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Abstract: Semi-natural grasslands (SNGs) are an essential part of European cultural landscapes.
They are an important habitat for many animal and plant species and offer a variety of ecological
functions. Diverse plant communities have evolved over time depending on environmental and
management factors in grasslands. These different plant communities offer multiple ecosystem
services and also have an effect on the forage value of fodder for domestic livestock. However, with
increasing intensification in agriculture and the loss of SNGs, the biodiversity of grasslands continues
to decline. In this paper, we present a method to spatially classify plant communities in grasslands in
order to identify and map plant communities and weed species that occur in a semi-natural meadow.
For this, high-resolution multispectral remote sensing data were captured by an unmanned aerial
vehicle (UAV) in regular intervals and classified by a convolutional neural network (CNN). As the
study area, a heterogeneous semi-natural hay meadow with first- and second-growth vegetation
was chosen. Botanical relevés of fixed plots were used as ground truth and independent test data.
Accuracies up to 88% on these independent test data were achieved, showing the great potential of
the usage of CNNs for plant community mapping in high-resolution UAV data for ecological and
agricultural applications.

Keywords: convolutional neural networks (CNNs); remote sensing; unmanned aerial vehicles
(UAVs); semi-natural grasslands; plant communities

1. Introduction

In Central Europe, semi-natural grasslands (SNGs) are an essential part of ancient
cultural landscapes. They have developed over centuries of anthropogenic land use by
grazing and mowing [1,2]. Until the 19th century, most European SNGs were used as
pastures, whereas hay meadows developed mainly over the last 100 to 150 years [1].
The highest diversity of species and plant communities in grasslands was reached in the
middle of the 19th century [2]. Increasing intensification of land use, however, has led to
decreasing species richness, especially since the 1950s [3,4]. Furthermore, the area used
as grasslands in Germany decreased continuously from the 1970s until 2013. Since then,
a reform of the common agricultural policy of the European Union (EU) regulates the
transformation of grasslands into arable land [5]. Furthermore, subsidies for biodiversity-
friendly use of grasslands were included as greening in the subsidy scheme of the EU [1].
For example, in Lower Saxony subsidies were granted for low-intensity use of high-nature-
value grasslands [6]. This included a ban on mineral nitrogen fertilizers or pesticides and a
prescribed earliest date for mowing.

Contrastingly, agriculturally improved grasslands are used, e.g., for dairy farming.
Here, a high energy and protein concentration in the forage is required for increasing the
milk production of the individual animal [7]. This is achieved by special grass cultivars
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and fertilizer application, which increase the number of mowings possible per year. Yield
from SNG is not always processed into silage for milk production but can also be cut once
or twice a year to produce hay in the traditional way, which maintains species richness [8].
If this hay is not fed to cattle or sheep but to horses, special importance must be paid
to its plant species composition. Horses do not tolerate some Lolium or Festuca species
due to their high fructose content [9,10]. Furthermore, these grass species may contain
endophytic fungi that make them highly resistant to environmental conditions [11] and
are harmful to horses but not ruminants [12]. Apart from their usage as fodder for meat,
dairy, and wool production, SNGs’ multiple ecosystem services include good groundwater
quality and quantity, water flow regulation, carbon storage, mitigation of greenhouse gas
fluxes, and erosion prevention, as well as cultural and health values. [13]. Furthermore,
they are a habitat for many plant and animal species [13]. Both ecosystem services and
habitat conditions of grasslands cannot be determined by mapping land use or land cover
type only, because of the spatial variability in the biophysical variables [14]. Ecosystem
services can vary over land use or land cover types [15], as species abundance and diversity
in grassland plant communities influence their provision [16]. The composition of plant
communities can change due to spatiotemporal dynamics, like water balance in the soil,
light availability, or management [17].

To monitor vegetation structure and species composition, field-based methods in the
form of phytosociological relevés are commonly used but are rather time-consuming [18,19].
In contrast, remote sensing is a cost-effective and non-destructive alternative, which is
increasingly applied to get vegetation data of large-scale areas or areas showing spatiotem-
poral dynamics [20–23]. On a large scale, various remote sensing systems can be used to
classify plant communities in grasslands. The authors of [24,25] used spaceborne data
as a combination of multispectral and/or radar time series, whereas [20] analyzed air-
borne LiDAR. Over the last years, UAVs are increasingly used for ecological tasks on a
smaller scale [26]. As an example, they were used in grasslands for the estimation of
biodiversity [27], species and vegetation functional groups classification [23,28,29], forage
quality, and biomass prediction [30,31] as well as for the detection of weed plants [32,33].
Various methodological approaches are suitable for the classification of plant communities
in remote sensing data. To use the influence of phenology, some studies use multitemporal
data for species and plant community classification [23,29]. The authors of [24,29] used
machine learning techniques such as support vector machine and random forest for the
classification of species and plant communities in grasslands. The authors of [34,35] tested
the suitability of convolutional neural networks (CNNs) for their classification of plant
communities in shrublands and forests. Recently, CNNs have been increasingly applied
for the analysis of remote sensing data [36], but also specifically in vegetation remote
sensing [22]. CNNs are particularly suitable for the detection of spatial patterns. As plant
communities in grasslands are formed by plants of different heights and shapes, the spatial
pattern is, in addition to spectral information, a strong feature for separation.

In our study, plant communities in a semi-natural hay meadow in northwestern
Germany were classified with UAV imagery using CNNs. The aim is to use CNNs (1) to
analyze the spatial distribution of the plant community composition before the first and
second cut of the grassland vegetation and (2) to map the distribution of weed species with
low forage value. Thereby, (3) the usage of mono- and multitemporal data for the mapping
of plant communities with respect to the phenological phases is compared.

2. Material and Methods
2.1. Study Site

This study focuses on a 2.3 ha semi-natural meadow in the Osnabrück district, Lower
Saxony, Germany (52.18°N, 8.10°E), as visible in Figure 1. According to the official soil
survey map [37], the soil is predominantly gley, with part of the northern area being plaggic
anthrosol. The climate is temperate oceanic, with an annual precipitation of 835 mm and a
mean air temperature of 8.8 °C [38].
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This survey covers the first growth (G1) of plants from the beginning of May 2021
until the first mowing in the middle of June 2021, and the second growth (G2) until the
second mowing at the end of August 2021. The SNG can be assigned to the class Molino-
Arrhenatheretea and the order Arrhenatheretalia [2]. Over the past 5 years, the study site
was used twice a year for hay production according to the agri-environmental measure for
low-intensity use of grasslands in Lower Saxony GL11 [6]. Before that, it had been used as
a cattle pasture for about 30 years and a heterogeneous structure of plant communities had
developed.

Study site

Figure 1. Location of the study site in Germany (top left) and the district of Osnabrück (bottom left).
Orthomosaic and grassland vegetation of one plot of 06/08/2021 (right).

2.2. Data and Preprocessing
2.2.1. UAV Image Data

UAV data for this study were captured using a DJI Phantom 4 multispectral. The
camera system offers five single-spectral cameras (blue (450 ± 16 nm), green (560 ± 16 nm),
red (650 ± 16 nm), red edge (730 ± 16 nm), and infrared (840 ± 26 nm)) as well as an RGB
camera. Each sensor has a resolution of 2.08 Megapixels and a focal length of 5.74 mm.
Due to the flight altitude of 35 m a resolution of less then two centimeters was achieved.
Images were taken on four dates during the first growth G1 (Table 1, G1T0-G1T3), and four
dates during the second growth G2 (Table 1, G2T0-G2T3). Flights took place during noon
(between 11 am and 3 pm) to minimize the influence of shadows. Each flight took about 30
to 35 min. The weather conditions on the observation days were inconsistent (see Table 1).
Eight to ten field targets were placed before the flights and used as ground control points
(GCPs). The center of each target was located using a differential GPS (bi-frequent GNSS
receiver). On each observation day, around 350 images per channel were made with a front
and side overlap of 70%. The images were stitched to a multispectral orthomosaic using
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Agisoft Metashape software (version V1.7.2), georeferenced using the GCPs, and clipped to
the extent of the study site.

Table 1. Growth, observation dates and times, number of botanically observed plots, weather
conditions, and wind speed during the flights.

Growth ID Date Time of Flight No. of Plots Weather Conditions Wind
Speed

Growth 1 G1T0 05/03/2021 10:58 a.m.–11:24 a.m. 0 closed cloud cover 2 m/s
Growth 1 G1T1 05/12/2021 2:47 p.m.–3:11 p.m. 30 closed cloud cover 5.7 m/s
Growth 1 G1T2 05/28/2021 1:59 p.m.–2:28 p.m. 30 sunny with a few clouds 6.4 m/s
Growth 1 G1T3 06/08/2021 2:06 p.m.–2:30 p.m. 29 closed cloud cover 2.9 m/s

Growth 2 G2T0 06/25/2021 12:45 a.m.–1:22 p.m. 0 sunny and cloudless 3.9 m/s
Growth 2 G2T1 07/12/2021 11:22 a.m.–11:47 a.m. 35 sunny and cloudless 1.6 m/s
Growth 2 G2T2 07/27/2021 11:22 a.m.–11:49 a.m. 35 first sunny, then cloudy 2.2 m/s
Growth 2 G2T3 08/06/2021 11:13 a.m.–11:44 a.m. 35 closed cloud cover 2.2 m/s

2.2.2. Vegetation Surveys in the Field

A total of 30 plots were stratified randomly distributed and marked during the first
growth. For this, homogeneous areas were visually identified based on dominant species
and 1 m × 1 m plots were placed. The four corner points of a plot were captured using a
differential GPS. The area of one square meter is less than the minimum area of 10–25 m2

recommended for botanical examinations in pastures [18], but to generate a variety of
training data, a smaller plot size was chosen. At date G1T3, plot 26 was damaged and some
of the vegetation was removed, leaving only 29 plots to be recorded (Table 1). After the
first mowing, the existing plots were marked again and extended by five more plots. On
six observation days, T1–T3 in each growth, vegetation relevés were recorded by visual
cover estimation after the UAV flight using the scale of [39]. As many characteristic and
indicative species were not fully grown at both G1T0 (early in the vegetation period) and
G2T0 (immediately after mowing), no botanical data were recorded at these times.

2.3. Methodology
2.3.1. Analysis of Vegetation Data

We used the nomenclature for plant species according to [40]. Vegetation units (VUs)
were formed by sorting the relevés in each growth by similar composition. The species
in these VUs were sorted to form species groups. These groups show dominant species
within the VUs. Four VUs were formed in the first growth, and three in the second. The
plant species of a VU were listed in terms of their frequency to validate the separation into
plant communities with the help of Ellenberg indicator values (EIV): soil moisture number
(M, 1 = strong soil dryness, 5 = moist, 9 = wet, 12 = underwater), soil reaction number
(R, 1 = extremely acidic, 5 = mildly acidic, 9 = alkaline) and nutrient number (N, 1 = least,
5 = average, 9 = excessive supply) [41]. The weighted means were calculated using the
indicator values presented. The forage value, considering for example the protein and
mineral content of the VUs, was determined using the values of [42].

2.3.2. Training and Test Data

The data used to train the CNN were obtained from the orthomosaics by visual
interpretation and knowledge of the vegetation composition and regarding the time series.
Since the plots were placed in homogeneous areas, it was assumed that the adjacent
areas were dominated by the same plant community. Further training data for the VU
dominated by Rumex obtusifolius could be obtained on the whole area, as this plant was
easily identifiable. For each VU except for the one dominated by Rumex obtusifolius, 100
non-overlapping samples were taken in the homogeneous area around the observed plots.
Only 30 samples of Rumex obtusifolius were taken because the plants in the study site were
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limited. Each training sample had an actual size of 1 × 1 m, according to the size of
the plots, which corresponds to a size of 53 ± 1 × 53 ± 1 pixels. Following common
standards to enhance the number of training samples [43], they were augmented as follows:
Resampling to 64 × 64 pixels with nearest neighbor, rotating and flipping, and sporadic
application of a median filter (kernel size 3) to add blur [44]. For use in the CNN, a random
75% (random state = 42) of the training data were used for training, the remaining 25% was
used as a dependent test set for validation.

The spectral data of the observed plots were clipped and used for independent valida-
tion. Since the plot orientation does not correspond to the raster, the clipped plot samples
were rotated and resampled. To avoid misclassification, a CNN with the same structure as
shown in Table 2 was trained to binary classify objects that are not part of the vegetation.
For this, training data were collected from fence posts, bare soil, fawns, molehills, and
targets and augmented as described above.

Table 2. Architecture of the used CNN.

Layer Parameter

Input 64 × 64 × 5
Conv2D_1 Filter: 32, Kernel: 3 × 3, Strides: 2 × 2, Activation: ReLU
BatchNormalization -
Dropout 0.1
Conv2D_2 Filter: 128, Kernel: 3 × 3, Strides: 2 × 2, Activation: ReLU
BatchNormalization -
Dropout 0.1
Reshape -
FullyConnected_1 Dense: 64, Activation: ReLU
BatchNormalization -
Dropout 0.2
FullyConnected_2 Dense: n, Activation: Softmax

2.3.3. CNN

The structure of CNNs is inspired by the biological structure of a brain. Both consist
of repeating layers of simple and complex cells to solve segmentation, detection, and
localization tasks [36]. The first CNNs were presented in the late 1980s, e.g., by [45] for
the recognition of handwriting digits. Nowadays, they are the leading model for image
classification, detection, and recognition tasks [36]. Each convolutional layer of a CNN
extracts features and local conjunctions of the previous layer with weighted neurons. For
this, kernels of a certain size are used to pass over the feature map or filter, and forwarded
to a nonlinear activation function, e.g., rectified linear units (ReLU) [46]. There are two
commonly applied techniques to simplify and aggregate the outputs of a convolutional
layer. The first is to insert pooling layers. For this, features are merged (e.g., using the
maximum or average value) with a pooling kernel to reduce the spacial resolution and
decorrelate the features [47]. The second is the use of strides instead of pooling. Strides
describe the step size of the kernel, and by increasing their size, the spatial resolution
can be reduced. They are useful when input sizes are small [48] and are also utilized in
more complex architectures such as ResNet to achieve higher accuracy and increase the
training and classification speed [49]. Several convolutional layers in series can derive
abstract features of the input. Fully connected layers of neurons and weights, as in standard
neural networks, are attached to this to interpret these abstract features. For classification
problems, in general a softmax function is used as the activation function in the last fully
connected layer [46].

The CNN applied in this study was created with TensorFlow’s Keras Python API
(version 2.3.1). Its structure is shown in Table 2. Two convolutional layers, the first with
32 filters, the second with 128 filters, and two fully connected layers, the first of size
64, the second of size n, which is the number of output classes, were implemented. A
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softmax activation function in combination with a cross-entropy loss function (also known
as categorical cross-entropy loss [50]) was used in this last layer to give a probability for
the predicted output. The model utilizes Adam as an optimizer because it showed good
results for CNNs [51]. Strides are applied within the convolutional layers to aggregate the
features. A ReLU activation function is used for the two convolutional layers and the first
dense layer. The performance of the CNN is improved via batch normalization [52]. To
reduce overfitting and improve generalization, the L2 kernel regularizer and dropouts are
applied as regularization methods [22,53].

2.3.4. Classification

Five different training sets were independently used to train CNNs with the structure
described in Table 2: first, a binary training set for the identification of non-vegetation
objects; second, a multispectral training set with the identified four vegetation units for
G1T3; third, a multitemporal training set for G1; fourth, a multispectral training set with
the three vegetation units for G2T3 and last a multitemporal training set for G2. For the
monotemporal classification, both G1T3 and G2T3 were chosen, as they are closest to the
harvest date in each growth and therefore most relevant for agricultural purposes. The
models trained on vegetation units were used to classify the whole orthomosaic via a mov-
ing window approach to select and classify squared subimages. For both monotemporal
models, each subimage was first classified with the object identification model to exclude
misclassifications and then classified by the monotemporal model. The subimages of the
multitemporal models were not pre-classified with the object identification model, since
it was assumed that misclassifications of objects that only appear at a specific date can be
avoided by the multitemporal features. The classification results of the subimages were
aligned and rasterized with n channels. This workflow is depictured in Figure 2.

Training and Validation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CNN 

Preprocessing Classification

UAV Data
Orthomosaic

Georeferencing

Stack

Clip

Ground
Truth

Spectral Plot Data

Floristic Typology
Training Data

Test Data

Validation

Object Identification
Object

Training
Data

G1-T0-3

G1-T3

G2-T0-3

G2-T3

Mono-
temporal

Classification

Multi-
temporal

Classification

Figure 2. Schematic workflow of preprocessing, training, validation, and classification.

2.3.5. Validation Metrics

For evaluation of the classification model and the generated maps both dependent
test data, which were 25% of the augmented samples set aside prior to training, and
independent data, which were the resampled spectral information of the observed plots,
were used. The number of true positives (tp), true negatives (tn), false negatives ( fn), and
false positives ( fp) were calculated by using confusion matrices for each classification and
for both the dependent and independent test data. The threshold for class probability was
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set to 50%; classification results below this threshold were listed as misclassification. The
following metrics were used to estimate the performance of the models [54]:

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

Overall Accuracy =
tp + tn

tp + tn + fp + fn
(3)

3. Results
3.1. Floristic Typology

We grouped the vegetation relevés of the first growth in three plant communities
(see Appendix A) plus the VU dominated by Rumex obtusifolius. In both growths, VUs
of a Lolium perenne-community and a Alopecurus pratensis-community could be found.
In the first growth, we also identified a Bromus hordeaceus community. No dominant
stands of this community could be found in the second growth. Common species of
Arrhenatheretalia occur in all VUs (Appendix A, other species). Species groups highlighted
in Appendix A were used to differentiate the individual VUs and to show phenological
differences between the growths. Appendix B shows the VUs with their mean forage value
and EIV. All values for both M, R, and N are in the moderate range (5–7).

3.2. Phenological Change in Species Spectrum

The influence of phenology is indicated by the shifting species spectrum of the species
groups between the two growths and the percentage frequency of individual species
(Appendix A). Although Holcus lanatus was found over the entire study site in the first
growth, it was suppressed by other species such as Alopecurus pratensis or Lolium perenne in
the second growth. During the first growth, the Bromus hordeaceus-community was present
in some subareas, but in the second growth Bromus hordeaceus was only found sporadically
in areas of the Alopecurus pratensis-community. Other grasses, such as Phalaris arundinacea
or Cynosurus cristatus, were more abundant in the second growth. The flowering spectrum
of the study site also changes with the seasons, following the phenological phases. In
the first growth, all three plant communities showed a prominent flowering aspect with
Taraxacum officinale, Cerastium fontanum, Ranunculus repens, and Cardamine pratensis. In the
first growth, flowers of Trifolium repens, Veronica chamaedrys, and Ajuga reptans appeared
in the Lolium perenne-community and in the Alopecurus pratensis-community some Lychnis
flos-cuculi. In the second growth, the flowering aspect of the Lolium perenne-community
was dominated by Centaurea jacea, Trifolium repens and Crepis biennis (species group D3),
whereas the Alopecurus pratensis-community showed barely any flowering plants. Not only
the flowering aspect of the herbs but also the flowering of the grasses was a relevant feature
differentiating the two growths. Mowing in the first growth took place during the flowering
of Holcus lanatus, Poa pratensis, and Poa trivialis, and their flowering aspect is therefore
prominent. In the second growth, barely any flowering grasses were present; flowering
Phleum pratense, Cynosurus cristatus and Agrostis capillaris were found sporadically, but not,
or only weakly, visible in the orthomosaics.

3.3. Separability of Training Data

The mean values for training set and plot samples for G1T3 and G2T3 in blue vs. green
and red vs. infrared band combinations were shown in Figure 3.

The samples of the VUs formed clusters which partially overlap. In particular, the
spectral samples of the Rumex obtusifolius plants could not be well separated. In blue vs.
green band combinations, the clusters were better separated than in the red vs. infrared
combination. It was noticeable that the spectral values of the Lolium perenne-community
and the Alopecurus pratensis-community show higher variance and mean values at G2T3
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than at G1T3. Furthermore, the samples at date G2T3 showed a higher reflectance in the
green and infrared band than the samples at G1T3. This was caused by the prominent
flower aspect of the grasses at G1T3.
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Figure 3. Scatter plots of the samples of the dependent (◦) and independent (+) test data in blue vs.
green and red vs. infrared. Colors are used as follows: grey: Rumex obtusifolius plants, blue: Lolium
perenne-community, red: Alopecurus pratensis-community, green: Bromus Hordeaceus-community.

3.4. Classification Results

In Table 3, a summary of the validation of the monotemporal VU classification (G1T3
and G2T3), the multitemporal VU classification (G1 and G2) and the object identification
(OI) can be found. All five classification models reached overall accuracies > 91% on
the dependent test data. On the independent test data, the overall accuracy of the VU
classifications reached from 68% to 88%. On both the dependent and independent test
data, the multitemporal classification of G1 got the lowest overall accuracy. In this, worse
accuracies appeared for the classification of Rumex obtusifolius (precision and recall of 0%)
and the Alopecurus pratensis-community (precision: 70%, recall: 58.33%).

The result maps of the classifications for G1 and G2 are shown in Figure 4. Both the
monotemporal and the multitemporal classifications highlight similar spatial vegetation
patterns. In both dates, the transition ranges between VUs were smaller in the multitem-
poral classification. In the multitemporal classification of G1, more homogeneous areas
could be found than in the monotemporal classification. In G2, the results show strong sim-
ilarities, but differ mainly at the western edge. Subsets of a Rumex obtusifolius-dominated
area of the classification results are depicted in Figure 4. Rumex obtusifolius was mainly
recognized in the multitemporal classification result of G2. The areas eliminated by the
object identification appear as white areas in the results of the monotemporal classifications.
In G1T3, especially the area of open ground in the center of the subset was not classified.
In G2T3, individual molehills were not included in the classification. In the multitemporal
classification, these areas were assigned to the surrounding VUs.
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Lolium perenne-community

Alopecurus pratensis-communityRumex obtusifolius-plants

Monotemporal Classification of G₂T₃

Bromus hordeaceus-community

Multitemporal Classification of G₂

Monotemporal Classification of G₁T₃ Multitemporal Classification of G₁

Figure 4. Subsets of the classification results of the mono- and multitemporal model and orthomosaics
in RGB-color of G1T3 and G2T3.
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Table 3. Precision, recall, and overall accuracy (OA) (in %) for dependent and independent test data
of the four vegetation classifications for Rumex obtusifolium plants, the Lolium perenne-, Alopecurus
pratensis-, and Bromus hordeaceus-community and overall accuracy for the object identification (OI).

Precision in %

OARumex obtusifolius Lolium perenne- Alopecurus pratensis- Bromus hordeaceus-
plants community community community

G1T3 87.72 100 97.98 81.81 99.00 80.00 96.51 83.33 97.06 82.75
G2T3 96.25 33.33 95.51 78.95 97.11 81.82 96.01 71.43

G1 83.33 0.00 93.94 72.73 95.81 70.00 87.34 83.33 91.14 68.97
G2 96.62 100 95.12 94.11 97.68 86.67 95.72 88.57

Recall in %

G1T3 98.04 71.42 96.37 100 94.75 75 98.04 100 97.06 82.75
G2T3 95.06 33.33 97.50 78.95 94.39 69.23 96.01 71.43

G1 79.71 0.00 96.44 100 83.40 58.33 99.07 71.43 91.14 68.97
G2 98.85 66.67 97.82 84.21 92.32 100 95.72 88.57

OI 97.71

4. Discussion
4.1. Usability of the Presented Methodology in an Agricultural Context

To estimate the forage value of the mown plant material, it is useful to know its
species composition [42]. Since this varies spatially, a map is useful for yield estimation.
However, it must be considered that the identified plant communities are not static in
their composition and vary spatially and temporally [17]. The EIV of the VUs helps to
understand the characteristics of an area and to identify potentially more humid, acidic, or
nutrient-rich areas. Based on the EIV, few differences can be deduced, both for different
observation dates and between the three communities of Alopecurus pratensis, Lolium perenne,
and Bromus hordeaceus (see Appendix B). For assessment of forage quality, it is also helpful
to estimate the forage value of a VU (see Appendix B), and spatially identify weeds [55]. The
species Bromus hordeaceus and Rumex obtusifolius mentioned here as weeds are characterized
by a low forage value. As can be seen in Appendix A, Bromus hordeaceus is represented
over the entire area in G1. Bromus hordeaceus is a perennial, self-seeding grass that is
found primarily in patchy rich pastures [56]. If it exceeds 10% of the vegetation, it can
be considered a weed [55]. The areas dominated by Bromus hordeaceus during G1 were
classified as Alopecurus pratensis-community in G2.

Rumex obtusifolius occurs as a nitrogen and intensification indicator, as can be seen
by N = 9, but due to its high content of oxalic acids and tannins, it is not fed fresh or in
hay [42]. Due to its high seed potential, even a single plant should be controlled [55,57].
However, the occurrence of individual grass species that may be harmful to horses is only
partially demonstrated by monitoring plant communities. The abundance of individual
species within the plant community varies, possibly occurring only in sub-areas. To cover
this issue, a classification of more detailed vegetation units is necessary.

4.2. Comparison of Mono- and Multitemporal Data for Plant Community Mapping

In comparison of the mono- and multitemporal VU classification, it was noticeable
that larger homogeneous areas are found in both multitemporal classifications. Further-
more, class boundaries could be better delimited in the multitemporal results, and the
transition areas were smaller. This could be explained by the expanded feature space of the
multitemporal training data. As described in Section 3.2, both the flowering aspect and the
occurrence of individual species changed with the phenological phases. It could therefore
be assumed that the flowering aspect and the change in vegetation structure had a positive
influence on the multitemporal classification, as they should vary the same or similar
within a plant community over the vegetation period. However, the validation showed
that the monotemporal model for G1 had a higher accuracy on the independent plot data
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(82.75% to 68.97%, Table 3). For G2, the multitemporal model had a higher accuracy on the
independent plot data (88.57% to 71.43%, Table 3).

The authors of [23] showed an improvement of 5–10% in the accuracy of the classi-
fication of vegetation functional groups by using multitemporal data. The influence of
shadows and flowering was reduced when using data of different phenological stages.
In our work, this improvement was only visible in the validation of independent plot
data of G2, but in general, the multitemporal models showed a weaker overall accuracy
than the monotemporal models. It is possible that the multitemporal models could be
improved with extended training data. These models have more input neurons than the
monotemporal models and therefore need more data to properly learn the relevant fea-
tures. The classifier of the multitemporal classification of G1 showed problems, especially
in the detection of Rumex obtusifolius. This plant is small and barely detectable at early
observation dates of G1 and later overgrown by tall grass, whereas it was present in G2
from the beginning of the observation. The multitemporal classification of G1 showed
problems in the detection of the Alopecurus pratensis-community. At early dates, this class
was dominated by Alopecurus pratensis, but at later dates the flowering of Holcus lanatus
was also visible, especially in the transition areas to the other plant communities. Possibly,
these plants caused a decreased accuracy in the multitemporal classification because the
borders of the plant communities were less clear at G1T3. Some plots in the northwest of
the study site lay in the transition area between the Lolium perenne- and the Alopecurus
pratensis-community, which influences the separability.

Object identification showed good results in the monotemporal models (97.72% accu-
racy, Table 3). In the multitemporal models it was not necessary, because most objects (e.g.,
molehills) were not temporally stable. Areas that were not classified in the monotemporal
models are replaced by the surrounding VU in the multitemporal models (see subfigures
of Figure 4). So, areas removed by the object identification did not affect the applicability
and interpretability of the result map.

4.3. CNNs for Plant Community Classification in Grasslands

The spectral classes of the VUs could not be separated linearly. Although there were
correlations between class membership and spectral information (see Figure 3), these were
not sufficient for a separation. The samples of Rumex obtusifolius extended across the other
VUs and had no distinctive spectral signature. However, due to their size and structure in
rosettes [55], they could be easily distinguished from the surrounding grasses and herbs.
The detection of Rumex obtusifolius in grasslands with CNNs was already shown by [32];
the authors achieved an accuracy of over 91% on a monotemporal model. The accuracy
of the identification of Rumex obtusifolius with the models presented here varies. The
multitemporal model for G1 achieved the worst accuracy with 79.71% on the test set (0%
on the plot data). The best accuracy was achieved by the monotemporal model of G1 with
98.04% on the test set (100% on the plot data). The other classes are characterized not
only by different spectral values but also by a distinctive spatial structure. The Alopecurus
pratensis community is dominated by tall grasses, which are no longer upright because
of wind at later observation dates. Thus, a wavy structure becomes visible, which is less
apparent in the Lolium perenne-community, where mainly herbs and low grasses are found
(see Appendix A).

It was shown by other studies [34,35] that CNNs are suitable for the classification
of different plant communities. In this work, individual plants of the species Rumex
obtusifolius were identified in addition to the Lolium perenne-, Alopecurus pratensis-, and
Bromus hordeaceus-community. Different requirements for classifications of VUs show the
great potential of CNNs. A single network can infer and combine multiple spatial and
spectral nonlinear features. In this complex problem, good accuracies in separating multiple
plant communities and individual plants could be achieved. Even though only a single
study site was observed in two growing periods within this study, it can be assumed that
the presented methodology can be used in other grasslands with different or differently
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separated plant communities. For this, a database should be created from grasslands
in various expressions at the same or similar phenological phases. With this database,
plant communities in various grasslands could be classified with little effort and no deep
ecological and botanical knowledge.

5. Conclusions

This work presents a method for the detection of plant communities in grasslands
based on CNNs and UAV data. For this, UAV imagery and botanical data were collected at
regular intervals in a hay meadow during two growths. Four VUs, a Alopecurus pratensis-
community, a Lolium perenne-community, a Bromus hordeaceus-community, and Rumex
obtusifolius plants were identified and classified with CNNs. It was investigated whether a
multitemporal classification offers added value compared to a monotemporal classification.
However, it was shown that not all models trained for this purpose achieved the same
accuracy and the classification quality was influenced by phenology. For the preparation of
phytosociological relevés, expert knowledge is essential. This complicates the generation of
suitable training data for the presented models. Furthermore, only one study site with two
different plant communities and two weed species was observed. To transfer the presented
methodology to other grasslands to estimate the composition of the vegetation and thus the
forage quality, a database of additional grassland plant communities in different variants
at the same phenological phase would be necessary. The monotemporal model can give a
good impression of the spatial distribution of the different plant communities from a single
observation. It should further be investigated whether the accuracy of the multitemporal
model can be improved with additional training data.
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Appendix A

Table A1. Frequency values (in %) of species in the plant communities of Lolium perenne, Alopecurus
pratensis, and Bromus hordeaceus. Identified species groups indicating plant communities are marked.
Other species include common Arrhenatheretalia species not differentiating between vegetation types.
Note the changed order of the growths of the Alopecurus pratensis community for better visualization.

Lolium perenne- Alopecurus pratensis- Bromus hordeaceus-
Community Community Community

G1 G2 G2 G1 G1
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Species Group No. of Plots 8 13 19 12 7
D1 Anthoxanthum odoratum 38 38 38

Ranunculus acris 38 50
Veronica chamedrys 13 13 13
Ajuga reptans 13 13

D2 Lolium perenne 100 100 100 100 100 100 25 25 25 25 58 58
Centaurea jacea 13 13 13 13 13
Galium mollugo 13 13 13 13 13 13 29

D3 Crepis biennis 31 31 25
Agrostis capillaris 25 25 25
Trifolium pratense 25 25 25

D4 Cynosurus cristatus 38 38 38 44 44 44
D5 Phleum pratense 19 19 0

Stellaria media 19 13
Rumex obtusifolius 13 13 13
Lamium album 6 6 13
Capsella bursa-pastoris 6 6 6

D6 Alopecurus pratensis 38 50 63 13 13 13 100 100 100 100 100 100 28 71 71
D7 Phalaris arundinaea 38 38 38 8 8 8 14 14 14

Cirsium arvense 13 13 13 14 14 14
D8 Bromus hordeaceus 25 62 62 19 19 19 11 58 58 100 100 100

Other species Holcus lanatus 100 100 100 56 56 56 81 81 81 100 100 100 100 100 100
Poa pratensis 100 100 100 25 25 25 13 13 13 25 58 58 43 43 43
Plantago laneolata 100 100 100 100 100 100 68 65 43 44 8 8
Taraxacum officinale agg. 100 100 100 87 68 44 68 62 38 67 41 29
Cerastium fontanum 88 100 75 43 56 31 31 31 19 67 58 33 43 71 14
Ranunculus repens 38 50 75 68 62 56 38 31 31 16 29 29 29
Trifolium repens 63 13 13 38 31 13 19 13 6
Rumex acetosa 63 13 13 43 31 25 19 19 13 8 16
Poa trivialis 100 100 100 25 67 67 100 100 100
Festuca rubra agg. 67 100 100 13 13 13 42 67 67 57 57
Molinia caerulea 13 16 14
Cardamine pratensis 50 13 42 8
Lychnis flos-cuculi 16 16

Appendix B

Table A2. EIV and forage values for Rumex obtusifolius plants, the Lolium perenne-, and the Alopecurus
pratensis-communities in both growths and the Bromus hordeaceus-community in the first growth.

Rumex
obtusifolius

Plants
Lolium perenne-Community Alopecurus pratensis-Community

Bromus
hordeaceus-
Community

G1 & G2 G1 G2 G1 G2 G1

Ellenberg M 6 5.76 5.44 5.98 5.76 6.4
Ellenberg R X 6.2 6.42 6.25 6.02 6.0
Ellenberg N 9 7.17 6.41 6.68 6.37 4.97
Forage Value 2 6.26 6.59 6.67 6.4 5.26
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