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Abstract: Epidemiological evidence supports an association between cow’s milk consumption and
the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma
worldwide. This narrative review intends to elucidate the potential impact of milk-related agents,
predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis.
Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expres-
sion of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1
(BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL.
Translational evidence indicates that during the breastfeeding period, human MDE miRs support
B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of
DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-
induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-
targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling,
the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell
maturation for adequate own antibody production rises. Because human and bovine MDE miRs
share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the
continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal
“proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persis-
tent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a
novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be
considered potential pathogens that should be removed from the human food chain.

Keywords: B cell differentiation; B cell proliferation; BCL6; BLIMP1; diffuse large B-cell lymphoma;
lymphomagenesis; microRNA; milk; milk-derived exosome

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous lymphoid neoplasm
with variations in gene expression profiles, caused by genetic and epigenetic alterations.
DLBCL is the most common type of non-Hodgkin lymphoma (NHL) worldwide, represent-
ing approximately 30–40% of all cases in different geographic regions [1,2]. Patients most
often present with a rapidly growing tumor mass in single or multiple, nodal or extranodal
sites [1,2]. Primary cutaneous diffuse large B cell lymphoma, leg type is an aggressive
lymphoma with an inferior prognosis [3–5]. Recent DLBCL prevalence was estimated to be

Int. J. Mol. Sci. 2023, 24, 6102. https://doi.org/10.3390/ijms24076102 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24076102
https://doi.org/10.3390/ijms24076102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4501-1809
https://orcid.org/0000-0003-3888-0931
https://doi.org/10.3390/ijms24076102
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24076102?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 6102 2 of 52

between 63,000 and 143,000 cases in the US [6]. The total number of incident and prevalent
cases of DLBCL is expected to increase between 2020 and 2025 in the US and Western
Europe [7]. The most popular classification by gene expression profiling subdivided DL-
BCL into three groups according to the cell-of-origin: the germinal center B-cell like (GCB)
subtype, the activated B-cell like (ABC) subtype, and about 10–15% of cases being unclas-
sifiable [2]. Patients with the GCB subtype usually have a better prognosis than patients
with the ABC subtype [2,8,9]. Molecular pathology is complex and GCB and ABC tumors
have different mutation and translocation profiles [2,10–12]. Gene mutations in DLBCL
disturb various signaling pathways including histone modification, cell growth, prolifera-
tion, metabolism, differentiation, apoptosis, survival, homing/migration, response to DNA
damage, B-cell receptor (BCR), signaling, Toll-like receptor (TLR) signaling, angiogenesis,
and immunoregulation [10,13–19].

Among the well-established genetic aberrations, epigenetic deviations emerged as fur-
ther important drivers of DLBCL lymphomagenesis [20–28]. Notably, the B cell lymphoma
6 (BCL6) proto-oncogene encodes a transcriptional repressor, which is required for germinal
center (GC) formation and lymphomagenesis. Constitutive expression of BCL6 leads to
DLBCL through activation-induced cytidine deaminase (AICDA)-mediated chromosomal
translocations and mutations [10,29]. Recently, Jiao et al. [28] showed that AICDA and DNA
methyltransferase 1 (DNMT1) induce BCL6 promoter methylation. Either loss of AICDA or
DNMT1 with the instability of the AICDA-DNMT1 complex on the BCL6 promoter result
in BCL6 promoter demethylation leading to increased BCL6 expression in DLBCL [28].

A variety of intrinsic and extrinsic pathogenic factors have been related to DLBCL
pathogenesis. Prior radiation treatment, obesity, and smoking are most highly associated
with DLBCL as well as infections with human immunodeficiency virus (HIV), Epstein–Barr
virus (EBV), and human herpes virus 8 (HHV8) [30]. Drugs like phenytoin, digoxin, and
TNF antagonists are also associated with lymphomagenesis as well as organic chemicals,
pesticides, bisphenol A, phenoxy-herbicides, glyphosate, wood preservatives, dust, hair
dyes, solvents, and prior chemotherapy [31–38].

Among dietary factors, total animal protein intake, meat, dairy, and milk consumption
have been associated with an increased risk of NHL [39–43], whereas vegetable- and
fruit-based diets reduce the risk of NHL including DLBCL [44–48]. Three recent large
epidemiological studies discussed in the next chapter in more detail identified an increased
risk of DLBCL by total dairy and cow’s milk consumption [49–51]. Cow’s milk is a major
dietary exposure in industrialized countries often persisting over a lifetime [52]. Milk is not
a simple nutrient, but operates as an endocrine signaling system of mammalian evolution
enhancing mTORC1 activation [53,54].

It is the aim of this review to elucidate potential synergism in signal transduction
between identified signaling pathways in DLBCL and milk-induced signaling pathways
explaining the mechanistic link between cow’s milk consumption and DLBCL pathogenesis.

2. Epidemiological Evidence for Milk Intake and DLBCL Risk

In 2016, Wang et al. [49] performed a meta-analysis of 16 relevant articles related to
dairy/milk consumption and NHL risk published up to October 2015. The pooled relative
risks (RRs) (95% Confidence Intervals (CIs) of NHL for the highest vs. lowest category
of the consumption of total dairy product, milk, butter, cheese, ice cream, and yogurt
were 1.20 (1.02–1.42), 1.41 (1.08–1.84), 1.31 (1.04–1.65), 1.14 (0.96–1.34), 1.57 (1.11–2.20), and
0.78 (0.54–1.12), respectively. In subgroup analyses, the positive association between total
dairy product consumption and the risk of NHL was found among case-control studies
(RR = 1.41, 95% CI: 1.17–1.70, p = 0.368) but not among cohort studies (RR = 1.02, 95% CI:
0.88–1.17, p = 0.988). The pooled RRs of NHL were 1.21 (95% CI: 1.01–1.46, p = 0.140) for
milk consumption in studies conducted in North America, and 1.24 (CI: 1.09–1.40, p = 0.245)
for cheese consumption in studies that adopted validated food frequency questionnaires.
A further NHL subtype analysis identified statistically significant associations between
the consumption of total dairy product (RR = 1.73, 95% CI: 1.22–2.45, p = 0.67) and milk
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(RR = 1.49, 95% CI: 1.08–2.06, p = 0.33) and the risk of DLBCL. The dose-response analysis
suggested that the risk of NHL increased by 5% and 6% for each 200 g/day increment in
total dairy product and milk consumption, respectively [49].

In contrast, a systematic review and meta-analysis published in 2019 by Sergentanis
et al. [55] found no association between milk and dairy product consumption and the risk
of NHL based on three included studies published between 1996–2011 [44,56,57]. All of
those reported on milk consumption. The pooled analysis pointed to a null association with
NHL risk (pooled RR = 0.99, 95% CI: 0.85–1.15, p = 0.461) [55]. Conversely, the exposome-
wide analysis within the European Prospective Investigation into Cancer and Nutrition
study (475,426 participants) found 2,402 incident cases of B-cell lymphoma [51]. Notably,
dairy product consumption was positively associated with B-cell lymphoma and DLBCL
risk [51]. The prospective China Kadoorie Biobank study recruited ~0.5 million adults from
ten diverse (five urban, five rural) areas across China during 2004–2008. A dairy intake
of 50 g/day in urban regions exhibited an HR for lymphoma of 1.09 (95% CI: 0.89–1.34,
p = 0.11), and for rural regions HR = 1.45 (95% CI: 1.07–1.96, p = 0.55) [50]. Taken together,
recent epidemiological evidence points to an increased risk for NHL and in particular,
DLBCL related to the consumption of milk and dairy products (Table 1).

Table 1. Recent epidemiological evidence for milk and dairy product consumption related to in-
creased risk for B-cell lymphoma and DLBCL.

Study Characteristics Associated Risk References

Meta-analysis
14 case-control studies and two cohort studies

Milk consumption is related to increased risk of
non-Hodgkin lymphoma (NHL) RR = 1.49

(95% CI: 1.08–2.06); risk of NHL increased by 5% and
6% for each 200 g/day increment in total dairy
product and milk consumption, respectively

[49]

An exposome-wide analysis based on the
European Prospective Investigation into
Cancer and Nutrition Study (n = 475,426)

Positive association between dairy intake and risk of
B-cell lymphoma and DLBCL [51]

Prospective China Kadoorie Biobank Study
collecting ~0.5 million adults from 10 diverse
(5 urban, 5 rural) areas across China during

2004–2008

Increased lymphoma risk related to dairy
consumption (mainly milk) for urban

HR = 1.09 (95% CI: 0.89–1.34) and rural regions
HR = 1.45 (95% CI: 1.07–1.96)

[50]

3. Potential Milk-Related Factors Promoting DLBCL
3.1. Insulin-Like Growth Factor 1 Signaling in DLBCL

In the context of carcinogenesis, the most important functions of the insulin-like
growth factor (IGF) family involve the intensification of proliferation and inhibition of cell
apoptosis and effects on cell transformation through the synthesis of several regulatory
proteins. The IGF axis controls survival and promotes metastases. Interactions of IGF
axis components may be of a direct or indirect nature. The direct effects are linked to the
activation of the PI3K/AKT/mTORC1 signaling pathway, stimulated by IGF-1 and IGF-1
receptor (IGF1R) activation. Activation of this signaling pathway increases mitogenesis and
cell cycle progression but protects against different apoptotic stresses [58,59]. Sustained
proliferation and evading apoptosis are critical hallmarks of cancers [60].

Recent evidence indicates that mitogenic IGF-1/IGF1R signaling plays a role in the
pathogenesis of DLBCL [61–65]. DLBCL cell lines together with primary tumor cells
derived from lymph nodes in four DLBCL patients were treated with the cyclolignan
picropodophyllin (PPP), a selective inhibitor of IGF1Rs. PPP dose-dependently inhibited
proliferation/survival in all DLBCL cell lines and primary cell preparations [61]. Remark-
ably, lower expression levels of Klotho, a physiological inhibitor of IGF1Rs [63], were
observed in DLBCL patients and cell lines [64]. Enforced expression of Klotho could
significantly induce cell apoptosis and inhibited tumor growth in DLBCL. Upregulation
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of Klotho resulted in declined activation of IGF1R signaling, accompanied by decreased
phosphorylation of its downstream targets, including AKT and ERK1/2. Moreover, in a
xenograft model treated with either Klotho overexpression vector or recombinant human
Klotho administration presented restrained tumor growth and lower Ki67 staining [64].
Recently, Zhou et al. [65] observed aberrant activation of Hippo-YAP signaling in DLBCL.
Loss of Hippo-Yes-associated protein (YAP) attenuated proliferation and induced cell cycle
arrest in DLBCL cells [65]. Moreover, the downregulation of IGF1R expression led to a
remarkable decrease in YAP expression. In contrast, exposure to IGF-1 promoted YAP
expression and reversed the inhibition of YAP expression induced by IGF1R inhibitors [65].
IGF-1/IGF1R/YAP signaling may thus represent a new pathway in DLBCL tumorigenesis.
Agarwal et al. [66] recently provided evidence that elevated levels of human oncoprotein
Smoothened (SMO), a Frizzled-class-G-protein-coupled receptor, show a strong correlation
with elevated levels of IGF1Rs and reduced survival in DLBCL patients. As an integral
component of raft microdomains, SMO plays a fundamental role in maintaining high levels
of IGF1Rs in lymphoma cells as well as IGF1R-associated activation of AKT (protein kinase
B). Silencing of SMO increases lysosomal degradation and favors a localization of IGF1R to
late endosomal compartments instead of early endosomal compartments from which much
of the receptors would normally recycle. In addition, the loss of SMO interferes with the
lipid raft localization and retention of the remaining IGF1Rs and AKT, thereby disrupting
the primary signaling context for IGF1R/AKT. This activity of SMO is independent of its
canonical signaling and represents a novel and clinically relevant contribution to signaling
by the highly oncogenic IGF1R/AKT signaling axis [66]. Taken together, IGF-1/IGF1R
signaling is involved in DLBCL tumorigenesis.

3.2. Milk-Induced IGF-1- and Amino Acid-Mediated mTORC1 Signaling

Regular consumption of commercial cow’s milk enhances circulating IGF-1 levels in
children and adults [67–76]. There are two mechanisms leading to milk-mediated elevations
of circulatory IGF-1 levels of the milk recipient: (1) Uncertain proportions of bovine milk
IGF-1, which shares an identical amino acid sequence with human IGF-1 [77], may be
absorbed in the human intestine. (2) Milk components, especially milk protein-derived
amino acids (tryptophan, arginine, and methionine) may induce the synthesis and secretion
of pituitary GH and hepatic IGF-1 into the circulation [78–81].

3.2.1. Milk-Derived Essential Branched-Chain Amino Acids

Milk proteins, especially whey proteins and caseins, are rich sources of essential
branched-chain amino acids (BCAAs) that activate mTORC1 [54]. In all mammals ex-
cept Neolithic humans, milk and milk protein exposure is restricted to the lactation period,
whereas humans may be exposed to bovine milk proteins over their whole lifetime [52,82].
It is postulated that the type of protein in the diet influences directly the intrinsic capacity
of the B lymphocytes to respond to an immunogenic stimulus [83]. The humoral immune
response of mice fed with lactalbumin (20 g/100 g diet) was found to be higher than that of
mice fed casein (20 g/100 g), soy protein (20 g/100 g) and wheat protein (20 g/100 g) diets,
respectively [83]. To investigate the possible influence of dietary protein type on the supply
of B lymphocytes, bone marrow lymphocyte production has been examined by a radioau-
tographic assay of small lymphocyte renewal and an immunofluorescent stathmokinetic
assay of pre-B cells and their proliferation [84]. The humoral response of all mice fed the
lactalbumin-enriched diet was found to be higher than that of mice fed a casein diet or a
control diet [84]. Cross and Gill [85] reported that bovine whey protein concentrate can mod-
ulate the proliferation of murine T and B cells in a dose-dependent manner. Among the major
milk proteins, whey protein is the richest source of the essential BCAA leucine, which is the
key amino acid activating mTORC1 via a RAG GTP-ase-dependent mechanism [86–90]. In
contrast, reduced mTORC1 activity in B lymphocytes has been demonstrated at reduced
extracellular amino acid and leucine concentrations [91]. The amount of leucine per g
milk protein is a constant ratio for all mammals in the range of 10 g leucine/100 g milk
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protein [92]. Of all animal proteins, whey proteins contain the highest amount of leucine
(14%) as compared to meat (8% leucine) [93]. Furthermore, in comparison to meat, whey
proteins differ remarkably in their intestinal absorption kinetics, due to their fast intestinal
hydrolysis increasing postprandial plasma amino acid levels [94–97].

3.2.2. L-Type Neutral Amino Acid Transporter 1 in DLBCL

L-type neutral amino acid transporter 1 (LAT1) is a heterodimeric membrane transport
protein involved in the uptake of neutral amino acids such as leucine, isoleucine, valine,
phenylalanine, tyrosine, tryptophan, methionine, and histidine [98]. Remarkably, recent
evidence indicates that high LAT1 expression is a poor prognostic factor in NHL [99].
The LAT1 expression level in samples of NHL patients ranged from 1.9 to 99.2%, with a
median of 42.4% (SD ± 29.5%). For the most prevalent subtypes, DLBCL had the highest
median LAT1 expression (80.1%) [99]. The median LAT1 expression levels of the GCB
type of DLBCL and non-GCB type were 70.4% ± 22.4 and 83.3% ± 11.6, respectively [99].
Of note, LAT1 expression correlated with Ki-67 expression and thus the proliferation of
DLBCL cells [99]. Thus, persistent consumption of milk and milk proteins may boost
LAT1/leucine/mTORC1-driven DLBCL proliferation.

3.2.3. Glutaminolysis in DLBCL

B-cell lymphomas use glutamine to power the tricarboxylic acid (TCA) cycle to gen-
erate energy and metabolic precursors [9,100]. Glutamine is metabolized through glu-
taminolysis to produce α-ketoglutarate. DLBCLs are dependent on mitochondrial lysine
deacetylase sirtuin 3 (SIRT3) for proliferation, survival, self-renewal, and tumor growth
in vivo regardless of disease subtype and genetics [101]. Importantly, overexpressed SIRT3
maintains DLBCLs’ metabolism by potentiating the TCA cycle through anaplerotic glu-
taminolysis [101]. In contrast, SIRT3 depletion impairs glutamine flux to the TCA cycle via
glutamate dehydrogenase and reduces acetyl-CoA pools, which in turn induces autophagy
and cell death [101]. Translational upregulation of activating transcription factor 4 (ATF4)
is coupled with anaplerotic metabolism in DLBCLs due to nutrient deprivation caused by
SIRT3 driving rapid flux of glutamine into the TCA cycle [102]. The active proliferation
and high metabolic demand of DLBCL cells lead to a shortage of non-essential amino acids
and results in translational activation of ATF4, which can transcribe target genes for the
importation of extracellular nutrients to maintain the amino acid flux [102]. Moreover, the
metabolic profile of DLBCL cells in the extracellular matrix is markedly different from
cells in a suspension environment [103]. Recent evidence indicates that the synergistic
consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in
an extracellular environment-dependent manner [103].

Glutaminolysis is also important for the activation of mTORC1 [104,105]. mTORC1 is
activated by glutamine and leucine via glutaminolysis-derived α-ketoglutarate upstream
of RAG. This may provide an explanation for the glutamine addiction of cancer cells [105].

3.2.4. Milk Proteins: A Rich Source of Glutamine

Casein, the major protein fraction of cow’s milk and the major protein component
of cheese, contains 9 g glutamine/100 g casein [106,107]. Thus, milk and dairy products,
especially cheese, provide a rich source of glutamine, which may fuel DLBCL, enhancing
TCA-driven tumor cell proliferation.

3.3. Activation of mTORC1 in DLBCL

mTORC1 serves as a rheostat that shapes differentiation along the B lineage, the
pre-immune repertoire, and antigen-driven selection of mature B cells [91]. Aberrant and
persistent activation of the PI3K/AKT/mTORC1 signaling pathway plays an important role
in controlling the proliferation and survival of tumor cells in various types of malignancies,
including DLBCL [108]. Aberrant and persistent activation of mTORC1 is often observed in
malignant B cells such as NHL. Distinct mechanisms drive mTORC1 activation in the three
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most-common NHL types, i.e., DLBCL, follicular lymphoma, and mantle cell lymphoma.
Constitutive activation of the B-cell receptor (BCR), PI3K, and TLR pathways is a hallmark
of ABC-DLBCL [109]. Activation of these pathways is attributed to mutations in their
components (most frequently CD79A/B, CARD11, TNFAIP3, and MYD88) and leads
to chronic activation of NF-κB signaling, proliferation, and survival [110]. Within this
context, the CBM (CARD11-BCL10-MALT1) complex acts as a supramolecular organizing
center to set the activation threshold and amplify BCR signaling to the IKK complex
and NF-κB [110–112]. Notably, it has recently been demonstrated in ABC-DLBCL cells
that the MYD88, TLR9, and BCR form a supercomplex that co-localizes with mTORC1
on endolysosomes, where it drives pro-survival NF-κB and mTORC1 signaling [113].
Inhibitors of BCR and mTORC1 signaling cooperatively decreased the formation and
function of the MYD88/TLR9/BCR supercomplex, providing mechanistic insight into their
synergistic toxicity for MyD88/TLR9/BCR+ DLBCL cells [113]. In fact, mTORC1 activity
is required to drive the increased expression of eIF4B, which is a feature of DLBCL [114].
Of note, the initiation factor of translation eIF4E, a downstream effector of mTORC1, has
oncogenic effects in vivo and cooperates with C-MYC in B-cell lymphomagenesis [115].
Multi-level inhibition of the PI3K/AKT/mTORC1 signaling pathway in DLBCL showed
significant anti-tumor effects in DLBCL [116–124]. Notably, rituximab combined with
rapamycin synergically downregulated the PI3K/AKT/mTORC1 signaling pathway [118].

3.3.1. Milk-Induced Activation of mTORC1

Milk is an endocrine signaling system that promotes the activation of mTORC1 and
mTORC1-dependent translation [53,54]. In comparison to a cow’s milk-free diet, young
mice that had additional access to commercial cow’s milk exhibited increased expression of
the mTORC1 downstream kinase pS6K1 in white adipose tissue and liver [125]. Remarkably,
the mTORC1 response measured in mouse skeletal muscle following ingestion of high-
quality plant-based and insect proteins was dampened compared to whey protein [126].
Bovine milk, a feeding and signaling system for postnatal anabolism and growth, activates
IGF-1-driven activation of mTORC1 as well as BCAA- and glutamine-mediated activation
of mTORC1. Persistent consumption of cow’s milk may thus augment mTORC1-mediated
pathways augmenting mTORC1-driven DLBCL lymphomagenesis.

3.3.2. B-Cell Receptor Activation in DLBCL

The BCR signaling pathway is a crucial pathway of B cells, both for their survival
and for antigen-mediated activation, proliferation, and differentiation [127]. Its activa-
tion is also critical for the genesis of many lymphoma types. BCR-mediated lymphoma
proliferation may be caused by activating BCR-pathway mutations and/or by active or
tonic stimulation of the BCR [128–130]. A substantial fraction of DLBCLs are addicted
to oncogenic BCR and PI3K/mTORC1 signaling caused by different stimuli and various
genetic aberrations [131,132]. It has been suggested that stimulation of BCR by specific
antigens including autoantigens and antigens of infectious origin plays a pathogenic role
in DLBCL [129,130]. Targeting BCR and downstream PI3K/AKT/mTORC1 signaling is a
recent therapeutic approach in DLBCL [113,131,132].

3.4. Milk Peptide-Induced B-Cell Receptor Activation

Bovine milk proteins, whey proteins and caseins, are immunogens and allergens,
even when proteins are present at very low concentrations. There are both conformational
and linear epitopes, widely spread all along the protein molecules [133,134]. Bovine milk-
derived peptides encrypting possible bioactive and/or immunogenic molecules originating
from caseins, β-lactoglobulin, and minor milk proteins have recently been detected in
human plasma after intake of pasteurized cow’s milk [135]. Cow’s milk protein allergy is
a common condition encountered in young children [136,137], but may rarely also occur
in adults [138]. Bovine milk proteins have been implicated to function as triggers for
autoimmune diseases, especially type 1 diabetes mellitus [139–143], which has recently
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been linked to a moderately increased risk of NHL [144]. Cow’s milk protein sensitivity
is related to irritable bowel syndrome in patients with primary Sjögren’s syndrome [145],
which was associated with a 6.5-fold increased risk of NHL including DLBCL [146].

B-cell epitopes as a screening instrument for persistent cow’s milk allergy have been
identified [147]. Immunoglobulin E (IgE) and IgG binding epitopes on β- and κ-casein
have been detected in cow’s milk allergic patients [148]. Antibodies raised against peptide
fragments of bovine α-s1-casein cross-react with the intact protein only when the peptides
contain both B and T cell determinants [149]. Notably, bovine α-s1-casein and its peptides
61–110 and 91–110 contain both T and B cell determinants on α-s1-casein and can elicit
peptide-native protein cross-reactive antibodies. Antibodies raised against peptide frag-
ments of bovine α-s1-casein cross-react with the native protein but recognize sites distinct
from the determinants on the protein [150]. Naïve mouse splenocytes stimulated with α- or
κ-casein showed a similar immunogenic potential of both casein fractions. However, mice
immunized with α-casein exhibited higher serum levels of IgG and IgA compared with
mice immunized with κ-casein [151]. B-cell linear epitope analysis of milk proteins using
in-silico tools showed κ-casein, β-casein, α-lactalbumin, β-lactoglobulin, αs1-casein, and
αs2-casein contain 28, 36, 29, 28, 28, and 33 epitopes, respectively. Therefore, β-casein and
αs2-casein have more B-cell epitope capacity [152].

Various physicochemical parameters can have an impact on the allergenicity of animal
proteins [153]. Ultraheat treatment (UHT) of cow’s milk (100 ◦C/30 s) significantly altered
the immunogenicity of most of the potent protein stimulants, which mostly coincided with
their levels of protein denaturation. Pasteurization (72 ◦C/15 s) caused the least protein
denaturation but altered the immunogenicity of several protein stimulants notably, including
heat-stable caseins and α-lactalbumin [154]. In addition, it has been shown that heat treatment
reduced the allergenicity of β-lactoglobulin by inducing conformational changes and by
increasing its susceptibility to enzymatic digestion, both of which disrupted B-cell epitopes.
Heat treatment alone did not alter the allergenicity of α-casein [155]. It is thus conceivable
that raw and pasteurized milk in comparison to UHT and fermented milk exert stronger
stimulatory effects on BCR signaling, which contributes to mTORC1 activation.

3.5. Estrogen Receptor-β Signaling in DLBCL

Recent evidence indicates that estrogens play a role in lymphomagenesis. According
to the American Cancer Society Cancer Prevention Study-II Nutrition Cohort, a positive
association between current postmenopausal combined use of estrogen and progestin and
DLBCL has been observed [156]. Remarkably, increased expression of estrogen receptor-β
(ERβ) has been detected in DLBCL cells [157–159]. Nuclear ERβ1 expression analysis in
primary DLBCLs by immunohistochemistry revealed ERβ1 expression in 89% of the cases
and was an independent prognostic factor for adverse progression-free survival in rituximab-
chemotherapy treated DLBCL [157]. For nodal lymphoma, high ERβ expression (≥25%)
was associated with poorer event-free survival independent of the international prognostic
index with the adjusted hazard ratio (HR) of 2.49 (95% CI: 1.03–6.00, p = 0.042 [158]. ERβ
is expressed at significantly higher levels in DLBCL compared to normal B cells, and ERβ
plays a role in the protection against apoptosis in DLBCL [159]. Targeting of the ERβ with the
selective estrogen receptor modulator tamoxifen reduced cell viability in all tested DLBCL cell
lines [159]. In addition, tamoxifen-treated breast cancer patients showed a 38% reduced risk
for DLBCL compared to breast cancer patients who did not receive tamoxifen [159].

As with estrogen receptor-α (ERα), estrogenic compounds including estrone (E1), 17β-
estradiol (E2), and estriol (E3) activate ERβ. Relative to ERα, ERβ binds E3 and ring B
unsaturated estrogens with higher affinity, while the reverse is true of E2 and E1 [160–164].
Interestingly, in lung cancer tissues and A549 cells, estrogen upregulated the IGF1R signaling
through ERβ [165,166].
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3.6. Milk-Derived Estrogens

Milk produced from “persistently” pregnant cows—the current routine praxis of the
dairy industry to increase commercial milk yield—enhances milk estrogen concentrations. In
pregnant cows, the predominant estrogen is E1 sulfate, which passes into milk [167]. Heat
treatment (70 ◦C and 95 ◦C) does not affect E1 and E2 concentrations compared to unprocessed
raw milk [168]. The concentration of E1 sulfate increases from 30 pg/mL in non-pregnant
cows up to 151 pg/mL in pregnant cows at 40–60 days of gestation, and to a maximum
level of 1000 pg/mL in cows at 220 days of gestation [169]. Farlow et al. [170] compared the
estrogen concentrations of commercial cow’s and goat’s milk. They reported unconjugated and
conjugated levels of E1 in regular whole cow’s milk of 129.9 ± 18.48 pg/mL and E2 levels of
28.19± 5.26 pg/mL, whereas in whole goat’s milk E1 and E2 levels were 42.48 ± 4.28 pg/mL
and 17.87 ± 2.8 pg/mL, respectively [170]. The average milk concentrations of E1 (159 ng/kg)
and E2 (6 ng/kg) in Swiss Holstein cows are comparable [171].

Pape-Zambito et al. analyzed E1 and E2 concentrations in pasteurized-homogenized
milk and commercial dairy products [172]. E1 concentrations averaged 2.9, 4.2, 5.7, 7.9,
20.4, 54.1 pg/mL, and 118.9 pg/g in skimmed, 1%, 2%, and whole milks, half-and-half,
cream, and butter samples, respectively. E2 concentrations averaged 0.4, 0.6, 0.9, 1.1, 1.9,
6.0 pg/mL, and 15.8 pg/g in skimmed, 1%, 2%, whole milks, half-and-half, cream, and
butter samples, respectively [172]. The mean E2 mass in 237 mL of raw whole Holstein
milk was 330 pg [173]. As the milk of pregnant dairy cows is pooled, commercial cow’s
milk contains higher estrogen amounts compared to former times, when lactation of cows
was synchronized and cows gave birth only in spring time. Maruyama et al. [169] analyzed
the exposure to exogenous estrogen through the intake of commercial milk produced
from pregnant cows in children and adults. Urine concentrations of E1, E2, E3, and
pregnanediol significantly increased in all adults and children after intake of 600 mL/m2 of
commercial cow’s milk. In prepubertal children, urinary excretion volumes of estrogens
and pregnanediol significantly increased within 1–3 h. The net increase in E2 excretion
from the basal E2 levels in urine (before the intake) was 39–109 ng/4 h in this study. These
data indicate that the intake of estrogens from cow’s milk corresponds to the daily estrogen
production rate in prepubertal boys [169]. Of note, not only milk but all dairy products,
especially milk fat, contains estrogens that enhance the dietary estrogen exposure derived
from cow’s milk and dairy products [174,175]. Milk products supply about 60–80% of
ingested female sex steroids [174]. Taken together, it is conceivable that milk/dairy-derived
estrogens via ERβ—IGF1R signaling may promote DLBCL cell proliferation.

3.6.1. Bisphenol A in Lymphomagenesis

Bisphenol A (BPA) is a common chemical used in the manufacture of materials in
polycarbonate and epoxy plastic products and can interfere with the immune system.
BPA is a proven endocrine disruptor capable of mimicking or blocking ERs and altering
hormone concentrations and metabolism [176–178]. There is increasing concern that BPA
perturbs the immune system causing adverse health effects including cancer [179–181]. It
has recently been shown that BPA-induced DNA damages promote lymphoma progression
in human lymphoblastoid cells through the aberrant catenin-β1 signaling pathway [37].
Gene-network analysis of microarray data sets in human lymphoma tissues as well as in
human cells with BPA exposure to explore module genes identified potential pathways for
lymphomagenesis in response to BPA [37]. BPA exposure resulted in a disrupted cell cycle
and DNA damage by activating catenin-β1 encoded on the catenin-β1 gene (CTNNB1),
the initiator of the aberrant constructed CTNNB1-NFKB1-AR-IGF-1-TWIST1 pathway,
which may potentially lead to lymphomagenesis [37]. Activated catenin-β1 suppresses the
DNA-repair-associated genes TP53 and CDKN1A [37]. Notably, dose-dependent colony
formations of human lymphoblastoid TK6 cells visibly promoted by BPA treatment were
significantly suppressed in siCTNNB1-transfected TK6 cells. In accordance, DLBCL showed
a higher expression of β-catenin in contrast to reactive hyperplasia of lymph node tissues
at both the mRNA and protein levels [182]. β-catenin is a key downstream effector of
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the Wnt/β-catenin pathway inducing the aging of mesenchymal stem cells through DNA
damage response and the p53/p21 pathway [183]. Notably, constitutive activation of
the DNA damage response pathway has been regarded as a novel therapeutic target in
DLBCL [184]. In addition, increased TWIST expression, which is upregulated by IGF-
1/IGF1R signaling [185], has also been observed in DLBCL [186]. Furthermore, canonical
NF-κB signaling has been reported in DLBCL of the ABC type [187–189] and BPA is a known
activator of NF-κB [190,191]. Of note, BPA also increases the expression of ERβ [192–194].
In thyroid tumor cells, BPA and E2 enhanced the expression of ERα/ERβ and GPR30 and
activated AKT and mTORC1 [195].

Importantly, plasticizers like BPA modify the expression of oncogenic microRNAs
(miRs) [196,197]. Notably, BPA exposure increased the expression of miR-21-5p in the
majority of cell lines studied [196–200].

3.6.2. Contamination of Commercial Milk with Bisphenol A

BPA enters into the milk chain via multiple pathways at various points during milk
production including PVC tubing used during the milking process, transfer from bulk
milk to storage tanks, and during milk processing and packing [201,202]. Santonicola
and colleagues reported mean BPA concentrations were 0.757 µg/L in manually milked
samples, 0.580 µg/L in mechanically milked samples, and 0.797 µg/L in milk from the
cooling tank [203]. Quantifiable levels were detected in samples obtained from the raw
milk storage tank, pasteurized milk from the storage tank, and packaged milk. The
highest BPA contamination levels were detected in raw milk from the storage tank (mean
0.265 µg/L) [204]. In milk samples (supplied in plastic bottles) of the winter season,
BPA levels were 0.17–0.32 mg/kg, whereas, in milk samples of the summer season, BPA
levels of 0.77–1.59 mg/kg have been detected [205]. BPA occurred in the milk chain as a
result of different stages of milking and reached the highest levels at the end of the milk
chain. Although the dietary intake of BPA is below the European Food Safety Authority’s
temporary tolerable daily intake, exposure to BPA through milk consumption may have
a critical impact on lymphomagenesis as BPA augments β1-catenin/ERβ/IGF-1/IGF1R-
signaling involved in the pathogenesis of DLBCL (Figure 1).
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target of rapamycin complex 1 (mTORC1) signaling and overstimulated PI3K-AKT-mTORC1 sig-
naling in diffuse large B-cell lymphoma (DLBCL). B-cell receptor (BCR) is commonly activated in
DLBCL and stimulates the mTORC1 pathway. Milk-derived peptides are known agents interacting
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with BCR. Insulin-like growth factor 1 (IGF-1)/IGF-1 receptor (IGF1R) signaling is also activated in
DLBCL. Milk contains IGF-1 and stimulates IGF-1 synthesis in human milk consumers. IGF-1/IGF1R
signaling activates mTORC1. Expression or function of phosphatase and tensin homolog (PTEN)
is commonly suppressed in DLBCL and is also targeted by microRNAs (miRs), especially miR-21.
DLBCL cells frequently overexpress L-type amino acid transporter 1 (LAT1), which plays a crucial
role in intracellular uptake of leucine (Leu), which via Ragulator (RAG) activates mTORC1. Leu is
an abundant amino acid of milk proteins. Glutamine (Gln) is also enriched in milk proteins. The
glutaminolysis pathway is activated in DLBCL cells. The end product α-ketoglutarate (αKG) via
RAG as well activates mTORC1, which finally promotes the translation of the oncogene C-MYC, the
key driver of cell proliferation. The activated kinase AKT stimulates YES1-associated transcriptional
regulator (YES) of the HIPPO pathway found to be activated in DLBCL. Estrogen receptor β (ERβ)
was also found to be overexpressed in subtypes DLBCLs. ERβ induces the expression of IGF1R and
miR-21-5p. Milk-derived estrogens and milk contamination with bisphenol A (BPA) may contribute to
ERβ signaling in DLBCL. AKT-mediated activation of mouse double minute 2 (MDM2) promotes the
proteasomal degradation of p53, the guardian of the genome. p53 regulates the transcription of cyclin-
dependent kinase inhibitor 1A (CDKN1A; p21) and of the anti-apoptotic protein survivin (BIRC5).
TP53 is frequently downregulated in DLBCL. The oncogene B cell lymphoma 6 (BCL6) is commonly
upregulated in DLBCL and functions as a negative regulator of both p53 and B lymphocyte-induced
maturation protein 1 (BLIMP1, PRDM1). As such, milk-derived exosomal microRNAs play a key role
in epigenetic regulation.

3.7. Viral Agents in DLBCL

Viral agents are regarded as potential drivers of DLBCL tumorigenesis [206,207]. Vari-
ous reports suggest an association of viral infections with DLBCL, including Epstein–Barr
virus (EBV) also known as human herpes virus 4 (HHV4) [208–216], human immunode-
ficiency virus HIV (HIV) [217–221], hepatitis B virus (HBV) [222–226], hepatitis C virus
(HCV) [227–229], human T-cell leukemia virus type 1 (HTLV-1) [230], and Simian virus
40 (SV40) infections [231–233], while human herpes virus 8 (HHV8) also known as Ka-
posi sarcoma-associated herpesvirus (KSHV) [30,234–236] and human papilloma virus
(HPV) [237,238] associations with DLBCL are only rarely observed. EBV-positive DLBCL,
not otherwise specified (NOS), is an EBV-positive clonal B cell lymphoid proliferation [239],
that plays a major role in all virus-associated DLBCLs [214].

The oncogenic miR-155-5p is the most frequently upregulated miR in EBV-positive
B cell malignancies. Of note, miR-155-5p plays a key role in B-cell immortalization by
EBV [240]. EBV nuclear antigen 2 (EBNA2) and the B cell transcription factor interferon
regulatory factor 4 (IRF4) are known to activate transcription of the host cell gene from
which miR-155 is processed (miR-155HG; BIC). EBNA2 also activates IRF4 transcription,
indicating that EBV may upregulate miR-155 through direct and indirect mechanisms [241].
Remarkably, miR-K12-11 encoded by KSHV shows significant homology to cellular miR-
155, including the entire miR ‘seed’ region. Evidently, viral miR-K12-11 functions as an
orthologue of miR-155 and probably evolved to exploit a pre-existing gene regulatory
pathway in B cells. Moreover, the known etiological role of miR-155 in B cell transformation
suggests that miR-K12-11 may contribute to the induction of KSHV-positive B cell tumors
in infected patients [242].

High levels of B cell activation are induced by miR-21-5p in circulating B cells and
are seen in HIV-infected individuals compared to non-infected controls. Notably, miR-21
is overexpressed in activated B cells of HIV-infected patients, suggesting its assistance in
maintaining B cell hyperactivation contributing to lymphomagenesis [243,244]. Oncogenic
viruses, including EBV, HBV, HCV, and HPV, co-evolve with their hosts and cause persistent
infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host
immune responses and then promote viral replication [245]. Exosomes released by oncogenic
virus-infected cells play a key role in promoting or inhibiting cancer formation [246].
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3.8. Bovine Meat and Milk Factors

In recent years, a variety of circular replicase-encoding single-stranded (CRESS) DNA
viruses and unclassified virus-like DNA elements have been discovered in a broad range of
animal species and environmental samples. These sequences have been assigned to the
virus phylum Cressdnaviricota, where CRESS stands for “Circular Rep-Encoding Single-
Stranded”, to describe the functional features of these isolates, and viricota is the suffix for
phylum taxa [247]. Especially, DNA elements termed bovine meat and milk factors (BMMF)
are suspected to act as co-factors in the development of colon and breast cancer. BMMFs
represent small single-stranded circular DNA, predominantly isolated from sera, milk, and
dairy products of Eurasian cattle [248,249] and subsequently identified in periglandular
cells of colon and breast cancers [250]. BMMF Rep protein has been detected in close vicinity
of CD68+ macrophages in the interstitial lamina propria adjacent to colorectal cancer tissues,
suggesting the presence of local chronic inflammation [251]. Recently, Nikitina et al. [252]
found pleomorphic vesicles, regularly identified by staining peritumor tissues of colorectal,
lung, and pancreatic cancer for expression of BMMF Rep. This subgroup of BMMF1
proteins is involved in the replication of small single-stranded circular plasmids of BMMF,
but most likely also contributes to the formation of pleomorphic vesicular structures found
in the periphery of colorectal, lung and pancreatic cancers [252]. These infectious agents
share characteristics of both bacterial plasmids and known viruses [253]. Recently, circular
single-stranded DNA genomes have been identified in the milk of sheep and goats [254]
as well as the milk of water buffaloes [255]. Thus, dairy cows, sheep, goats, and water
buffaloes add to the dispersal of CRESS viruses and circular ssDNA elements, which enter
the human food chain via milk consumption [248,249,254,255]. According to de Villiers
and Zur Hausen, future transcription analyses of acute lymphatic leukemias searching
for BMMF-like infections will be of substantial interest [256]. These surveys should also
include DLBCLs, the most common NHL linked to milk consumption (Table 2).

Table 2. Comparison of biologically active compounds related to milk consumption and DLBCL-
associated pathology.

Compound Cow’s Milk Intake References DLBCL References

IGF-1 Increased serum levels of
IGF-1 activate mTORC1 [67–76] Increased IGF-1/

IGF1R signaling [61–65]

Leucine
Rich source of leucine

(10 g leucine/100 g milk protein)
activates mTORC1

[92–97]
High expression of leucine

transporter LAT1 associated
with poor prognosis

[98,99]

Glutamine Rich source of glutamine
9 g glutamine/100 g casein [106,107] Glutaminolysis activates TCA

cycle and mTORC1 [101–103]

Milk-derived
peptides

B-cell epitopes stimulate
BCR signaling [147–155] Persistent BCR activation

augments mTORC1 signaling
[108–113,128–

132]

Estrogens Increased levels in milk of
persistently pregnant dairy cows [167–174] High ERβ expression is related

to poor prognosis [157–159]

Bisphenol A (BPA)
Contamination of commercial
milk, weak estrogenic activity

increases IGF-1/mTORC1
[201–205] Lymphoma-promoting

activities of BPA [37,182–186]

BMMFs Viral single-stranded DNA [248,249]

Suspected to promote cancer
induction early in life;
Role in DLBCL not yet

experimentally investigated

[250,256]

Abbreviations: IGF-1, insulin-like growth factor 1; IGF1R, insulin-like growth factor 1 receptor; LAT1, L-type
neutral amino acid transporter 1; mTORC1, mechanistic target of rapamycin complex 1; ERβ, estrogen receptor
beta; BPA, bisphenol A; BMMFs, bovine meat, and milk factors; DNA, desoxyribonucleic acid; DLBCL, diffuse
large B cell lymphoma.
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3.9. Bovine Leukemia Virus

Bovine leukemia virus (BLV) is the causative agent of leukemia/lymphoma in cat-
tle. Cattle are the natural host of BLV, which integrates into B cells, producing a lifelong
infection. BLV is a deltaretrovirus closely related to HTLV-1 and HTLV-2 [257] and causes en-
zootic bovine leukosis, which is the most important neoplastic disease in cattle [258]. Infec-
tious BLV is present in the colostrum and milk of most BLV-positive cows [259,260]. Recent
evidence points to a genetic flux between cattle and humans [261]. Olaya-Galán et al. [262]
detected BLV DNA in raw beef and fresh milk for human consumption reminiscent of
findings on BMMF distribution. Notably, BLV DNA was detected in the buffy coat cells of
the blood of human subjects [263]. The most likely route of BLV transmission to humans is a
foodborne infection [263]. After more than two decades, the opinion that “BLV does not in-
fect humans” has started to change. BLV has been identified in human breast cancers giving
rise to the hypothesis that it could be one of the causative agents of this condition [264,265].
Remarkably, one BLV miR, BLV-miR-B4, shares partial sequence identity and shares com-
mon targets with the host miR-29 [266]. Overexpression of miR-29 is associated with B
cell neoplasms suggesting a possible contribution to BLV-induced tumorigenesis [266].
Bovine milk exosome-derived (MDE) miR-29 combined with BLV-derived miR-B4 may
thus enhance oncogenic miR-29 signaling.

4. Exosomal MicroRNAs in the Pathogenesis of DLBCL

B cell development is a very orchestrated pathway that involves several molecules,
such as transcription factors, cytokines, and miRs, respectively. All these components main-
tain the ideal microenvironment to control B cell differentiation. MiRs are small non-coding
RNAs that target mRNAs to control gene expression. These molecules could circulate
in the body in a free form, protein-bounded, or encapsulated into extracellular vesicles
(EVs) including exosomes [267]. EVs represent a heterogeneous group of cell-derived
membranous structures comprising exosomes and microvesicles, which originate from the
endosomal system or which are shed from the plasma membrane, respectively. They are
present in biological fluids and are involved in multiple physiological and pathological pro-
cesses, especially cell-to-cell communication. Exosomes are small, nano-sized (50–100 nm)
EVs secreted by cells and carry nucleic acids, proteins, lipids, and other bioactive sub-
stances that play a role in the body’s physiological and pathological processes. They are
secreted by all cells and circulate in all body fluids including milk. Exosomes are key
mediators of several processes in cancer that mediate tumor progression and metastasis.
These nano-vesicles, when secreted from cancer cells, are enriched in non-coding RNAs
(e.g., miRs) complexed with the RNA-induced silencing complex (RISC), that mediate an
efficient and rapid silencing of mRNAs at the recipient cell, reprogramming their tran-
scriptome [268]. The recently updated “hallmark of cancer model” outlined by Hanahan
and Weinberg [269] considers the roles of miRs in non-mutational epigenetic reprogram-
ming promoting cancer development and progression [269]. There is current interest in
the role of miRs and their relevant targets in B cell development, B cell activation, and
B cell malignant transformation [270]. B cell-specific miR expression plays a key role
in the regulation of GC responses and B cell neoplasia [271,272]. The biological role of
EVs, especially exosomes and their miR cargo in DLBCL initiation and progression is a
recent focus of DLBCL research [273]. Rutherford et al. [274] showed that DLBCLs secrete
large quantities of CD63-, ALIX-, TSG101-, and CD81-positive exosomes. Importantly,
DLBCL cells take up exosomes and their RNAs [274]. This observation highlights the
importance of EVs and exosomes promoting aberrant biological programming of recipi-
ent cells, including pre-metastatic niche formation and tumor progression [274,275], also
demonstrated in other malignancies such as B-cell chronic lymphocytic leukemia [276],
melanoma [277,278], pancreatic cancer [279], hepatocellular carcinoma [280,281], breast
cancer [282,283], and prostate cancer [284,285]. Of note, CLL-derived microvesicles (MV)
can activate the AKT/mTORC1/p70S6K/hypoxia-inducible factor-1α axis in CLL-bone
marrow stromal cells (BMSCs) with the production of vascular endothelial growth factor,
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a survival factor for CLL B-cells. Moreover, MV-mediated AKT activation led to mod-
ulation of the β-catenin pathway and increased expression of cyclin D1 and C-MYC in
BMSCs [275]. EVs and exosomes and their miR may play a key role in the pathogenesis
of DLBCL, particularly with regard to the exchange of genomic information [273,274].
In fact, it has been observed that normal B cells internalize DLBCL-derived exosomes
resulting in miR expression differences observed in normal B cells that are specific to
lymphoma-subtypes [286].

Increased levels of exosomal miR-125b-5p and miR-99a-5p in DLBCL patients’ serum
were associated with shorter progression-free survival time, and they can predict chemother-
apeutic efficacy. Remarkably, DLBCL exosome-derived miR-125b-5p and miR-99a-5p were
significantly upregulated and present predictive biomarkers for DLBCL chemotherapy
resistance [287]. Exosomal miR-125b-5p is also described as a potential prognostic predictor
of chemoresistance in the serum of patients with DLBCL [287]. Notably, exosomes carrying
miR-125b-5p can reduce DLBCL sensitivity to rituximab by inhibiting the expression of tu-
mor necrosis factor necrosis factor-α induced protein 3 (TNFAIP3), also known as A20 [288].
TNFAIP3 is a negative regulator of NF-κB that has been implicated as a tumor suppressor
in multiple types of B-cell lymphoma including DLBCL [13,288–292]. A large percentage of
DLBCL cases (55%) that have an MYD88 mutation also harbor a loss of TNFAIP3 [293].

B lymphocyte-induced maturation protein 1 (BLIMP1) also known as PR domain-
containing protein 1 (PRDM1) plays a pivotal role in gene regulation required for B cell
function and terminal differentiation and plasmablast formation [294,295]. BLIMP1 re-
presses BCL6, a GC-restricted transcriptional repressor for GC formation [296–299]. BCL6
is a transcriptional repressor often expressed constitutively in DLBCL due to mutations
of its genomic locus. BCL6 mediates aberrant survival, proliferation, genomic instability,
and differentiation blockade in DLBCL cells [300–302]. In addition, BCL6 suppresses the
expression of p53 and modulates DNA damage-induced apoptotic responses in GC B-cells.
Of note, BCL6 represses p53 transcription by binding two specific DNA sites within the
p53 promoter region and, accordingly, p53 expression is absent in GC B-cells where BCL6 is
highly expressed [303]. Importantly, BCL6 overexpression represses BLIMP1, suppressing
plasma cell differentiation [304].

The majority of TP53 mutations in human DLBCL are accompanied by loss of p53 func-
tion [305]. Pascual et al. [306] recently demonstrated that DNA damage response by p53 is
a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical
NF-κB and impaired differentiation resulting from BLIMP1 loss in ABC-DLBCL lymphoma-
genesis. Conditional deletion of p53 in mouse GCBs strongly synergized with IKK2 activa-
tion and BLIMP1 loss to promote GC-derived lymphomagenesis. Thus, there is a close in-
teraction between BLIMP1, BCL6, and p53 in the pathogenesis of DLBCL. BLIMP1 has been
substantiated as a key tumor suppressor of DLBCL [307–315]. Mandelbaum et al. [313]
and Calado et al. [314] unequivocally demonstrated that BLIMP1 functions as a tumor
suppressor and guardian of ABC-like DLBCL lymphomagenesis. Loss of BLIMP1 function
contributes to the overall poor prognosis of ABC-DLBCL patients [316,317]. Furthermore,
dysregulated multidrug resistance protein 1 (MDR1; ABCB1) by BLIMP1 is involved in the
doxorubicin resistance of non-GC B-cell-like DLBCL [318].

Notably, loss of BLIMP1 was associated with MYC overexpression and decreased ex-
pression of p53 pathway molecules [317]. BLIMP1 represses C-MYC promoter activity in a
binding site-dependent manner [319]. The repression of C-MYC by BLIMP1 is a critical step
for terminal B cell differentiation [319]. The upregulation of C-MYC gene expression induced
by PRDM1 inactivation apparently plays a crucial role in the development of DLBCL [320].

4.1. MicroRNA-Mediated Transcriptional Regulation in DLBCL

BLIMP1 has been identified as a key immune gene hub regulated by miRs [321]. Inac-
tivation of BLIMP1 not only results from PRDM1 mutations but also from miR-mediated
downregulation of BLIMP1 expression. Ma et al. [322] demonstrated that BLIMP1 sup-
pression via EBV-miR-BHRF1-2 plays a potential role in EBV-induced lymphomagenesis.
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Recently evidence indicates that certain miRs act as oncogenes in DLBCL pathology [323].
In the following section pivotal DLBCL-related miRs that are also signature miRs of cow’s
milk and milk exosomes will be discussed in more detail.

4.1.1. MicroRNA-let-7 Over-Expression in DLBCL

High levels of let-7a and miR-9 in HL cell lines correlated with low levels of BLIMP1 [324].
Let-7, in particular let-7b, is overexpressed in DLBCL relative to normal GC B-cells, suggesting
that this miR is deregulated. Thus, abnormal epigenetic downregulation of BLIMP1 by let-7
and other miRs may represent an alternative epigenetic mechanism reducing BLIMP1 function
in a subset of DLBCL [325].

4.1.2. MicroRNA-125b Over-Expression in DLBCL

Malumbres et al. [326] provided experimental evidence that GC-enriched hsa-miR-
125b down-regulates the expression of IRF4 and BLIMP1. Dysfunction of TP53, including
miR regulations, copy number alterations of the p53 pathway and p53 itself, dysregulation
of p53 regulators, and somatic mutations by abnormal p53 function modes, play an impor-
tant role in DLBCL generation, progression, and invasion [327]. Importantly, miR-125b-5p
is a key negative regulator of p53 expression and targets the 3′ untranslated region (3′ UTR)
of TP53 mRNA [328,329]. Li et al. [330] reported mutations in the 3′ UTR of TP53 mRNA
that modify miR-125b binding and the expression of p53 affected the response to therapy
in DLBCL patients. Furthermore, miR-125b-5p targets MAX dimerization protein 4 (MXD4)
thereby enhancing C-MYC activity [331].

4.1.3. MicroRNA-21 Over-Expression in DLBCL

Elevated levels of miR-21-5p have been found in the serum of patients with DLBCL [332–338].
miR-21-5p contributes to characteristic miR signatures in DLBCL [287,339–341]. High miR-21-5p
expression is associated with the ABC subtype of DLBCL [340]. miR-21-5p is the most
frequently deregulated miR in malignancy, including B-cell lymphomas, and it has onco-
genic potential downstream of STAT3 [342]. Remarkably, BLIMP1 binds to the promoter of
pri-miR-21 and represses pri-miR-21 expression [342]. Using in situ hybridization, miR-21
expression was also detected in the stromal compartment of 73.2% of DLBCL [343]. DLBCL
patients with higher miR-21 expression have shown significantly worse overall survival
than those with lower miR-21 expression [335]. Inada et al. [334] confirmed that miR-21-5p
is not only increased in serum but also in exosome-enriched serum of patients with DLBCL.
Circulating exosomal miRs can be useful noninvasive biomarkers for the diagnosis of
DLBCL and for improving the identification of patients with poor outcomes [344].

Whereas C-MYC induces the expression of miR-21, miR-21 in turn targets MAX dimer-
ization protein 1 (MXD1) mRNA and downregulates MXD1 protein. The resultant decrease
in MXD1 promotes the formation of a C-MYC-MAX heterodimer, leading to sustained
C-MYC activation [345]. Thus, C-MYC/miR-21/MXD1 represents a positive-feedback loop
that is critical for the maintenance of B-cell lymphoma survival. Targeting miR-21 with
the bendamustine derivative NL101 blocked the C-MYC/miR-21/MXD1 loop, a potential
therapeutic strategy of C-MYC-directed lymphoma therapy [345]. Von Hippel-Lindau
(VHL) mRNA is another direct target of miR-21-5p in DLBCL [346]. In contrast, curcumin is
a known suppressor of miR-21 [347] and decreases miR-21 levels through both increasing
miR-21 exosome exclusion from the cells and inhibiting the transcription of the miR-21
gene (MIR21) in the cells by binding to its promoter [347]. In fact, curcumin exerted its
anti-proliferation, anti-migration, anti-invasion, and pro-apoptosis functions, at least partly,
by repressing miR-21 and regulating VHL expression in the DLBCL cell line [346]. Further-
more, miR-21-5p inhibits phosphatase and tensin homolog (PTEN) and programmed cell
death protein 4 (PDCD4), thus increasing PI3K/AKT-mediated cell proliferation and cell
survival as well as eIF4A and eIF4G-mediated translation [347]. In addition, miR-21 via ac-
tivation of AKT increases NF-κB signaling [347–349]. miR-21 level was inversely correlated
with the levels of FOXO1 and PTEN in DLBCL cell lines [350,351]. Reporter-gene assay
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showed that miR-21 directly targeted and suppressed FOXO1 expression, and subsequently
inhibited BCL2-like 11 (BIM) transcription in DLBCL cells. miR-21 also down-regulates
PTEN expression and consequently activates the PI3K/AKT/mTORC1 pathway, which
further decreases FOXO1 expression. In contrast, FOXO1 activation is a required effector
for spleen tyrosine kinase (SYK) and AKT inhibition in tonic BCR signal-dependent DL-
BCL [352]. Moreover, miR-21 inhibitor suppressed the expression and activity of multidrug
resistance protein 1 (MDR1), thereby sensitizing DLBCL cells to doxorubicin [350]. In fact,
miR-21 exhibited significantly higher plasma levels in patients with DLBCL unresponsive-
ness to treatment [353], whereas inhibition of miR-21 induced suppression of proliferation
and invasion, as well as increased apoptosis in DLBCL [354]. According to a recent meta-
analysis, poor overall survival has been associated with high expression of miR-21 in tumor
tissue of DLBCL [355]. Recently, a novel prognostic model based on four circulating miRs
(miR-21, miR-130b, miR-155, and miR-28) in DLBCL with implications for their roles of
myeloid-derived suppressor cells (MDSC) and Th17 cells in lymphoma progression [356].
Remarkably, inhibition of miR-21 reduced the expression of IGF-1 [356]. The high-risk
group of the 4-circulating miRs prognostic model was characterized by activation of RAS
protein signal transduction. Both IGF-1 and JUN were two key regulators of the RAS
cascade, enhancing lymphoma development [356]. As a mechanism of action, IGF-1 and
JUN are positively regulated by miR-21 [356]. There is recent interested in miR-based
therapies in B-cell NHL [357].

4.1.4. Over-Expressed MicroRNA-155 in DLBCL

The evolutionarily conserved miR-155 plays an important role in the immune system,
specifically in regulating GC reaction to produce an optimal T cell-dependent antibody
response [358]. miR-155-5p and miR-155-3p are processed from the B-cell integration
cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). miR-155-5p is
highly expressed in both activated B and T cells and monocytes/macrophages and pro-
liferating lymphoblastoid cell lines [240,359]. miR-155 can be processed from sequences
present in BIC RNA, a spliced and polyadenylated but non-protein-coding RNA that
accumulates in lymphoma cells [360]. Isolates of several types of B-cell lymphomas, in-
cluding DLBCL have 10- to 30-fold higher copy numbers of miR-155 than do normal
circulating B cells [360]. Significantly higher levels of miR-155 are present in DLBCLs
with an ABC phenotype than with the GC phenotype [360]. In fact, oncogenic miR-155 is
highly expressed in the non-GC B-cell or activated B-cell subtype of ABC-DLBCL [361].
In accordance, miR-155 expression levels in formalin-fixed/paraffin-embedded tissue of
patients with DLBCL were significantly higher in de novo DLBCL patients compared
to controls [362]. PI3K is activated in DLBCL cells due to chronic or tonic BCR signal-
ing [363]. miR-155 is potentially involved in the upregulation of BCR-PI3K-AKT-mTORC1
signaling DLBCL. Huang et al. [364] reported a link between miR-155 overexpression in
DLBCL and overactivated PI3K-AKT signaling. Notably, the PI3K regulatory subunit 1
(PIK3R1; also known as p85α), which is a negative regulator of the PI3K-AKT pathway,
is a direct target of miR-155-5p and miR-21-5p [364]. Knockdown of miR-155 in OCI-Ly3
cells diminished AKT activity [364]. PTEN has been identified as a further target of miR-
155 [365,366]. It has recently been reported that miR-155 represses the mTOR phosphatase
DEP domain-containing protein 6 (DEPD6) also known as DEP domain-containing mTOR-
interacting protein (DEPTOR) as well as C-CBL (SYK ubiquitin E3 ligase) [367]. DEPTOR
protein expression was markedly lower in more aggressive non-GCB DLBCLs than in
GCB tumors [367]. DEPTOR is capable of inhibiting the kinase activity of mTOR of both
mTORC1 and mTORC2 [368,369]. AKT Thr308 being phosphorylated by phosphoinositide-
dependent kinase 1 (PDK1), the plasma membrane-localized and activated mTORC2 further
phosphorylates AKT at Ser473 [370]. Thus, miR-155 upregulates PI3K-AKT-mTORC1 sig-
naling at multiple inhibitory checkpoints. Upregulated miR-155, mTORC1, pS6K1, and
downregulated DEPTOR were associated with the treatment-resistant group in gastric
DLBCL [371]. The inositol polyphosphate-5-phosphatase (INPP5D also known as SHIP1)



Int. J. Mol. Sci. 2023, 24, 6102 16 of 52

is another target of miR-155-5p [372]. SHIP dephosphorylates the PI3K product and
lipid second messenger phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] to produce
phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] [373,374]. SHIP plays a critical role in the
termination of PI [3,4,5]P(3) signals that follow BCR aggregation [374]. B-cell precursors
from SHIP-deficient mice progress more rapidly through the immature and transitional
developmental stages and SHIP-deficient B cells have increased resistance to BCR-mediated
cell death [374]. Diminished SHIP1 expression in DLBCL resulted in autocrine stimulation
by tumor necrosis factor-α (TNFα) [375]. Whereas miR-155 downregulates SHIP expression
increasing PI3K-AKT signaling, a novel SHIP1 activator, AQX-435, reduced AKT phospho-
rylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth
inhibition [376]. DLBCL cases with elevated circulating levels of miR-155 had shorter
overall survival than those with a lower miR-155 expression [377]. Notably, a significant
increase in plasma exosomal miR-155, let-7g, and let-7i levels and exosome concentration
in refractory/relapsed patients compared to responsive patients and patients receiving
R-CHOP has been reported [378]. In contrast, the inhibition of miR-155 by cobomarsen,
an oligonucleotide inhibitor of miR-155, slowed DLBCL tumor cell growth [360]. Selective
inhibition of miR-155 function specifically inhibits the growth of lymphoblastoid cell lines
and the DLBCL cell line IBL-1 [240]. Chronic active BCR signaling plays a pathogenetic
role in ABC DLBCL [14]. The activation of ‘chronic’ or ‘tonic’ BCR signaling in lymphoma
B cells can be influenced by a specific immunoglobulin structure, the expression and muta-
tions of adaptor molecules (like GAB1, BLNK, GRB2, and CARD11), the activity of kinases
(like LYN, SYK, and PI3K) or phosphatases (like SHIP-1, SHP-1, and PTEN) and levels of
oncogenic miRs, predominantly miR-155-5p [379].

4.1.5. MicroRNA-148a Maintains Survival of Immature B Cells

miR-148a has been identified as a critical regulator of B cell tolerance and autoimmu-
nity [380]. Elevated miR-148a-3p expression impaired B cell tolerance by promoting the
survival of immature B cells after engagement of the BCR by suppressing the expression of
growth arrest- and DNA-damage-inducible gene α (GADD45A), the PI3K inhibitor PTEN,
the pro-apoptotic protein BIM as well as the TNF receptor subfamily, member 1B (TN-
FRSF1B) [380]. Of note, TNFRSF1B is also a target of miR-125b-5p and let-7-5p. GADD45α
regulates G2/M checkpoints and the entry to mitosis by dissociating the CDK1/cyclin B
kinase complex [381]. Moreover, GADD45α participates in DNA repair by binding and
activating the proliferating cell nuclear antigen, a key element in excision base repair [382].
Interestingly, apoptosis induced by anti-MEK small molecule AZD6244 was BIM-dependent
in DLBCL cells [383].

Recent evidence indicates that miR-148a-3p promotes plasma cell (PC) differenti-
ation via targeting GC transcription factors BTB and CNC homology 2 (BACH2) and
microphthalmia-associated transcription factor (MITF) [384]. For differentiation of mature
activated B cells into long-lived antibody-secreting PCs, BACH2 and MITF, are essential, as
they delay premature differentiation of GC B-cells by repressing BLIMP1 and IRF4 [384].
Therefore, BACH2 and MITF expression must be attenuated in activated B cells to allow
terminal PC differentiation. Notably, high BACH2 expression in GCB and non-GCB DLBCL
exhibited shorter 3-year overall survival compared to DLBCLs with low BACH2 expres-
sion [385]. The analysis of miR-148a-deficient mice revealed reduced serum Ig, decreased
numbers of newly formed plasmablasts, and reduced CD19-negative, CD93-positive long-
lived plasma cells [386].

Thus, miR-148a may exert dual functions in B cell development, i.e., promoting the
survival of immature B cells but also driving terminal differentiation of PCs. According to a
recent systematic review by Yazdanparast et al. [273], exosomal miRs are not only involved in
critical pathobiochemical mechanisms in DLBCL but are also useful for diagnosis and prognosis
in DLBCL and are promising therapeutic tools and predictors of response to therapy.
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4.2. Potential Uptake of Bovine Milk-Derived Exosomes by B Cells

Pasteurized milk is consumed in high quantities in the US and northern European
countries. Swedes, for instance, who per capita consumed 98 L milk in 2018, primarily
drink pasteurized milk [387]. In contrast to ultraheat treatment (UHT) (135–150 ◦C, 1–10 s),
pasteurization (72 ◦C for 15 s) is a gentle thermal processing [388]. Pasteurization in con-
trast to UHT preserves milk exosomes and substantial amounts of their miRs [389,390].
Compared to raw cow’s milk, pasteurization and homogenization reduces the concentra-
tion of milk EVs [389]. However, it should be taken into account that cow’s milk contains
1012–1014 exosomes per mL [391] and thus delivers 10- to 1000-fold higher exosome num-
bers/mL compared to human milk. Bovine milk exosomes survive the harsh conditions in
the gastrointestinal tract [392,393].

Bovine milk-derived exosomes (MDEs) are taken up by endocytosis as shown in intesti-
nal and vascular epithelial cells [394,395] and breast cancer cells [396]. There is compelling
evidence that bovine MDEs and their miRs are bioavailable [397–400], reach the systemic
circulation [387], and enter the cells and peripheral tissues [401–408]. There is ample evidence
that human and bovine MDEs are taken up by human peripheral blood mononuclear cells
(PBMCs) [409], including macrophages [410–412] and T cells [413]. Wolf et al. [394] showed
that the uptake of bovine MDEs is mediated by endocytosis and depends on cell and exosome
surface glycoproteins in human and rat intestinal cells. In accordance, Kusuma et al. [395]
observed that bovine MDEs are taken by endocytosis in vascular endothelial cells. Cur-
cumin encapsulated in MDEs resists human digestion and possesses enhanced intestinal
permeability in vitro [414]. Recently, González-Sarrías et al. [396] reported the uptake of cur-
cumin and resveratrol-loaded bovine MDEs in MCF-7 breast cancer cells primarily was
dependent on clathrin-mediated endocytosis. Caner et al. [286] recently showed that normal
B cells are able to internalize exosomes derived from DLBCL resulting in changes in miR
expression profiles specific to lymphoma subtypes. B cells exhibit a very active endocytic
machinery. The best-characterized mechanism of BCR internalization is clathrin-mediated
endocytosis [415–420]. Recent evidence indicates that class A scavenger receptor-1/2 facili-
tates the uptake of bovine MDEs in murine bone marrow-derived macrophages and C57BL/6J
mice [421]. Baos et al. [422] described the presence of class A scavenger receptor 1 (CD204) in
several cell populations of PBMCs, specifically in T and B lymphocytes, as well as monocytes.
Notably, an increase in CD204+ cell numbers was associated with poor clinical outcome in
DLBCL of the central nervous system [423]. Betker et al. [402] suggest that the absorption of
bovine MDEs from the gastrointestinal tract is mediated via neonatal Fc receptor (FcRn). Of
note, the expression of FcRn has been demonstrated on human B cells and murine primary B
cells [424–426]. Thus, several potential mechanisms may mediate the uptake of bovine MDEs
by B cells and B cell precursors.

4.3. Bovine Milk Exosome-Derived MicroRNAs
4.3.1. MicroRNAs of the Let-7 Family

The most abundant miRs of MDEs are highly conserved between mammals [427,428].
Interestingly, several abundant miRs including the let-7 family members let-7a, let-7b,
let-7f, and miR-148a are shared between species. Moreover, milk-derived miRs have
been implicated in immune-related functions and regulation of cell growth and signal
transduction [428,429]. Interestingly, the bta-let-7 family members let-7a, let-7b, let-c,
let-7d, let-7f, let-7g, and let-7i are expressed in bovine MDEs [411,428–434]. Notably,
in vivo treatment with bovine MDEs resulted in an increase in let-7a and miR-148a and
expression in hepatic stellate cells [435]. Thus, the potential uptake of bovine MDEs by
DLBCL cells may enhance cellular let-7 abundance promoting epigenetic down-regulation
of BLIMP1 [325].

4.3.2. MicroRNA-125a and MicroRNA-125b

A large quantity of bovine milk bta-miR-125b (∼109–1010 copies/300 mL milk) with-
stood digestion under simulated gastrointestinal tract conditions [383]. Of note, bovine
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milk bta-miR-125b that resists digestion was associated with exosomes [411]. However, the
majority of digested dairy milk bta-miR-125b was associated with EVs sedimenting at a
centrifugation speed lower than that for exosomes [392]. Comparative expression profiles
of immune-related miRs of buffalo milk nanovesicles (50–200 nm) confirmed the expression
of miR-125b, miR-155, and miR-21, respectively [436]. Notably, both human and bovine
miR-125b-5p exhibit an identical sequence (mirbase.org). Importantly, miR-125b targets
TP53 [329,330] and TNFAIP3 (A20) [288]. TNFAIP3 (A20) is a tumor suppressor gene in
lymphomas [188,437] and is frequently inactivated in B-cell lymphomas [438]. A20 inhibits
NF-κB signaling [439–441]. Evidence has been presented that epigenetic termination of
TNFAIP3 function by miR-125a and miR-125b could strengthen and prolong NF-κB activity,
which promotes DLBCL lymphomagenesis [442]. Shome et al. [443] identified bta-miR-125a
as one of the most abundant miRs of commercial milk related to immunological roles that
were not affected by pasteurization, homogenization, or heat treatment. The seed sequence
of hsa-miR-125a-5p and bta-miR-125a-5p are identical. The fine-tuning of TNFAIP3 levels
mediated by miR-125 expression had a striking impact on K-63 ubiquitination of TRAF2
and RIP1, IκBα degradation, p65 nuclear accumulation, and transcription of NF-κB target
genes [443]. These events defined an antiapoptotic profile compatible with constitutive
NF-κB activation and enhanced the fitness of B lymphoma cells.

Together, miRs of the miR-125 family play a key role in immune cell activation and
oncogenesis, and constitutive activation of the NF-κB pathway in DLBCL [442–444]. In
accordance, exosome-derived miR-125b-5p reduced the sensitivity of DLBCL to chemother-
apy and rituximab [277,278]. Furthermore, the miR-125 family has been implicated as an
aggravating factor in several other B cell malignancies [444].

4.3.3. MicroRNA-21

Bovine exosomal miR-21 was not affected by digestion in vitro [396] and was stable
under different household storage conditions, indicating that miR-21 could be biologically
available to milk consumers [436]. Notably, human and bovine miR-21-5p share identical
nucleotide sequences [445]. Mutai et al. [446] confirmed miR-21-5p as a component of
exosomes derived from pasteurized commercial cow’s milk and showed that miR-21-5p
plasma levels significantly increased by 147% 3.2 h after consumption of 1 L commercial
milk by healthy human volunteers [446]. miR-21 is an abundant signature miR of cow’s
milk [427,430,447] and is a component of bovine MDEs [268,446,448]. In addition to miR-
125b-5p, miR-21-5p targets and inhibits TNFAIP3 [449,450]. Furthermore, miR-21 plays an
oncogenic role by targeting FOXO1 [451–453] and PTEN [454–456], thereby activating the
PI3K/AKT/mTORC1 pathway in DLBCL [350]. B-cell lymphoma/leukemia 11B (BCL11B)
is another direct target of miR-21 [457]. Its loss of function in mice contributes to lym-
phomagenesis [458,459]. Activation of eIF4F by increased mTORC1 signaling has a direct
role in lymphomagenesis due to increased synthesis of oncogenes that are dependent on
enhanced eIF4A RNA helicase activity for translation [460]. AKT activation leads to the
degradation of programmed cell death 4 (PDCD4), which inhibits the translation initiation
factor EIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the
5′ UTR of mRNAs [461] and can alter eIF4F complex formation [460]. Notably, PDCD4 is
also epigenetically downregulated by miR-21 [239,354,355]. It is well-accepted that miR-
21 is frequently upregulated in DLBCL [342–344]. Moreover, insulin-like growth factor
(IGF)-binding protein-3 (IGFBP3) is a miR-21 target gene promoting glioblastoma tumorige-
nesis [462]. Thus, miR-21 enhances levels of free IGF-1. The majority of reported targets of
miR-21 are tumor suppressor genes and inhibitors of apoptosis [239,463–465] (Figure 2).
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Figure 2. Illustrated mechanistic role of bovine milk-derived exosomes (MDE) and their microR-
NAs (miRs) in epigenetic signaling in diffuse large B-cell lymphoma (DLBCL). The key oncogene
upregulated in most DLBCL is B cell lymphoma 6 (BCL6) activating the germinal center reaction and
promoting B cell proliferation. The expression BCL6 is suppressed by a complex of DNA methyl-
transferase 1 (DNMT1) and activation-induced cytidine deaminase (encoded on AICDA), which
catalyzes BCL6 promoter methylation. DNMT1 is a target of miR-148a, the most abundant miR of
human and bovine milk and their MDEs. AICDA is targeted via miR-155 and miR-29b, abundant
immune-regulatory miRs of human and bovine milk. MDE miRs may thus enhance BCL6 expression
promoting B cell proliferation. BCL6 is a critical inhibitor of B lymphocyte-induced maturation protein
1 (BLIMP1, encoded on PRDM1), the key driver of B cell differentiation. miR-148a via suppression
of SOS RAS/RAC guanine nucleotide exchange factor 1 and 2 (SOS1/2) inhibits ERK1/2-mediated
expression of BLIMP1. Thus, miR-148a indirectly increases the ratio of BCL6/BLIMP1. BLIMP1 is
directly suppressed via the let-7 family of miRs and miR-125b, further abundant miRs of human and
bovine milk and their MDEs. Reduced expression of BLIMP1 enhances C-MYC expression, a key
oncogene driving cell proliferation. C-MYC translation is dependent on the mechanistic target of
rapamycin complex 1 (mTORC1). Negative regulators of mTORC1 are DEP domain-containing protein
6 (DEPTOR encoded on DEPDC6), phosphatase and tensin homolog (PTEN), and AMP-activated
protein kinase (AMPK), which are targeted via abundant miR-155, miR-21 an miR-148a, respectively.
In addition, miR-21 targets MAX dimerization protein 1 (MXD1), whereas miR-125b targets MAX
dimerization protein 4 (MXD4), leading to sustained C-MYC activation. In addition, miR-148a and
miR-125b target TP53, the key transcription factor of a multitude of tumor suppressor genes. miR-125b
also targets interferon regulatory factor 4 (IRF4), a well-defined transcription factor obligatory required
for the terminal differentiation of B cells to plasma cells. A further target of miR-125b is tumor necrosis
factor alpha-induced protein 3 (TNFAIP3), also known as A20. TNFAIP3 is a negative regulator of nu-
clear factor kappa B (NF-κB) signaling, which is upregulated in most cases of DLBCL. Notably, miR-21
also targets TNFAIP3 as well as forkhead box O A1 (FOXO1A), programmed cell death 4 (PDCD4),
and insulin-like growth factor-binding protein 3 (IGFBP3). Thus, the most abundant milk-derived
miRs maintain mTORC1 activation, and promote the expression of BCL6 and NF-κB, but suppress
cell cycle inhibitor p53 and transcription factors BLIMP1 and IRF4 involved in B cell differentiation
and plasma cell and antibody formation. This signaling scenario may be useful for neonatal B cell
proliferation during the period of lactation when high-affinity antibodies educated by the maternal
immune system are provided to the infant via breastfeeding. However, persistent epigenetic milk miR
signaling via continued exposure to bovine MDE-transferred miRs provided by the consumption of
pasteurized cow’s milk may promote BCL6/BLIMP1-dependent lymphomagenesis.
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4.3.4. Exosomal MicroRNA-21 Exposure and M2 Macrophage Polarization

The tumor microenvironment (TME) of DLBCL and its role in DLBCL pathogenesis
and patient survival is a matter of recent research [466]. The TME consists of T and B
lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), cancer-associated fibroblasts (CAFs), and other components [467]. The crosstalk
between malignant B cells and immune cells in the lymphoma TME is highly complicated
and might be affected by often interconnected intrinsic and/or extrinsic mechanisms that
ultimately can lead to immune escape [467]. M2-polarized macrophages are implicated to
contribute to DLBCL progression and poor patient outcome [466,468]. Tumor-associated
macrophages (TAMs) comprise an important part of the TME, are predominantly M2-
polarized, and play a key role in DLBCL progression [469–472]. Compelling evidence in
various cancer entities underlines the impact of miR-21-5p in driving M2 polarization of
macrophages and TAMs [473–476], whereas inhibition or depletion of miR-21 reversed
M2 polarization back to the M1 phenotype [477–479]. Remarkably, miR-21 depletion in
macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy [477].

Exosome-mediated crosstalk between tumors and TAMs involves the traffic of miR-21,
which is the recent focus on molecular oncology [480]. DLBCL-derived EVs and exosomes
are internalized by macrophages and can induce M2 macrophage polarization and thus con-
tribute to tumor progression [481,482]. Importantly, tumor-cell-derived EVs and exosomes
transfer miR-21-5p to monocyte/macrophages inducing the M2-phenotype [483–487]. In
fact, it has been demonstrated that miR-21-5p-containing exosomes were engulfed by
CD14+ human monocytes, suppressing the expression of M1 markers and increasing that
of M2 markers [484]. The transcription factor STAT3 is a known enhancer of miR-21 ex-
pression [488–490]. Preclinical evidence indicates that the STAT3 inhibitor pacritinib could
overcome temozolomide resistance via downregulating miR-21-enriched exosomes from
M2 glioblastoma-associated macrophages [491]. It has been demonstrated in colon cancer
that TAM secrete exosomes containing miR-21-5p and miR-155-5p promoting cell migration
and invasion [492]. In hepatocellular carcinoma (HCC), miR-21-5p expression was upregu-
lated in M2 macrophage-derived EVs, which carried miR-21-5p into HCC tissues [493]. Of
note, M2 macrophage-derived EVs promoted the depletion of CD8+ T cells in HCC via the
miR-21-5p/YOD1/YAP/β-catenin axis [493]. In pancreatic cancer, M2 macrophage-derived
exosomal miR-21-5p stimulated differentiation and activity of pancreatic cancer stem cells
via targeting Kruppel-like factor 3 (KLF3) [494].

Taken together, compelling evidence supports the view that tumor cell-derived exosomal
miR-21-5p promotes macrophage M2 polarization within the TME. M2-polarized TAMs
themselves secrete miR-21-5p enriched exosomes into the TEM further stimulating tumor
cell growth. In this scenario, it is of critical concern that bovine MDEs, which are enriched in
miR-21-5p [227,446,448] are taken up by human PBMCs [403] and human macrophages [411].
Thus, dietary MDE miR-21 exposure may enhance the total burden of miR-21 signaling in the
TME promoting lymphomagenesis and tumor progression [334] (Figure 3).

4.3.5. MicroRNA-29b

In comparison to colostrum, mature cow’s milk contains more abundant amounts of
miR-29b [411]. Pasteurized and homogenized 2% fat commercial cow’s milk stored at 4 °C
for 15 days still exhibited more than 50% of the initial miR-29b concentration detected in
fresh raw cow’s milk [495]. Yu et al. [448] reported that bovine MDEs contain miR-21 and
miR-29b, whereas Izumi et al. [411] detected miR-29c in bovine MDEs. Baier et al. [409]
demonstrated that postprandial plasma concentrations of miR-29b increased in a dose-
dependent manner after intake of 0.25, 0.5, and 1.0 L of commercial cow’s milk in healthy
human volunteers. Notably, the expression of runt-related transcription factor 2 (RUNX2),
which is positively regulated by miR-29b [496], increased by 31% in PBMCs after milk
consumption compared with baseline [409]. Of note, the nucleotide sequence of bovine
miR-29b is identical to that of human miR-29b [497]. RUNX2 is highly expressed in adherent
B-NHL cells compared to cells in suspension, and knockdown of RUNX2 expression could



Int. J. Mol. Sci. 2023, 24, 6102 21 of 52

reverse cell adhesion-mediated drug resistance. Furthermore, RUNX2 could promote the
proliferation of B-NHL cells [498]. Hines et al. [499] reported that miR-29s in murine B
lymphocytes regulate the BCR-PI3K signaling cascade by dampening PTEN expression and
that loss of this miR cluster results in increased apoptosis as well as defects in B cell terminal
differentiation. Remarkably, the miR expression profile of U2932 DLBCL cells transfected
with EBV-encoded latent membrane protein 1 (LMP1) exhibited significant upregulation
of miR-29a, miR-29b, and miR-29c [500]. However, in this experimental model system of
DLBCL, miR-29b downregulated the expression of the T-cell leukemia gene 1 (TCL1) [501],
which exhibits oncogenic activity in distinct classes of B cell lymphoma [501,502].
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Figure 3. Exosome crosstalk in the tumor microenvironment (TME) of diffuse large B-cell lymphoma
(DLBCL). DLBCL cells secrete microRNA-21 (miR-21)-enriched exosomes into the TME to tumor-
associated macrophages (TAM), which internalize these tumor-derived exosomes and promote
macrophage M2 polarization, favoring tumor growth and progression. TAMs also secrete miR-
21-enriched exosomes to DLBCL cells further promoting lymphomagenesis. Bovine milk-derived
exosomes (MDEs) also transport miR-21 to recipient cells that may reach TAMs and/or DLBCL cells
further augmenting miR-21-mediated oncogenic signaling.

4.3.6. MicroRNA-155

The quantity of immune-related miR-155 of colostrum is 5.4-fold higher than in raw
mature cow’s milk [429]. Levels of miR-155 of HTST (high temperature for short time,
75 ◦C for 15 s) milk was 3.8-fold higher for miR-155 compared to LTLT (low temperature
for a long time, 63 ◦C for 30 min) cow’s milk [429]. The lowest miR-155 levels have
been detected in UHT (ultra-heat treatment 120–130 ◦C for 0.5–4 s) [429]. It appears that
the common procedure of cow’s milk pasteurization (75 ◦C for 15 s) does not lead to a
significant destruction of MDE miR-155. Mutai et al. [446] detected miR-155-5p in bovine
MDEs. Notably, the stability of miR-155 in raw cow’s milk was not affected by incubation
at 37 ◦C for 1 h without treatment, incubation at 37 ◦C for 1 h with RNase (10 U/mL RNase
A and 400 U/mL RNase H), exposure to a low pH (pH 2), or treatment with detergent (1%
Triton X-100) compared to untreated bovine milk [503]. Remarkably, pretreatment of IEC-6
cells with bovine MDEs increased intracellular levels of miR-155 [504]. It has recently been
shown that the primary oncogene of EBV, latent membrane protein 1 (LMP1), upregulates
the expression of miR-155 in EBV+ B cell lymphoma cell lines and associated exosomes
targeting the anti-apoptotic protein FOXO3A [505]. Notably, resistance to Bruton’s tyrosine
kinase (BTK) inhibition by ibrutinib was associated with the downregulation of FOXO3A
and PTEN levels and activation of AKT [506].
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In fact, high levels of EV-associated miR-155 were found to correlate with chemother-
apy resistance in several common cancers including DLBCL [507]. In patients with ABC
DLBCL, Zare et al. [378] showed that exosomal miR-155 expression was upregulated in re-
fractory/relapsed patients compared to responsive patients and patients receiving R-CHOP.
Therefore overexpression of exosomal miR-155 in refractory/relapsed patients might be
associated with more aggressive disease, poor response to R-CHOP therapy, and adverse
prognosis [377]. In HCV-infected patients with rheumatoid arthritis, rituximab declined
exosomal miR-155 concentrations [508]. Notably, a transfer of exosomal KSHV-miR-K12-11
(miR-K12-11) that has an identical seed sequence as miR-155, from KSHV-infected BCBL-1
and BC-1 lymphoma lines to T cells has been reported [509].

Recent evidence indicates that miR-155 enhanced lymphoma cell programmed death
ligand 1 (PD-L1) expression, whereas PD-L1 blockade particularly retarded miR-155-
overexpressing tumor growth consistent with the maintenance of CD8+ T cells and their
function [510]. Targeting the polarization of tumor-associated macrophages and modulat-
ing miR-155 expression might be a new approach to treating DLBCL in the elderly [511].

4.3.7. MicroRNA-148a

miR-148a is a signature miR of commercial cow’s milk [447] and human milk and
milk EVs [512,513]. In contrast to the boiling or UHT of cow’s milk, pasteurization and
homogenization did not result in losses of miR-148a-3p compared to reeds of raw cow’s
milk [514]. Benmoussa et al. [515] found that the bulk of bovine milk miRs including
bta-miR-148a and bta-miR-125b sediment at 12,000 g and 35,000 g. Nevertheless, miR-148a
is an abundant non-coding RNA detected in human [516,517], bovine [411], and porcine
MDEs [518]. Human and bovine miR-148a-3p shares identical nucleotide sequences [519].
Recent evidence underlines that oral administration of exosomal bovine miR-148a-3p
is bioavailable and reaches distant target tissues of C57BL6/mice [400]. Bovine MDE
miR-148a-3p targets DNMT1 [427], the key maintenance DNA methyltransferase linking
milk signaling to epigenetic regulation [519]. Guo et al. [517] recently demonstrated that
human MDE miR-148a-3p directly targets TP53. Thus, MDEs via transfer of miR-148a-3p
and miR-125b-5p to recipient cells may down-regulate the expression of p53 [520]. Of
importance, p53 regulates the baseline expression of key genes involved in cell homeostasis
such as FOXO1, PTEN, SESN1, SESN2, AR, IGF1R, BAK1, BIRC5, and TNFSF10 [521]. In
fact, aberrations of the TP53 gene and dysregulation of the p53 pathway are regarded
to be important in the pathogenesis of DLBCL [327]. Remarkably, TP53 loss led to an
upregulation of programmed death ligand 1 (PD-L1) cell surface expression and secretion
of EVs with EV-bound PD-L1 by lymphoma cells [522]. PTEN is a direct target of miR-148a-
3p [523–525]. In fact, Reif et al. [526] demonstrated that human MDEs via miR-148a-3p
down-regulated PTEN expression after incubation of normal fetal colon epithelial cells
with MDEs. It is noteworthy that PTEN deficiency or PTEN loss are common adverse
features in the pathogenesis of DLBCL [527–530].

BCL6 is a transcriptional repressor critically involved in the development and main-
tenance of GCs and lymphomagenesis [531]. Mutations and translocations leading to the
sustained activity of BCL6 promote the development of GC-derived lymphomas [531]. Epi-
genetic mechanisms also lead to B cell hyperactivation [532,533]. In fact, BCL6 activity is
modified by epigenetic mechanisms. As mentioned earlier, AICDA and DNMT1 form a
complex to maintain methylation of the BCL6 promoter thereby inhibiting its expression. Loss
of either AICDA or DNMT1 causes instability of the AICDA-DNMT1 complex resulting in its
disassociation from the BCL6 promoter enhancing BCL6 expression in DLBCL [28] (Figure 2).

Importantly, DNMT1 is a direct target of MDE miR-148a-3p [235,526,534], whereas
AICDA is targeted by miR-155-5p [535–537] and miR-29b [538]. Thus, continued con-
sumption of pasteurized milk with a continuous transfer of MDE miR-148a, miR-155, and
miR-29b via suppressing the AICDA-DNMT1 complex on the BCL6 promoter may maintain
high expression of the oncogene BCL6 promoting lymphomagenesis.
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Alles et al. [539] recently reported that miR-148a-3p impairs RAS/ERK signaling in B
lymphocytes by targeting the Son of Sevenless 1 (SOS1) and SOS2 proteins. Notably, in-
creased expression of miR-148a-3p reduced the expression of ERK1/ERK2 [539]. ERKs are
essential for the differentiation of B cells into antibody-producing plasma cells and induce
the expression of BLIMP1, a transcriptional repressor and “master regulator” of plasma cell
differentiation [294,540–542]. In contrast, it has also been shown that miR-148a promotes
plasma cell differentiation via the targeting of the BLIMP1 and IRF4 repressors MITF and
BACH2 [384]. Premature expression of miR-148a by retroviral transduction favored plas-
mablast differentiation and the survival of in vitro activated primary murine B cells [384].

There is recent interest in PD-1/PD-L1 pathway blockade in patients with DLBCL [384,543–549].
Remarkably, Ashizawa et al. [550] demonstrated that PD-L1 is a direct target of miR-148a-3p
in colorectal cancer cells. However, with the exception of the miR-148a/152 family, there is
no other MDE-associated miR known to target PD-L1 [551]. Thus, miR-148a-3p may exert
both tumor-promoting and protective effects in the pathogenesis of DLBCL (Table 3).

Table 3. Comparison of microRNAs (miRs) implicated in the pathogenesis of DLBCL with bioactive
milk-derived microRNAs.

MiRs DLBCL-Related miRs References Cow’s Milk-
Derived miRs References

let-7 Over-expression of let-7
suppresses BLIMP1 (PRDM1) [324,325] Highly conserved in milk;

component of MDEs [411,427–434]

miR-125b

Increased serum levels of exosomal
miR-125b-5p in DLBCL patients

associated with shorter
progression-free survival time and

chemo-therapy resistance;
targets TNFAIP3 (A20), the negative
regulator of NF-κB; down-regulates

the expression of interferon regulatory
factor 4 (IRF4) and BLIMP1; targets
TP53; reduces BLIMP1-mediated

repression of pri-miR-21

[287,288,326,
328–330,342]

Resistant component of milk EVs and
MDEs: Postprandial increase in

plasma after consumption of
commercial cow’s milk in humans;

[392,411,436,
446]

miR-21

Increased serum levels of patients
with DLBCL miR-21; increased in

exosome-enriched serum of patients
with DLBCL; increased levels in

DLBCL tumors; targets MAXD1 (MAX
dimerization protein 1) promoting the

formation of C-MYC-MAX
heterodimers that activate C-MYC

expression; targets Von Hippel Lindau
mRNA (VHL); inversely correlated

with the levels of FOXO1 and PTEN in
DLBCL cell lines targets programmed
cell death 4 (PDCD4); targets IGFBP3;

drives M2 polarization
of macrophages

[239,286,329–
339,343,347–
349,352,460,
462,471–474]

Abundant signature miR of cow’s
milk; component of MDEs; targets

TNFAIP3, FOXO1, PTEN, BCL11B, and
PDCD4; promotes M2

macrophage polarization

[238,267,353,
354,427,430,
446–457,473–

476]

miR-29s

Transfection of U2932 DLBCL cells
twith EBV-encoded latent membrane
protein 1 (LMP1) exhibited significant

upregulation of miR-29a,b and c;
miR-29b enhances RUNX2 expression,

which promotes proliferation of
B-NHL cells; targets AID (AICDA)

enhancing BCL6 expression

[496,498,538]

Component of MDEs; dose-dependent
increase in plasma after intake of

commercial cow’s milk; increasing
RUNX2 expression in PBMCs

[409,411,448]
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Table 3. Cont.

MiRs DLBCL-Related miRs References Cow’s Milk-
Derived miRs References

miR-155

Higher levels of miR-155 are present
in DLBCL with an ABC phenotype;
highly expressed in activated B cells

and proliferating lymphoblastoid cell
lines; targets the PI3K

inhibitor PIK3R1; activates
BCR-PI3K-AKT-mTORC1 signaling at

various checkpoints via targeting
PTEN, DEPTOR, and SHIP1 (INPP5D);

EBV upregulates miR-155. Higher
miR-155 plasma levels are associated
with short survival; higher levels of
plasma exosomal miR-155 correlate

with reduced R-CHOP response;
targets AID (AICDA) enhancing BCL6

expression, the key
suppressor of BLIMP1

[28,240,241,
299,358–

366,371,372,
377,378,535–

537]

Immune-related miR of colostrum and
cow’s milk; pretreatment of IEC-6 cells

with MDEs increased intracellular
levels of miR-155

[429,504]

miR-148a

miR-148a-3p impairs RAS/ERK
signaling in B cells by targeting

SOS1/2 thereby reducing
ERK-mediated expression of BLIMP1;

miR-148a-3p targets DNMT1;
enhances the expression of BCL6, the
key suppressor of BLIMP1; elevated
miR-148a-3p expression impaired B

cell tolerance by promoting the
survival of immature B cells

[28,235,299,
380,526,534,

539]

Signature miR of commercial cow’s
milk; component of milk EVs and

MDEs; targets DNMT1, TP53, PTEN,
SOS1 and SOS2, thereby reduces

ERK-mediated activation of BLIMP1;
targets MITF, BACH2 and PDL1

[384,427,447,
511,515,517,
526,527,539,

551]

5. Discussion

Components of commercial cow’s milk activate mTORC1 signal transduction [53,54]
and MDE miR-based epigenetic regulatory signaling [526], which share common pathways
upregulated in DLBLC (Figures 1 and 2). The transcriptional repressor BCL6 controls a large
transcriptional network that is required for the formation and maintenance of GCs. GC
B-cells represent the normal counterpart of most human B-cell lymphomas, which are often
characterized by upregulated BCL6 expression and BCL6-mediated pathways [552]. BCL6
originally identified as encoded by a frequently translocated locus in DLBCLs [553], serves
as a master regulator of the GC reaction [296,297]. BCL6 plays a central role in normal B cell
development as well as lymphomagenesis [554]. Importantly, recent evidence indicates that
BCL6 expression is regulated by epigenetic mechanisms involving the complex formation
of AICDA and DNMT1 at the BCL6 promoter, which attenuates BCL6 expression through
DNA methylation [28]. Human breastmilk and cow’s milk mediated transfer of MDE
miRs that attenuate the expression of DNMT1 (miR-148a) and AICDA (miR-155, miR-
29b) may thus enhance BCL6 expression promoting GC formation. This may represent a
physiological effect on the newborn infant during the period of lactation. However, there is
only limited information on the impact of breastmilk and its components on the epigenetic
programming of immune function and immune development in early life [555]. Notably,
BCL6 is critical for the development of a diverse primary B cell repertoire [556]. Importantly,
there is intensive reciprocal and antagonistic crosstalk between BCL6 and BLIMP1 [557].
Lymphocytes with higher expression of BCL6 exhibit greater proliferative capacity but
less secretory capacity, whereas lymphocytes with higher expression of BLIMP1 exhibit
lower proliferative capacity and greater secretory capacity [556]. Of note, BLIMP1 is
also regulated by miRs [321]. Especially, let-7 and miR-125b, which are overexpressed in
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DLBCL, suppress BLIMP1 expression [324–326]. BLIMP1 drives terminal differentiation in
B cells and promotes plasmablast formation and antibody secretion [295]. The abundant
milk-derived miRs of the let-7 family as well as miR-125b via targeting PRDM1, the gene
encoding BLIMP1, may help to restrict unnecessary plasmablast and plasma cell formation
and antibody synthesis during the postnatal period of lactation. During lactation, human
milk provides abundant specific antibodies that protect the infant [558]. This is necessary
because neonates exhibit an immature immune system and their immune activities are
different from the activities of the adult immune system [559,560]. Remarkably, miRs are
involved in the regulation of the immature neonatal immune system [560]. Neonatal and
adult B cells are comparable in their proliferative responses to cooperative cell interactions.
However, a marked deficiency in the ability of neonatal B cells to mature to immunoglobulin
secretion was observed [561]. Apparently, “early” B lymphocytes are intrinsically defective
in their ability to secrete immunoglobulin upon cooperative induction, whereas they show
full competence to expand clonally [561]. Milk-derived miR signaling may epigenetically
enhance the expression BCL6 expression and reduce the expression of BLIMP1 during
the period of lactation thus promoting B lymphocyte proliferation and suppressing B cell
differentiation and function. Weaning, the termination of breastmilk, maternal antibodies,
and MDE miRs, may initiate an “epigenetic switch” attenuating BCL6 and enhancing
BLIMP1 expression required for B cell differentiation to plasma cells and own antibody
secretion by the infant [557]. This scenario is in accordance with the MDE miR-mediated
switch of proliferating pancreatic β-cells to differentiated insulin-secreting matured β-cells
after weaning [562,563]. Continued consumption of commercial cow’s milk via transfer
of highly conserved MDE miRs may not only de-differentiate the pancreatic β-cell back
to the neonatal phenotype but may also over-stimulate BCL6-driven B cell proliferation, a
potential driving force in the pathogenesis of DLBCL (Figure 4).
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Figure 4. (A) Physiological interaction of human milk-derived exosomes (MDEs) and their microR-
NAs (miRs) in B lymphocyte proliferation via epigenetic upregulation of B cell lymphoma 6 (BCL6)
and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1), which suppresses B cell
differentiation and antibody secretion. The neonatal immune system is immature and neonatal B cells
are in a hyperproliferative undifferentiated state. The majority of specific antibodies are of maternal
origin and are supplied via breastfeeding. Weaning, the physiological fading of MDE miRs, induces
a key switch in milk-driven epigenetic regulation enhancing BLIMP1 expression and promoting
antibody secretion by the infant’s matured immune system. (B) Persistent consumption of pasteur-
ized cow’s milk maintains MDE miR-mediated epigenetic signaling promoting BCL6 expression
and suppressing BLIMP1 expression, thus maintaining the hyperproliferative neonatal phenotype.
Sustained proliferation is a hallmark of cancer, in this setting lymphomagenesis.

Key new findings implicate DNA methylation heterogeneity as a core feature of DL-
BCL underlining the role of epigenetic dysfunction on lymphomagenesis [20–22,26,564–567].
Current findings highlight the potential role of miRs (lymphomiRs) as important factors in



Int. J. Mol. Sci. 2023, 24, 6102 26 of 52

lymphomagenesis [568]. At present, it is not possible to oversee the potential contribution of
bovine MDE miRs and their targets in epigenomic dysregulations of DLBCL and its subtypes
(ABC, GCB) during its various stages of lymphomagenesis. Nevertheless, the presented
epidemiological and mechanistic insights link the consumption of cow’s milk and bovine
MDE miRs to the pathogenesis of DLBCL.

It is noteworthy that the distribution and consumption of pasteurized cow’s milk is a
new human behavior in relation to the human history of milk consumption since ancient
times [387]. MDEs and MDE miRs survive pasteurization, whereas MDE and milk miRs are
destroyed by boiling or UHT [389,390] and are attacked by fermentation [448]. Thus, future
epidemiological studies relating to milk consumption and DLBCL risk have to consider the
methods of thermal milk processing. Whereas MDE miRs may function as a pathogenic
factor in DLBCL, MDE miRs may exert beneficial effects in the prevention of colorectal
cancer (CRC). The consumption of cow’s milk has been related to a decreased risk of
CRC [569–572]. In fact, bovine MDEs exhibited anti-inflammatory effects in murine models
of colitis [573,574]. Notably, miR-148a-3p and MDE miR-27b exert tumor suppressive
functions in CRC [575–577].

6. Conclusions

Whereas MDEs and their miRs are of key importance for neonatal development [578,579],
MDEs may exert pathogenic effects in adults [579]. In this light, bovine MDEs should be
regarded as pathogens that have to be excluded from the human food chain [580,581]. With
regard to DLBCL pathogenesis, we are concerned about recent recommendations promoting
bovine miR-155-rich colostrum for “immune-nutrition” in elderly subjects [582] as well as
bovine MDEs as “health-improving bioactive ingredients” in the context of human nutri-
tion [583]. Persistent exposure to bovine miR-155-rich colostral MDEs may thus function
like EBV-driven exosomal overexpression of miR-155 inducing lymphomagenesis [505]. In
addition, medical advice to include whole cow’s milk in the diet for patients with DLBCL
is questionable [584]. Obviously, there is an urgent need to study milk as a biological
system [585], which is the basis to understand milk’s beneficial and adverse effects on
human health during the differing stages of immune system development in infancy and
homeostatic maintenance of immune functions in adulthood [586]. DLBCL accounts for
approximately 30% of adult lymphomas and 10% of lymphomas diagnosed before the age
of 18 years [587]. Importantly, the incidence of DLBCL increases with age [588]. The average
age at the initial diagnosis of DLBCL is approximately 70 years [589,590]. Unfortunately,
current epidemiological studies do not report lifetime periods of cow’s milk exposure in
relation to the occurrence of DLBCL. Thus, there is no information on potential vulnerable
windows for cow’s milk consumption during infancy or adolescence and the later onset
of DLBCL as demonstrated for prostate cancer [591]. The dietary exposure of humans to
MDEs and miRs beyond the weaning period is an unnatural intervention that may repre-
sent a pathogenic risk factor for all age groups [52]. Cow’s milk-mediated transmission
of oncogenic viruses is a recent matter of concern that requires further investigation. In
contrast to cow’s milk and dairy products, a higher intake of green leafy vegetables and
cruciferous vegetables has been associated with a lower overall risk of NHL, particularly
DLBCL and follicular lymphoma [48].

7. Limitations

We would like to note that the majority of reported associations between milk signaling
and pathogenic signaling in DLBCL are based on literature research data and mechanistic
models not on direct experimental evidence. Data that clarify the potential impact of MDE
miRs on B cells as well as B cell lymphoma cells are still missing and need to be explored
in experimental settings and studies including human milk consumers. The recently
presented epidemiological evidence linking cow’s milk consumption to the risk of DLBCL
also requires more detailed data on thermal milk processing (destruction of MDE miRs by
UHT or bioavailability of MDE miRs in pasteurized milk). Because only a smaller fraction of
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human milk consumers will develop DLBCL during their lifetime, predisposing individual
factors on the patient’s side may be a greater importance. Nevertheless, milk signaling
evidently aggravates signal transduction pathways and epigenetic deviations contributing
to DLBCL initiation and progression. Data on epigenetic regulatory effects of breastmilk
signaling in healthy newborn infants and potential epigenetics shifts after weaning are
missing and appear to be of utmost importance to understanding the physiological impact
of milk signaling on postnatal B cell proliferation and development. Future studies that
determine the epigenetic heterogeneity in human milk consumers versus individuals who
were not exposed to cow’s milk (lactose intolerance) may provide deeper insights into the
milk-DLBCL relationship.

8. Materials and Methods

We conducted our bibliographic research exclusively via PubMed [https://pubmed.
ncbi.nlm.nih.gov] between 1995–2022 using various keywords such as “B cell”, “B lym-
phocyte”, ”B cell proliferation“, B cell differentiation”, “malignant B cell”, “malignant B
lymphocyte”, “diffuse large B cell lymphoma”, “DLBCL”, “non-Hodgkin lymphoma”,
“lymphomagenesis”, lymphocyte-induced maturation protein 1”, “BLIMP1”, “PR domain-
containing protein 1”, “PRDM1”, “B cell lymphoma 6”, “BCL6”, “milk”, “cow’s milk”,
“dairy”, “milk exosome”, “extracellular vesicle”, “EV”, “microRNA”, “miRNA”, “miR”,
“exosomal miR”, “epigenetic”, and “epigenetic regulation”. We also analyzed papers based
on the bibliographic references cited by the studies found on PubMed during our search.
Whenever possible, we selected the most recent and comprehensive reviews on the topic in
question. All selected articles were written in English.
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Abbreviations

ABC activated B-cell like
AICDA activation-induced cytidine deaminase
AMPK AMP-activated protein kinase
ATF4 activating transcription factor 4
BACH2 BTB and CNC homology 2
BCAA branched-chain amino acid
BCL6 B cell lymphoma 6
BCL10 B cell CLL/lymphoma 10
BCL11B B cell lymphoma/leukemia 11B
BCR B cell receptor
BIC B cell integration cluster
BIM BCL2-like 11
BIRC5 baculoviral IAP repeat-containing protein 5
BLIMP1 B cell differentiation B lymphocyte-induced maturation protein 1
BLV bovine leukemia virus
BMMF bovine meat and milk factor
BPA bisphenol A
CARD11 caspase recruitment domain-containing protein 11
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CDKN1A cyclin-dependent kinase inhibitor 1A
C-MYK MYC protooncogene
CRESS circular replicase-encoding single-stranded
CTNNB1 catenin β1
DEPTOR DEP domain-containing mTOR-interacting protein
DLBCL diffuse large B cell lymphoma
DNMT1 DNA methyltransferase 1
EBNA2 EBV nuclear antigen 2
E1 estrone
E2 estradiol
E3 estriol
EBV Epstein-Barr virus
E2F1 E2F transcription factor 1
eIF4B eukaryotic translation initiation factor 4B
eIF4E eukaryotic translation initiation factor 4E
ERβ estrogen receptor-β
EV extracellular vesicle
FcRn neonatal Fc receptor
FoxO1A forkhead box O1A
FoxO3A forkhead box O3A
GADD45A DNA-damage-inducible gene α

GC germinal center
GCB germinal center B-cell like
GH growth hormone
GHR growth hormone receptor
GPR30 G protein-coupled estrogen receptor 1
HBV hepatitis B virus
HCV hepatitis C virus
HHV8 human herpes virus 8
HIF-1 hypoxia-inducible factor 1
HIV human immunodeficiency virus
HPV human papilloma virus
HTLV1 human T-cell leukemia virus type 1
IGF-1 insulin-like growth factor 1
IGF1R insulin-like growth factor 1 receptor
IGFPB3 insulin-like growth factor binding protein 3
IKK inhibitor of kB kinase
INPP5 inositol polyphosphate-5-phosphatase, 145-KD (SHIP1)
IRF4 interferon regulatory factor 4
KSHV Kaposi sarcoma-associated herpesvirus
LAT1 L-type neutral amino acid transporter 1
MALT1 mucosa-associated lymphoid tissue lymphoma translocation gene 1
MAX MAX protein
MDE milk-derived exosome
MDM2 MDM2 protooncogene
MDR1 ATP-binding cassette, subfamily B, member 1 (ABCB1)
MDSC myeloid-derived suppressor cells
miR micro-ribonucleic acid
MITF microphthalmia-associated transcription factor
MSC mesenchymal stem cell
MYC MYC protooncogene, bHLH transcription factor
MYD88 MYD88 innate immune signal transduction adaptor
mTORC1 mechanistic target of rapamycin complex 1
MXD1 MAX dimerization protein 1
MXD4 MAX dimerization protein 4
NF-κB nuclear factor kappa B
NHL non-Hodgkin lymphoma
PBMC peripheral blood mononuclear cell
PDCD4 programmed cell death 4



Int. J. Mol. Sci. 2023, 24, 6102 29 of 52

PDK1 phosphoinositide-dependent kinase 1
PI3K phosphatidylinositol-3 kinase
PIK3IP1 phosphatidylinositol 3-kinase-interacting protein 1
PIK3R1 PI3K regulatory subunit 1
PPP picropodophyllin
PRDM1 PR domain-containing protein 1 (BLIMP1)
PTEN phosphatase and tensin homolog
RAG Ragulator

R-CHOP
rituximab plus cyclophosphamide, doxorubicin, vincristine, and
prednisone regimen

RISC RNA-induced silencing complex
RUNX2 runt-related transcription factor 2
SIRT3 sirtuin 3
SMO Smoothened
SOS Son of Sevenless
STAT3 signal transducer and activator of transcriptin 3
SV40 Simian virus 40
TAM tumor-associated macrophage
TCA tricarboxylic acid
TCL1 T-cell leukemia gene 1
TLR Toll-like receptor
TME tumor microenvironment
TNFAIP3 tumor necrosis factor-α induced protein 3
TNFRSF10B tumor necrosis factor receptor superfamily, member 10B
TP53 tumor protein p53
TRAF2 TNF receptor-associated factor 2
TSC2 tuberin
TWIST1 TWIST family bHLH transcription factor 1
UHT ultraheat treatment
UTR untranslated region
VHL von Hippel–Lindau tumor suppressor
YAP Hippo-Yes-associated protein
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