract such shapes from the

terrain models as well. On the other hand, this can also refer
to convex rather than concave anomalies. Second, the use of
additional information, such as the (usually monochromatic, i.e.,
single-band) LiDAR return intensity could be tested. It is partly
related to the moisture content of the surface [80] and could
therefore help to distinguish between terrain anomalies and their
surroundings. Third, the transferability with respect to other
UAV data could be investigated, for example photogrammetric
point clouds generated with structure from motion algorithms
from optical RGB drone imagery. These approaches could also
capture the geometry of historical terrain anomalies (depending
on the elevation differences), but it is to be expected that these
will be able to capture little to no ground information, especially
in densely vegetated areas. However, such systems could still
potentially be a more cost-effective alternative to UAV-LiDAR.

The research presented in this study provides a benefit for
mapping and documenting historical terrain anomalies. This
is particularly important because these landscapes are subject
to (mostly anthropogenic) transformation processes caused by
climate change, deforestation or re-enactors [4]. This also un-
derlines the importance of field surveys that can be conducted
following a remote sensing campaign.

VI. CONCLUSION

In this study, we proposed a workflow to detect terrain anoma-
lies in a historical conflict landscape using UAV-LiDAR data.
The results showed that the morphological ground filter was
the most suitable when dense near-ground vegetation is present.
By adding the spline-based processing step into the filtering
procedure, the other two filters used were improved in such a
way that their results become more comparable to each other
in terms of the F1-score. Generally, the completeness (recall)
was higher than the correctness (precision). However, in the
research field of historical terrain anomaly detection, it is more
important to detect as many anomalies in an area as possible
than to produce as few FP as possible. Therefore, our approach
can support on-site prospection.
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