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A B S T R A C T

Alongside electrification, autonomous driving is the primary factor of
the ongoing transformation in the automotive industry. The success
of this technology is closely linked to its safety and the trust users
have in it. To enhance the safety of future autonomous vehicles, they
must not only be able to perceive their external environment but also
be capable of monitoring the condition of their internal parts, compo-
nents, and functions for faults or failures. This task is performed by
condition monitoring systems (CMSs), which extend autonomy from
mere driving to the level of vehicle diagnostics.

This work deals with computationally efficient and advanced ano-
maly detection methods for vibration-based CMSs focusing on auto-
motive applications. In individual publications, the detection of low
tire pressure, gearbox damage, and loose wheel bolts as anomalies
were investigated using vibration data recorded with accelerometers.
The proposed anomaly detection algorithms using features from the
time, frequency, time-frequency, and graph domain were able to de-
tect the anomalies reliably.

To enhance the accuracy of the anomaly detection algorithms, do-
main knowledge and a careful selection of feature extraction hyper-
parameters were combined. The evaluations showed that small neu-
ral network architectures executable on microcontrollers and classical
anomaly detection algorithms are sufficient to detect anomalies in vi-
bration data accurately.

Computational efficiency is decisive in guaranteeing low-latency
predictions of CMSs on vehicle microcontrollers with limited compu-
tation capacity. For this purpose, an optimized algorithm for faster
computation of horizontal visibility graphs that works efficiently on
streamed data was introduced. This algorithm was applied for fea-
ture extraction in low tire pressure detection and is particularly suit-
able for processing data with a high sample rate, such as that from
accelerometers.

Furthermore, a method was developed and patented for faster in-
ference of convolutional neural networks on microcontrollers that pro-
cess streamed data with overlapping successive inputs. This is typi-
cally the case when dealing with spectrogram representations from
streamed vibration or acoustic data. The method allows larger neu-
ral networks to be computed with low latency on microcontrollers so
that the driver is quickly warned of condition changes.
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1
I N T R O D U C T I O N

1.1 background

The patent DRP No. 37435 filed by engineer Carl Benz on January 29,
1886, entitled Fahrzeug mit Gasmotorenbetrieb is today considered the
birth of the automobile (Kirchberg et al., 1981). Since then, the au-
tomotive industry has grown to become the largest industry in Ger-
many in terms of sales of 411 billion Euro in 2021, with over 750,000

direct employees and over 2.2 million, including suppliers and the sec-
ondary market (BMWK, 2022a). The automotive industry is currently
undergoing one of the most significant transformations since the in-
vention of the automobile. This is due to the parallel transformation
of drive technology and vehicle control systems, which fundamen-
tally change the driving experience and human interaction with the
vehicle (Fredriksson et al., 2018; Yurtsever et al., 2020).

In drive technology, there is a strong trend toward electrification.
According to the Verband der Automobilindustrie e.V.1, the global an-
nual registrations of electrified vehicles more than tripled from 2018

to 2021 (Fritz, 2022). This number increased from 2 million to more
than 6.5 million, corresponding to one of nine registered cars. This is
also supported by EU-level political regulations (Reg. (EU) 2023/851,
2023), according to which no new vehicles with combustion engines
may be registered from 2035 unless it can be ensured that these can
only be fueled with climate-neutral synthetic fuels. At the national
level in Germany, the transformation is being driven forward by gov-
ernment subsidies for electric or hybrid vehicles or by tax benefits
for electrified company vehicles (BMWK, 2022b). The Paris agreement

to limit global warming to 1.5 degrees is the background to these ef-
forts (UNEP, 2015). This commits the EU to achieving zero emissions
by 2050. The transport sector accounted 2017 for 27% of greenhouse
gas emissions in the EU (EEA, 2019), half of which were caused by
passenger cars and the automotive industry (Pichler et al., 2021).

The second major transformation is changing vehicle control, par-
ticularly by whom the vehicle is controlled. Car manufacturers offer
customers an increasing number of assistance systems that support
the driver in driving situations or independently perform driving ma-
neuvers (Knoll, 2010). According to the Society of Automotive Engi-
neers’ definition, the levels of autonomous driving are divided into
levels 0 to 5 (ORAD Committee, 2021). As the level increases, the de-

1 The Verband der Automobilindustrie e.V. (Association of the Automotive Industry) is an

umbrella organization representing the German automotive industry’s interests.

3



4 introduction

gree of automation increases, and the vehicle takes on more tasks and
responsibilities (Schönewolf, 2020). At level 0, there is no automation,
meaning the driver steers, accelerates, and brakes unassisted. Level 1

includes functions like a lane keeping assist (LKA) or adaptive cruise
control (ACC), which assist with steering, acceleration, and braking,
but only longitudinally or laterally, not simultaneously. At level 2,
assistance systems partially take over lateral and longitudinal control
simultaneously, whereby the driver temporarily no longer has to hold
the steering wheel. However, he remains solely responsible and liable
for the driving behavior and must be alert at all times to be able to
intervene. The car manufacturer bears the responsibility and liability
at level 3, whereby the system only operates under predefined condi-
tions, such as during the day or at low speed. There is a crucial step
between levels 2 and 3, as the driver no longer has to monitor the
system constantly but can also use the smartphone or watch a movie.
Nevertheless, he must be able to take over driving again when the
system reaches its limit and communicates this with a warning tone.
At level 4, the driver no longer needs to be ready to intervene. He is
also allowed to sleep. However, this is limited to certain driving con-
ditions, routes, or road types, such as highways. This is the difference
to level 5, where there are no more restrictions to certain conditions,
and the driver becomes a passenger (Wienrich, 2023).

The race between manufacturers to reach the next level has long
been on: In January 2023, Google subsidiary Waymo became the first
to reach 1 million miles traveled with its level 4 robo cab fleet, with no
injuries and only two relevant collisions (Victor et al., 2023). However,
it is currently difficult to predict when such systems will go into series
production.

According to Bertoncello and Wee (2015), autonomous driving is
not restricted to changing automobility but will also significantly im-
pact our social life. For example, when autonomous driving becomes
widespread, Brown, Gonder, and Repac (2014) see great fuel-saving
potential due to higher efficiency, less congestion, and better traffic
flow. This also emphasizes the ecological impact of this disruptive
technology. Anderson et al. (2016) stated that urban areas would re-
quire less parking space, as autonomous vehicles can drop off their
passengers in the city and park outside the city. Marletto (2019), on
the other hand, argues that autonomous driving could counteract the
trend of urbanization, as commuting time to a city becomes less rele-
vant because it can be spent on other activities.

In addition to the technical feasibility challenge, other factors will
affect the widespread adoption of autonomous vehicles. Potential pas-
sengers must accept and trust this new type of vehicle. A study by
Ro and Ha (2019) identified that a decisive factor for this is safety,
which significantly influenced the attitude and purchase intention of
the survey participants.
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If, due to the rise of autonomous driving, people become vehicle
users rather than vehicle owners, e.g., through mobility-on-demand
services like robo cabs, then the sense of responsibility for the vehicle
may decrease, as they only use it but no longer own it (Heinrichs,
2016). Even if the passenger remains the vehicle owner, he or she can
pursue other activities while driving and may be distracted. Conse-
quently, these distracted passengers become unaware of alterations
in the vehicle’s handling characteristics or less conscious of potential
faults, which decreases road safety.

This gap in the chain of responsibility is closed by condition mon-
itoring systems (CMSs) in the vehicle because they take over auto-
mated monitoring of the vehicle’s condition and warn the passenger
in case of a fault. Whether it is an autonomous or a regular vehicle,
CMSs, increase safety and protect other road users from potential ac-
cidents. CMSs thus make a decisive contribution to the acceptance of
autonomous vehicles. They are one of the many pieces of the puzzle
needed to ultimately build a truly autonomous vehicle, in line with
ZF Friedrichshafen AG’s vision of zero emissions and zero accidents
(Stratmann, 2015).

1.2 objectives

This work aims to develop computational efficient and advanced me-
thods for anomaly detection in vibration-based CMSs, focusing on au-
tomotive applications. It was conducted in cooperation and collabora-
tion with the digitalization department for mechatronic systems at ZF
Friedrichshafen AG, my employer and scholarship provider. There-
fore, no data collected through test drives related to this work and
programming code will be published to comply with confidentiality
obligations. This thesis includes three papers dealing with anomaly
detection in vibration data for condition monitoring (CM) and one
paper and granted patent dealing with the computational efficiency
of feature extraction and convolutional neural networks (CNNs) in-
ference. While investigating horizontal visibility graphs (HVGs) used
to analyze vibration data, conjectures arose that they have specific
combinatorial properties (Luque et al., 2009). These conjectures were
proved in a further publication.

An essential application of the developed methods for anomaly de-
tection is in the context of autonomous driving. The research in au-
tonomous driving focuses mainly on developing algorithms to con-
trol vehicles on the road without accidents and perceiving the envi-
ronment outside the car. However, for increased safety, reliability, and
social acceptance, the autonomous vehicle should also monitor itself
and its components equally. This is where CM comes in, to extend
the autonomy from the driving level to the diagnostic level and thus
make driving safer for all road users. Figure 1 displays the data flow
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1.2 objectives 7

in a CMS based on the general case and the specific data flow for
this research focusing on detecting anomalous vibration data in the
vehicle. In addition, the relations between scientific publications and
patents and the processing steps during CM are shown.

In the following, the studies are presented in the order in which
their methods are applied in a CMS, and each paper’s research con-
tribution is summarized:

(i) Paper V proposes a simple and scalable algorithm for comput-
ing HVGs that works efficiently for streamed data, such as vi-
bration signals, recorded in the vehicle. It is particularly well
suited for batch-wise data and high sampling rates and pro-
vides computational efficiency in the data processing step of a
CMS. The algorithm has a worst-case time complexity of O(n).
Unlike previous publications, it does not require a tree-based
data structure.

(ii) Paper II introduces a density-based k-nearest neighbor algo-
rithm to detect damage to gearboxes that represents the data
interpretation step of a CMS. In contrast to deep-learning-based
approaches, it provides an explainable anomaly detection that
can be traced back to the conspicuous frequency ranges. Since
we did not have access to data from faulty vehicle gearboxes,
we used data from the gearboxes of wind turbines, which ZF
Friedrichshafen AG also produces.

(iii) Paper III also focuses on the data interpretation step of a CMS
by demonstrating that low tire pressure can be reliably detected
using the vibration data in the chassis, which is converted into
HVGs and whose graph properties are used as input for a gra-
dient-boosting algorithm.

(iv) Paper IV deals with detecting loose wheel bolts based on vi-
bration data in the chassis. The investigated semi-supervised
anomaly detection algorithms enable reliable detection as soon
as three out of five wheel bolts are loose and can thus increase
safety on the road by preventing potential accidents due to
wheel loss in advance.

(v) Patent I enables faster inference of CNNs on microcontrollers
when they process streamed data, such as audio or vibration
data, and the inputs overlap. The approach on which the patent
is based allows larger neural networks to be computed with
low latency on embedded hardware and helps to realize real-
time inference during the data interpretation step of a CMS in
the vehicle.

(vi) Paper I is purely theoretical since it presents the proofs of
several properties of HVGs that have emerged as conjectures
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during the thesis. Specifically, the ordered degree sequence
uniquely determines them when they arise from a data
sequence with no equal entries. In addition, we demonstrate
that the HVGs of data sequences with and without equal
entries are counted by the Catalan and Schröder numbers,
respectively.

1.3 thesis outline

The chronology of this thesis is based on the data flow in a CMS, as
illustrated in Figure 1. It begins with an overview of CM and main-
tenance strategies focusing on the automotive sector. Chapter 3 ad-
dresses the vibrations occurring in vehicles and the sensor technology,
namely accelerometers, to measure the vibrations during the data ac-
quisition step of a CMS. Chapter 4 covers the various methods used
for feature extraction of vibration signals in the data processing step,
including those from the time, frequency, time-frequency, and graph
domains. Chapter 5 focuses on time series anomaly detection as part
of the data interpretation step of a CMS, highlighting the particularly
suitable algorithms for analyzing vehicle vibration data. Finally, the
thesis concludes by discussing the papers, placing them in a broader
context, along with future research perspectives.



2
C O N D I T I O N M O N I T O R I N G

The concept of monitoring the condition of technical devices has been
around since the earliest development of machines when people used
their senses to detect problems. While this traditional method of us-
ing our senses of sight, hearing, touch, smell, and taste is still relevant,
it has been enhanced by advanced scientific instruments. These instru-
ments enable us to measure the health or condition of machines or
machine parts, allowing us to detect and fix problems early before
they cause failure (Davies, 1998). A general definition by Kelly (1997,
p.234) describes Condition Monitoring (CM) as "The periodic, routine, or

continuous measurement and interpretation of data to indicate the condition

of an item". CM involves the installation of sensor systems on ma-
chines, together with data acquisition and analysis methods, as well
as diagnostic techniques. This chapter will explain how CM relates
to the overall maintenance process and describe the elements and dif-
ferent types of maintenance. Furthermore, applications of CM in the
automotive sector and other industrial areas will be introduced.

2.1 maintenance and failures

The failure rate is a metric that describes the failure occurrence of tech-
nical systems. It is defined as the frequency with which a technical
system fails. The failure rate is expressed by the number of failures
per unit of time. Figure 2 illustrates the observed failure rate and its
main causes over the lifetime of a technical system. Because of its
shape, this is also called the bathtub curve (Maisonnier, 2018). The fail-
ures are divided into three categories: Early failures, random failures,
and wear-out failures. The first category is due to design, manufactur-
ing, or assembly errors. They usually occur immediately after first
use. Increasing the number of quality checks can prevent such fail-
ures. Random failures occur independent of the age of the product.
They are often caused by operating errors or temporary overloading
of the technical system. As the product ages, the probability of age-
related failures increases. Regular wear and tear of the system in the
form of material fatigue or corrosion cause wear-out failures. They
are an unavoidable part of the long-term use of technical systems
(Anderson, 1976).

Maintenance is closely related to CM because maintenance mea-
sures can be derived from the observed condition. DIN 31501 states
that maintenance consists of the "Kombination aller technischen und ad-

ministrativen Maûnahmen sowie Maûnahmen des Managements während

9
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Figure 2: The observed failure rate over the lifetime of a technical system
with the three main causes of failure (Maisonnier, 2018).

des Lebenszyklus eines Objekts, die dem Erhalt oder der Wiederherstellung

ihres funktionsfähigen Zustands dient, sodass es die geforderte Funktion er-

füllen kann1 (Deutsches Institut für Normung e. V., 2019, p.4). Accord-
ing to Rishel and Canel (2006), plant engineering and maintenance
account for 20 to 40 percent of manufacturing costs. Therefore, main-
tenance, as well as its timing and planning, significantly impact the
profitability of industrial production processes. The profitability can
be increased if management focuses on maintenance costs and inte-
grates them into the corporate strategy. Increasing profitability is an
indirect result of the primary goals of maintenance. Leidinger (2014)
defines them as:

(i) Safety

(ii) Availability

(iii) Reliability

(iv) Value preservation.

The goal of safety means that the technical system should not pose
any hazards to people or the environment. Availability and reliability
refer to the operation of the technical system, which should be perma-
nent and trouble-free. In addition, value preservation should ensure
the technical system has a high life expectancy. This is becoming in-
creasingly important due to developments toward an ecological and
sustainable economy (Serrat, 2012).

Maintenance includes all countermeasures to reduce the failure
rates or to restore failed technical systems to their functional con-
dition. DIN 31501 divides maintenance into four basic measures: ser-
vice, inspection, repair, and improvement. Figure 3 shows the effects

1 Author’s translation: "Combination of all technical and administrative measures as well as

management measures during the life cycle of an object, which serves to maintain or restore

its functional condition so that it can fulfill the required function"
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Figure 3: Degradation curve of the wear reserve with the basic maintenance
measures (Preusche, 2018).

of the primary measures on the wear reserve of a technical system.
The wear reserve is defined here as the reserve of possible functional
performance of the technical system. If the wear reserve is used up,
the technical system loses functionality and must be repaired. The re-
duction of the wear reserve is slowed down by service. This includes,
for example, lubrication or cleaning. Inspection is used to assess the
condition of the technical system. Measuring, testing, and diagnos-
tic systems are applied for this purpose. Inspection has no direct
effect on the wear reserve. It is required to detect the technical sys-
tem’s condition. If the inspection is done regularly or continuously,
this corresponds to CM. Repair includes measures that increase the
wear reserve again, for example, by replacing or repairing damaged
components. Improvement aims to optimize a technical system to in-
crease the maximum wear reserve compared to the initial condition
(Pawellek, 2016).

2.2 from corrective maintenance to predictive mainte-
nance

The maintenance strategies differ in whether the maintenance is ap-
plied correctively or preventively. Corrective maintenance carries out
measures only after a failure has occurred. They are consciously taken
into account. The advantage of this method is that the wear reserve
is entirely used up. This reduces the inspection effort, resources for
spare parts, and assembly effort. The time at which the wear reserve
is exhausted is unknown a priori. Therefore, failure can occur at any
time, and the company must be able to perform maintenance for crit-
ical components also at any time. From a business perspective, this is
disadvantageous for optimizing operations and planning human and
operational resources (Schröder, 2010).

Preventive maintenance aims to avoid failures and perform mainte-
nance before a failure occurs. The advantage is that maintenance mea-
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sures become plannable. In this way, required operational resources
for maintenance can be determined in advance, and processes can
be optimized. However, for preventive maintenance to be successful,
a failure must be avoided, and consequently, maintenance must be
performed on a technical system that still has remaining potential for
use. The risk is that the replacement time is chosen too early, and the
remaining utilization potential is not exploited.

On the other hand, if it is chosen too late, the probability of an
unplanned failure increases. The simplest implementation option for
preventive maintenance is to perform maintenance tasks at regular
intervals according to a time-based schedule. Alternatively, this can be
based on the number of hours a machine has been operating. In the
case of vehicles, it is common to use the kilometers driven by a car
as a benchmark. The intervals are determined according to empirical
values or manufacturer recommendations. This strategy can be very
costly, depending on the choice of intervals.

The subsequent two advanced maintenance strategies both belong
to the class of preventive maintenance strategies. Condition-based main-

tenance follows the approach of monitoring the condition of a tech-
nical system and planning maintenance measures accordingly. CM
makes it possible to renew technical systems only when a predefined
wear reserve has been reached. In doing so, the wear reserve can be
utilized to the greatest extent. Developing such a strategy requires
investments in modern measuring and testing technology, diagnostic
algorithm development, and highly qualified employees to perform
the evaluation (Strunz, 2012).

Predictive maintenance goes one step further by making predictions
about the future state of the technical system and forecasting the ex-
pected time of failure. This strategy aims to predict the remaining ser-
vice life of the technical system and determine the optimal time for
maintenance measures. This is done based on information about the
condition of the system and past data about maintenance measures.
This strategy requires advanced algorithms for making accurate pre-
dictions (Theissler et al., 2021). CM is thus an essential component of
condition-based and predictive maintenance.

The terms condition-based and predictive maintenance are some-
times used interchangeably in the literature. However, the former fo-
cuses on diagnostic methods, i.e., determining the actual condition of
a technical system. Most diagnostic methods provide a warning or
alarm but no information about the remaining life of the system. This
is where predictive maintenance comes in, using prognostic methods
to predict when a failure will occur. One challenge is to validate this
methodology. The predicted failure times must be compared to the
actual failure times. However, many critical applications have preven-
tive maintenance policies to avoid failure conditions, which reduces
the number of observed failures and makes validation difficult. Never-
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Figure 4: Schematic structure of a condition monitoring system (Ryll and
Götze, 2010).

theless, CM increases the amount of degradation data available, mak-
ing it easier to validate prognostic methods (Tinga and Loendersloot,
2019).

The selection of the optimal maintenance strategy depends on the
application. None is universally suitable. Only by combining the stra-
tegies can an optimized approach be designed. Corrective mainte-
nance waits until the failure occurs and only then restores technical
functionality, which is why it is suitable in cases where the effort of
the other strategies is too high or a failure does not lead to a critical
operating condition (Leidinger, 2014). Preventive maintenance strate-
gies should be used where there is a threat of high production losses
or a potential risk to people and the environment. Here, higher main-
tenance costs for increased safety are then consciously accepted. Time-
based maintenance is favored if failure data is known and there is a
low level of variation in the failures. Condition-based or predictive
maintenance has the advantage that by inspecting the condition of
the technical system, maintenance measures can be planned more in-
telligently, and the wear reserve can be utilized to a greater extent.
However, they are also associated with high investments in measure-
ment equipment, data processing, and data transfer. Therefore, the
technical feasibility and economic advantage must be given (Strunz,
2012).

Value-based maintenance optimizes maintenance costs by ideally
combining various maintenance strategies. In this strategy, an indi-
vidual decision is made for each part and component of a technical
system regarding which type of maintenance is economically most
valuable (Leidinger, 2014).

2.3 condition monitoring systems

Implementing CM requires a system architecture consisting of hard-
ware and software components, which are explained in more detail
in the following. Their selection and interaction are crucial for the
functionality of a CM application. The system that executes CM is
called Condition Monitoring System (CMS) (Hameed, Ahn, and Cho,
2010). Figure 4 visualizes the CMS data process flow. The first step
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is data acquisition. This step involves gathering data from an object or
environment through the use of sensors. These data can be versatile,
as the sensor and measured variable choice depend on the applica-
tion. Standard physical state variables collected include temperature,
pressure, weather and environmental parameters, oil analysis, and
vibration and acoustic data. Due to the advancement of computer
and sensor technology, they are becoming more powerful and less ex-
pensive, facilitating the data collection of a CMS and increasing the
application possibilities (Jardine, Lin, and Banjevic, 2006).

In addition to this data collected by sensors, additional meta-data
can be collected that provides information on whether changes have
been made to a machine, e.g., replacement of spare parts or oil chan-
ges. This meta-data is just as necessary as the data collected by the
sensors because it can be used to validate the CMS. They also provide
essential feedback for the developers of the CMS and give helpful
information for possible improvements to the system.

The next step is data processing. One challenge with CM is that the
sensors used for data acquisition are a technical system that can also
produce failures and errors. Further processing of sensor data can
only be successful if the information provided by the sensors is accu-
rate. The first component of data processing is, therefore, data cleaning.
For this, a check of the data and its quality is performed. There are
different approaches to this. Two or more redundant sensors can be
used, but it would be unclear which sensor measures incorrect signals
in this case. At least three redundant sensors are needed to determine
which sensor is not working. If redundant sensors are not justifiable
for economic reasons, the value range of the sensor signals can be
checked, and whether they are in a pre-defined range. Additionally,
the sensor failure may show up in a characteristic pattern so that the
CMS can detect the sensor failure (Grimmelius et al., 1999).

Once the data cleaning and quality checks are finished, the second
part of the data processing begins. This part is called feature extraction.
In this part, the relevant information is extracted from the raw sensor
signals to serve as indicators to identify the state of the monitored
object. The feature extraction methods used depend on the signal the
sensors are measuring. If waveform data are available, such as acous-
tic or vibration data, methods from the field of signal processing are ap-
plied (Oppenheim, Willsky, and Nawab, 1996). These can be divided
into methods that analyze the sensor signal in the time, frequency,
or time-frequency domains (see Chapter 4). If the sensor is an opti-
cal sensor, methods from the field of image processing are applied,
e.g., digital filters to blur, sharpen, or denoise the image (Jardine, Lin,
and Banjevic, 2006). These are stored in databases if required for sub-
sequent processing, data analysis, or for training machine learning
(ML) algorithms (Hameed, Ahn, and Cho, 2010).
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The model takes over the task of sensor signal interpretation. The ex-
tracted features are the model’s input, and the output is an estimate
for the technical system’s current condition. Accordingly, the models
for condition monitoring can be categorized into four types. One ap-
proach is to use a physical model of the wear process of the technical
system. The performance of this approach depends mainly on the ac-
curacy of the model and usually requires vast domain knowledge of
experts implementing the model. An advantage of the approach is
that the physical description of the process means that the factors in-
fluencing wear and their magnitude are known, and the model and its
output become explainable. A disadvantage, however, is that a physi-
cal model may use many different physical quantities as parameters,
each of which must be measured with sensors. Knowledge-based models

are another approach. They are designed to simulate the behavior and
decision-making of experts. The most common type of these models
are rule-based models, which experts implement. Their advantage lies
in their high interpretability. At the same time, however, they are also
error-prone in implementation if very complex conditions have to be
expressed or many rules exist.

Data-driven methods create models not based on the knowledge of
experts but based on collected data and the features that have been
extracted from them. They use approaches from statistics, stochastics,
and ML. However, a disadvantage of these methods is that they re-
quire a large amount of data, which is only available in some cases or
is very expensive to collect. Advantageously, their performance also
improves as the amount of data increases, which is more common in
the era of Big Data and advanced sensor technology, as well as cheap
computing and storage capacity (Arena et al., 2022).

A combination of a physical and data-based model represents a
digital twin (Santos and Montevechi, 2022). This methodology creates
a physical and functional copy of the technical system or individual
components to be monitored. The digital twin is a dynamic model of
a physical system that is continuously updated throughout the life
cycle of a technical system depending on the condition and mainte-
nance actions performed. This creates a link between the digital and
physical worlds. This hybrid methodology shares the advantages and
disadvantages of physical and data-based methodologies. Neverthe-
less, maintaining the digital twin in addition to the technical system
requires more effort. This is necessary to ensure that the digital twin
is up-to-date and does not reflect an outdated state (Arena et al.,
2022).

Based on the determined condition of the technical system, mainte-
nance measures and planning can now be initiated in the final decision

step. This leads to a gain in time for necessary preparations, which
prevents unplanned downtimes (Ryll and Götze, 2010).
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2.4 condition monitoring in the automotive sector

With the accelerated development of sensor and network technology,
an increasing number of data sources in the car can be used for CM.
These include, for example, pressure, vibration, temperature, voltage,
and other electrical and mechanical state variables. On the one hand,
the numerous data sources offer new possibilities for condition mon-
itoring applications. On the other hand, modern cars increasingly in-
clude more complex hardware and software systems, making main-
tenance challenging (Ahmed and Nandi, 2020). Due to the increased
computing capacity of edge computing systems, vehicle parameters
can be analyzed directly in the car. Alternatively, they can be sent
from telemetry systems to the cloud for evaluation. In both scenarios,
the goal is to warn the driver of critical situations and failures. This
early warning can prevent more severe damage to the vehicle and
increase the safety of those on board (Arena et al., 2022).

Current developments towards autonomous driving increase the
need for cost-effective engineering solutions to ensure vehicle safety
and reliability over the lifetime of a car. Data-driven evaluation meth-
ods for CM based on ML are increasingly becoming the norm. They
enable exploiting the richness of the vehicle’s data and learning pat-
terns for assessing vehicle health from the collected data (Theissler
et al., 2021).

2.4.1 Applications in Production Vehicles

Due to technical progress and legal regulations, there are already a
large number of condition monitoring systems that are used in series-
produced vehicles. The aim is to reduce accidents in road traffic and
increase driving comfort. CM applications in cars determine the con-
dition of components, parts, and the driver himself.

Since 06.07.2022, due to Regulation 2019/2144, specific driver assis-
tance systems that also monitor the condition of the driver are manda-
tory for all classes of motor vehicles in the EU when they are newly
registered. These include a device for installing an alcohol-sensitive
immobilizer, a warning system for drowsiness and declining driver at-
tention, and a seat belt warning system (Reg. (EU) 2019/2144, 2019).
Accordingly, it should be possible to retrofit an immobilizer to new
vehicles that prevent people from driving with an excessively high
alcohol level. The drowsiness detection system records and analyzes
the driver’s steering behavior and recognizes changes that can result
from microsleep. If he threatens to fall asleep, he is warned and ad-
vised to take a break. The seat belt system detects if a person in the
passenger compartment is not wearing a seat belt and draws attention
to this utilizing a warning sound.
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To ensure the roadworthiness of the car, a variety of components
are monitored by sensors. This starts with essential functions such as
the fuel tank level or, in the case of an electric vehicle, the battery sta-
tus. Furthermore, the engine temperature, malfunctions, and defects
in important system components such as the light, the battery, and
the brake are monitored and communicated to the driver by error
messages.

The tires bear the car’s weight, which is why high longitudinal and
lateral forces act on them while driving (Rajamani, 2006). They form
the only connection to the road and significantly influence vehicle be-
havior and safety. In Germany, between 2018 and 2021, a share of 27.9
percent of accidents resulting in personal injury could be attributed
to technical defects in the tire (Statistisches Bundesamt, 2022). Due to
the UN/ECE 64 vehicle regulation of the EU, it has been mandatory
for all passenger vehicles to be equipped with tire pressure monitor-
ing systems since November 2014, which should warn the driver of
changes in tire pressure (Reg. No 64 UN/ECE, 2010). This improves
road safety and is also advantageous from an environmental point of
view because low tire pressure increases fuel consumption (Szczucka-
Lasota, KamiÂnska, and Krzyżewska, 2019). An innovative CMS has
been installed in Audi’s luxury vehicles (A6, A7, A8, and Q8) since
2018 that detects whether a wheel is loose. Changes in the wheel
speed sensor signal are used to detect a loose wheel. This system is
intended to increase road safety further because, in the United King-
dom alone, there are between 3 and 7 fatalities each year in accidents
caused by wheel loss (Dodd, 2010).

2.4.2 Applications in Research

Before a technical product can be sold and used, it must be verified
that it is sufficiently safe. Functional safety is the field that deals with
the correct and safe functioning of a product. The automotive sector
covers this area by the ISO 26262 standard (Wilhelm, Ebel, and Weitzel,
2015). It specifies guidelines, development, and control methods for
the functional safety of electrical and electronic components, includ-
ing CMSs. Even for comparatively uncritical functions, low failure
rates must be demonstrated during development, which can quickly
make development expensive. Brake lights and headlights, whose fail-
ure entails low risks, should have a random hardware failure rate of
less than 10−7/hour according to the ISO 2626 standard (Das and
Taylor, 2016; Xie et al., 2023). However, the high requirements ensure
product quality and safety. Due to the high requirements in automo-
tive functional safety, there is a large gap between CM applications
operating in vehicles and topics that have yet to be dealt with in scien-
tific publications. However, automotive CM is an active research area
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that provides impetus and proofs-of-concept for future applications
of CM in production vehicles.

The following presents the current state of research for automotive
CM applications based on ML. The papers are grouped according
to the components or parts for which the CM is performed. The
explanation details the types of failures that are identified and the
sensor signals utilized for detection. Most publications mentioned
below are discussed in more detail in the review paper by (Theissler
et al., 2021). They have been extended in the remainder to reflect the
state of research up to 2023.

Damping System Faults: Wang and Yin (2014) and Yin and Huang
(2015) proposed the detection of failures in damping systems using
accelerometers on the four corners of the vehicle body. They detected
spring failures and evaluated the methodology using a simulation
model for vehicle damping. Zehelein, Hemmert-Pottmann, and
Lienkamp (2020) simulated failures in the damping system. They
kept the damper current constant during test drives, which resulted
in lower damping forces. Their data source consisted of 18 hours of
driving on different road surfaces with an upper-class sedan vehicle,
equally distributed between intact and defective dampers. They
used the wheel speed sensors, lateral and longitudinal acceleration,
and yaw rate as sensor signals. All signals were already present
in the vehicle’s electronic stability control (ESC) system, so no
additional sensor technology was installed. Hu, Luo, and Deng
(2021) developed a health monitoring system for estimating the
remaining life of automotive suspensions using a long short-term
memory (LSTM) network. The system used vibration sensory data
obtained from durability tests under various driving cycles as
training data. To determine ground truth data for the fatigue state
of the components on the test bench, they used special sensors that
measure the mechanical stress on the components.

Brake System Faults: Sankavaram et al. (2012) performed failure
detection of regenerative braking systems of electric and hybrid
vehicles. They used a vehicle power train simulation model with
25 state variables, e.g., wheel speed, wheel torque, and battery
temperature. They detected twelve different failure types, including
battery temperature, current flow faults, and vehicle speed sensor
faults. Jegadeeshwaran and Sugumaran (2015) used accelerometers
mounted close to the brake drum to detect failures such as brake
oil spills on the disc brake, air in the brake fluid, disc brake pad
wear, and drum brake pad wear, among others. The experiments
were conducted on a brake test rig with a passenger vehicle. Their
approach was based on extracting statistical features from the
vibration signal, which they used to train a biological methods-
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inspired classifier (Sharma and Sharma, 2011). In another publication
(Kumar et al., 2021), the research group improved their results by
applying a boosting algorithm that used logistic regression models
as weak-learners (Friedman, Hastie, and Tibshirani, 2000).

Engine Faults: Lin (2021) proposed a support vector machine (SVM)
classifier for detecting motor bearing faults with vibration signals.
The method constructed a feature space by extracting statistical
parameters of vibration signals and reliably detected bearing ball,
inner, and outer ring faults. A publicly available data set for motor
bearing faults was used as training data (Smith and Randall, 2015).
Jung and Sundström’s (2019) research addressed failures related to
airflow in a combustion engine. Their study identified failures in the
air mass flow sensor and abnormalities in intake manifold pressure,
temperature, and intercooler pressure. To detect these failures,
their model used sensor signals such as engine speed, pressure at
different engine positions, and temperature, among others. Wolf
et al. (2018) researched pre-ignition failures in petrol engines. The
data were based on more than 1000 signals from Electronic Control
Units (ECUs) in the car, which are used to control vehicle functions,
such as torque at the gearbox or revolutions per minute. Wong et al.
(2016) dealt with the detection of simultaneous failures in engines.
The underlying data were signals from a 4-cylinder Honda engine,
specifically the engine noise, ignition, and air ratio. Wang et al. (2010)
proposed using the engine’s vibration data to detect failures at the
fuel injection and spark plugs.

State-of-health of the Battery of Electric Vehicles: The state-of-health
(SoH) of a battery indicates the level of degradation. It is expressed
as a percentage of the battery capacity from the initial state. Pan et al.
(2018) determined the SoH using physical indicators extracted from
the battery’s internal resistance. Yang et al. (2018) focused on the
detection of short circuits and used the current flow, voltage, and the
battery’s temperature as data source. The tests were performed with
real batteries under laboratory conditions. You, Park, and Oh (2017)
collected the current and voltage signals of battery charging and
discharging processes from actual driving profiles. Based on these
signals, they developed a data-driven approach to predict SoH.

Tire Faults: Siegel (2018) presented two different approaches to tire
monitoring. In the first paper, a 20 percent increase or decrease in tire
pressure is detected using the GPS and acceleration signals recorded
from a car’s smartphone. In the second paper, image recognition
is proposed to detect cracks on the surface of tires using photos
taken by a smartphone. For this, the photos should be uploaded by
the car’s owner to a cloud-based diagnostic application that detects
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whether the tires are in normal condition (Siegel, Sun, and Sarma,
2018). Vasan et al. (2023) introduced a transfer learning-based CNN
approach for tire CM using vibration signals obtained through
low-cost acceleration sensors mounted at the rear axle. Using
well-established CNN architectures, they classified three different
tire pressure states (low, regular, high, and low speeds).

Fuel Cell Faults: Zuo et al. (2021) conducted a more than 1000 hours
lasting durability test of a fuel cell on a test bench. They developed
an algorithm predicting fuel cell voltage degradation based on the
current load. Mohammadi et al. (2015) used a physical simulation
model for a fuel cell, which they validated by experimenting with a
fuel cell on a test bench. The distribution of currents in the simulated
fuel cell was used as data to train an ML algorithm. Using the trained
algorithm, they could classify flooding and drying of the fuel cell
caused by water management problems.

Faults in Power Steering: Ghimire et al. (2011) introduced a hybrid
data-driven and model-based approach to detect power steering
failures. For this purpose, they first created a physical model of
the power steering system and then used various ML algorithms
to classify faulty states. They simulated the failures with different
severity. In their work, the authors recognized four different failure
types, including a torque sensor malfunction and increased steering
wheel friction. In a subsequent publication, they presented an
improved approach that also worked robustly on missing data
(Ghimire, Zhang, and Pattipati, 2018).

Faults in Electric Motors, Starter-Motors, and Generators: Seera et al.
(2014) proposed an ensemble of ML models to detect stator winding
faults and eccentricity problems of induction motors. They used
the three-phase current signals of the induction motor for CM.
Data collection was done on a test rig. The measurements were
performed with different motor loads and noise levels. Peters et al.
(2020) investigated the detection of failures in vehicle-engine start
systems. They also performed experiments on a test rig, detecting
two mutually dependent failures. These were battery and start-stop
engine failures. They also simulated failures of different intensities
here. As features for a multinomial regression model, they used
the current, voltage, and motor revolutions per minute. Simsir,
Bayir, and Uyaroğlu (2015) introduced a feed-forward artificial neural

network (ANN) for real-time monitoring of a hub motor. This motor
is located in the wheel and is utilized in solar vehicles or electric
bicycles due to its compactness. They used seven different main
parameters of the motor as sensor signals, which they recorded
under laboratory conditions. These were electrical and mechanical
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parameters, including the voltage and current of the source, the
output torque, and the speed of the motor. Wu and Kuo (2010)
utilized a hybrid fuzzy logic and ANN to classify failures of
automotive generators. They used the generator’s output voltage as a
feature for fault detection. Their model detected diode faults, single-
phase stator coil faults, and if the voltage regulator was disconnected.

Full vehicle faults: Routray, Rajaguru, and Singh (2010) proposed a
method to detect failures independent of a specific component in the
car. Their clustering-based approach used information from parame-
ter identifiers (PIDs), of which there are several thousand in modern
cars. These PIDs are serial data collected continuously in the ECUs
both by sensors in the car and by diagnostic software routines that
check the status of subsystems. They tested their method for detect-
ing failures of the heated oxygen sensor, which measures the oxy-
gen content of the car’s exhaust stream. Tagawa, Tadokoro, and Yairi
(2015) introduced a novel ANN architecture for fault detection and
analysis. They utilized 43 different sensor signals, which come from
existing sensors in the car and can be read out from the in-vehicle
network. With their structured approach, they could identify the true
causes of the faults. They evaluated their approach to actual driving
data. However, this evaluation is limited because there were no real
failures in the trips, so they used hill descents or acceleration and
braking maneuvers as faulty data.

In their research, Shafi et al. (2018) addressed the detection of fail-
ures in a fleet of vehicles. They collected data from the in-vehicle
network and did not use additional sensors. This data is transmitted
via Bluetooth to a smartphone, which sends it to a server running
the evaluation algorithms. When a failure is detected, the driver is
notified via a mobile notification on the smartphone. The vehicle fleet
consisted of 70 Toyota Corollas, which collected data from normal
conditions and subsystem failures. Their work focused on detecting
cooling, exhaust, fuel, and ignition failures.

Theissler (2017) also examined data from the in-vehicle network
and trained an ensemble of two ML algorithms to classify known
and detect unknown faults. Test drives were performed with a
Renault Twingo 1. The eight sensor signals used to train the models
included engine load, vehicle speed, and accelerator pedal position.
The work focused on detecting intermittent faults, i.e., faults that
were present in the sensor signals for only a short period. Permanent
failures are usually easier to detect. The injected failures involved
actuators, sensors, and the wiring harness. Actuators are components
that convert an electrical signal from a control unit into mechanical
movements.
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Faults in autonomous vehicles: Fang et al. (2020) developed a method
for detecting and localizing failures in a sensor cluster in an au-
tonomous vehicle. Their multi-stage method allowed the detection
of known and unknown failures, up to isolating the failure and stop-
ping the vehicle. The sensor cluster consisted of a GPS module, gy-
roscope, accelerometer, LiDar, and camera data, among others. Test
drives were performed with an autonomous car on a test track for
evaluation. Fault conditions were simulated by adding fault patterns
to the data, such as a constant offset or the failure of a sensor.

Jeong et al. (2018) proposed a system for self-diagnosing autono-
mous vehicles. They introduced a new communication network for
this purpose. Data from the sensors in the car were analyzed and eval-
uated using edge computing. As a result, the results were sent to the
cloud, informing other nearby vehicles to avoid accidents. Optimiz-
ing the message protocol in the car increased the message transmis-
sion speed by 15.25%. The system was implemented in a computer-
generated environment.

Wyk et al. (2020) formed an ensemble of ANNs and classical ML
algorithms to detect anomalies in the sensor data of an autonomous
or connected vehicle. They evaluated their model on the Safety Pilot

Model Deployment data set (Bezzina and Sayer, 2014). In their study,
they used vehicle speed, vehicle acceleration, and GPS data as sensor
signals. They generated the anomalies artificially by manipulating the
sensor data. Their anomaly types consisted of bias, gradual drift, tem-
porarily constant value, sharp change, and missing data.

2.5 condition monitoring in other industries

Wind Power: The importance of wind power for the energy transition
in Germany is enormous since the share of wind power in the
German electricity mix was about a quarter in 2022, accounting
for slightly more than half of the total electricity generated by
renewables (Statistisches Bundesamt, 2023). For off-shore plants,
operations and maintenance (O&M) costs contribute up to 30% of the
price of a kilowatt-hour (Bussel and Schöntag, 1997). According to
Carroll et al. (2017), lost revenue due to downtime and transportation
costs for maintenance each account for about 45% of O&M costs.
Staff and repair costs each account for approximately 5%. Therefore,
there are great efforts in the industry to reduce downtimes by
optimizing maintenance strategies (Bangalore and Patriksson, 2018).
McMillan and Ault (2007) investigated the economic advantage of
CMSs. Their study showed that CM is particularly worthwhile for
off-shore plants with higher maintenance costs if the detection of
failures works with high accuracy.
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Aerospace: An aircraft is subjected to extreme dynamic loads
in its operational environment, so regular maintenance must be
performed to guarantee safety and reliability (Ahmed and Nandi,
2020). CM is also used in improving the mission readiness of military
aircraft, as there is a trend towards flight-critical electronic systems
that need to be monitored (Keller et al., 2006). In modern aircraft,
automated flight control systems are used to ensure maximum
handling qualities and safe operation. Advanced systems integrate
load reduction functions and a flight protection area to prevent
critical loads on components due to extreme flight maneuvers. CM
helps to analyze whether the respective condition of the aircraft
allows certain flight maneuvers (Voskuijl, van Tooren, and Walker,
2015).

Railway: The development of the rail network and rail transport
is a crucial transformative factor in a country’s economic and
social development. Reliable and functioning rail transport is
the essential prerequisite for this. When components of trains
fail unexpectedly, delays in deliveries may occur (Ahmed and
Nandi, 2020). CM helps monitor the rail network and critical
components of trains. The industry focuses on optimal rail renewal
and maintenance planning that minimizes long-term costs and
failure probabilities. Using the combination of CM and reinforcement

learning (Sutton and Barto, 1998), for example, an optimal strategy
was found, simultaneously reducing rail renewal expenses and
increasing network reliability and safety (Mohammadi and He, 2022).

Manufacturing: All manufactured goods face international com-
petition in a globalized world. Depending on social developments,
customers’ preferences for quality, safety, and environmental
performance are changing in these markets. Hence, the demands on
machinery and production processes are also changing. Companies
are developing new maintenance strategies in highly competitive
markets to achieve maximum operational efficiency and remain
competitive.

Higher plant availability and reliability should be achieved with the
most cost-effective means. These requirements have led to the growth
of maintenance ’on condition’, minimizing unplanned downtime in
production processes (Shrieve and Hill, 1998).

The most popular sensors for rotating components such as bearings
or gearboxes are accelerometers (see Subsection 3.3), which pick up the
component’s vibrations. In addition, microphones are also applied
in industrial CMSs for acoustic monitoring. Oil analysis and lubri-
cant monitoring are used as indicators to detect wear of oil-wetted
components. Electrical parameters such as voltage, current, and resis-
tance are collected and analyzed for CM of electronic components in
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production processes (Ahmed and Nandi, 2020). CM in manufactur-
ing is part of Industry 4.0 (Czichos, 2019), which refers to integrating
digitalization into production processes using elements of artificial in-

telligence (Fetzer, 1990). Industry 4.0 covers the entire life cycle of a
product, i.e., development and production, use, maintenance, and re-
cycling. CM, as part of Industry 4.0, thus contributes to increased
efficiency and productivity (Mockenhaupt, 2021).

2.6 outlook

CM is an essential component of modern technical systems, provid-
ing more safety and improving maintenance measures’ planning. The
provided application areas are only a selection of important areas for
CMS and can be extended to almost every industrial sector using
complex technical systems. A frequently criticized limitation, espe-
cially in the automotive field, is the lack of public data sets. This
prevents the comparability of CMS, as no benchmark can be made
between a novel approach and the state-of-the-art. Quantitative com-
parability using performance metrics is also impossible due to the
different problem settings, sensors, sensor placements, and data sets
(Arena et al., 2022). Automobile companies consider data sets highly
confidential and do not share them publicly (Theissler et al., 2021).

Academia research has limited access to actual vehicle data, so ei-
ther collaboration is made with industry partners, simulation data is
generated, or data is collected on test benches. The question remains
about how well these simulations and data from test benches can be
compared to driving behavior in real road traffic. An ongoing initia-
tive at the EU level, which obliges large corporations to publish data
sets and thus gives universities and start-ups access to them, can ac-
celerate research in the field of CM (EU Vehicle Data Initiative, 2022).

A further challenge of CMS development is the system and com-

ponent level gap. Complex systems such as vehicles, ships, or trains
consist of numerous subsystems and components. CMSs are usually
developed at the lowest level, the component level. For the user of
a technical system, however, the main interest is to optimize main-
tenance at the highest system level since the overall system’s func-
tionality should be ensured. Ideally, the condition of all components
and subsystems would have to be monitored, but this is not feasible
in practice. The critical-part selection is an auxiliary tool for determin-
ing critical components, which are decisive for the failure behavior
of a technical system. Another challenge is the interpretation of the
monitored data. Nowadays, in modern machines, all systems are in-
terconnected, sensors occur in a variety, and storage capacity is no
longer a problem. Thus, a large amount of data is recorded, expect-
ing such a technical system can also be monitored condition-based.
However, translating the raw sensor data into maintenance actions
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is often challenging, and experts with a good understanding of the
system in normal and fault conditions are needed (Tinga and Loen-
dersloot, 2019).

When developing a CMS, initially, the difficult decision of which
physical quantities to monitor, which model type to use, where to
place the sensor, and which sensor type is most suitable must be
made. Mouatamir (2018) introduced a framework to find systemically
answers to these questions. However, in the end, a company always
faces the question: Do the economic benefits of the investment in the
CMS outweigh the costs? A methodology to estimate these costs and
benefits is introduced by Tinga (2013).





3
V E H I C L E V I B R AT I O N S A N D A C C E L E R O M E T E R S

In simple terms, a vibration is "the motion of a machine, or machine
part, back and forth from its position of rest" (Gardiner, 1998, p. 269).
Four physical quantities determine the behavior of a vibration: the ini-
tiating force, the mass, the stiffness, and the damping characteristics
of the vibrating system. The initiating force is the source of the vibra-
tion. The mass, stiffness, and damping forces act in opposition. They
thereby control and minimize the system’s vibration (Gardiner, 1998).
In summary, CM of vibration signals aims to analyze the relation
between the input signal (initiating force) and the output response
(vibration) over time and detect the dynamic changes in the system
behavior with increasing wear (Jauregui Correa and Lozano Guzman,
2020b). This chapter introduces the fundamentals of vibration moni-
toring and mechanical vibration. These are considered in the context
of vehicles. Furthermore, sensor technology used to measure vibra-
tions is discussed.

3.1 fundamentals of mechanical vibrations

In order to be able to describe mechanical vibrations, some basic
terms of mechanics are defined below.

3.1.1 Basic Terms of Mechanics

Mechanics, as a branch of physics, deals with the motion of bodies
and the laws that apply to them. There are three fundamental quan-
tities to which all relevant quantities in mechanics can be traced back
(Binnewies et al., 2016). These quantities are: The massm in kilograms
(kg), the distance s in meters (m) and the time t in seconds (s). A body’s
velocity results from the derivative of the distance swith respect to the
time t. In a vectorized form, this is:

v⃗ =
∂s⃗

∂t
, (1)

measured in m · s−1. The change in velocity of a body is called accel-

eration and results from the second derivative:

a⃗ =
∂2s⃗

∂2t
, (2)

measured in m · s−2. A body that moves has a momentum p⃗, which
depends on its mass and velocity.

p⃗ = m · v⃗. (3)

27
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The momentum can be imagined as a measure of the difficulty of
bringing a moving body to rest. The unit is kg · ms . For the movement
in one dimension, the vector notation simplifies to p = m · v.

Isaac Newton established classical mechanics in his main work en-
titled Philosophiae Naturalis Principia Mathematica, published in 1687.

Theorem 1 (Newton’s fist law) A body remains in a state of rest or a

constant motion in a straight line unless a force acts on it.

According to Newton’s first law, a body is inert, and a force is the
cause of a body’s change in motion. Newton’s second law, also called
the fundamental equation of mechanics, formulates the relationship be-
tween force and acceleration:

Theorem 2 (Newton’s second law)

F⃗ = m · a⃗.

The force F⃗ that gives acceleration a⃗ to a body of mass m is the prod-
uct ofm and a. To honor Newton’s merits, the unit for force is named
after him, where 1 N = 1 kg·m

s2
. A force from body A on body B is

accompanied by an equal but opposite force from body B on body A,
which is stated in Newton’s third law:

Theorem 3 (Newton’s third law)

F⃗A→B = −F⃗B→A.

In physics, springs are often used as examples to illustrate the behav-
ior of elastic bodies. For a spring in a vertical position, from which
a mass m is hanging, the mass at rest is located in the static equilib-

rium position. The static equilibrium position is where the opposing
forces of the spring (upward, negative sign) and those of the mass’s
gravitational force (downward, positive sign) are equal in magnitude.
The equality of these two forces occurs here because of Newton’s
third law. If a spring is to be deflected by a distance x from its static
equilibrium position, then a force Fx must be applied, which is pro-
portional to the deflection ∆x. The relationship between spring force
and deflection is specified by Hooke’s law:

Theorem 4 (Hooke’s law)

Fx = −k ·∆x.

The spring constant k has the unit N ·m−1.
Oscillation is a movement about an equilibrium point that repeats

after a time interval. When a body oscillates, it is called vibration (Rao,
2018). Let x be the displacement of an oscillation. If there is a constant
time interval T after the motion repeats, the motion is called periodic,
i.e.,

x(t+ T) = x(t). (4)
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0

Figure 5: Model for the vibration of an elastic medium (Obst, Hardt, and
Fuhrmann, 2018).

T is referred to as the period of oscillation. The reciprocal F = 1
T is

called frequency and is given in the unit Hertz (Hz), where 1 Hz = 1
s .

A special case of a periodic oscillation is a harmonic oscillation. If it is
harmonic, it can be represented in the following functional form:

x(t) = Acos(2πFt+ θ), (5)

where A is the Amplitude, i.e., the largest displacement, and θ is the
phase angle (Balke, 2020). The angular frequency Ω measured in radi-

ans per seconds (rad/s) is derived from F and corresponds to Ω = 2πF.
Sound waves are vibrations that propagate in a medium. The most

common one is airborne sound, which can be perceived through the
human ear. This thesis focuses on structure-borne sound, i.e., the sound
propagating in a solid body, such as a mechanical component in a car.
Figure 5 showcases the illustration of density fluctuations that are
both local and temporal in an elastic medium. The binding forces of
the particles ensure that they are at a constant distance from their
neighbors in the neutral position. The density of the particles is then
uniformly distributed in the medium.

3.1.2 Vibration Systems

The following section is based on excerpts from Sections 2.4 and 3.3
of the detailed introduction to mechanical vibration by Rao (2018).

3.1.2.1 Free Vibration

The simplest mechanical vibration to describe is the free vibration of
an undamped single-degree-of-freedom (SDOF) spring-mass system.
Figure 6 shows the schematic structure of such a system. In this sim-
plified representation, the mass as a single point represents the ma-
chine. In a real machine, the mass is distributed, but a single-point
mass can be assumed for approximation. Single-degree-of-freedom
systems can be used as idealized representations for various mechan-
ical and structural systems. The degree of freedom indicates how many
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Figure 6: SDOF spring-mass system (Rao, 2018).

coordinates are needed to determine the position of the mass. Free

vibration means the mass has been set in motion by an initial force,
but no external forces are acting on it. An example of free vibration
is the vertical oscillation experienced by a cyclist riding over a bump
in the road.

The equation of motion of a free vibration of an undamped SDOF
spring-mass system is derived as follows. It will be demonstrated
that harmonic oscillations occur naturally there. When the mass m is
in static equilibrium, the gravitational force W pulling it downward
with W = mg, is balanced by the upward spring force −kδst, i.e.,

0 = −kδst +W (6)

with g as acceleration due to gravity, k as spring constant, and δst as
static deflection. If the mass is deflected by +x, the spring force equals
−k(x+ δst). In addition, the force W acts in the opposite direction. In
total, this results in

Fm = −k(x+ δst) +W, (7)

as a force Fm on the mass m. After applying Newton’s second law,
this is equal to

mÈx = −k(x+ δst) +W. (8)

The common physical dot notation is used here for derivatives. Due
to the equilibrium of forces W = kδst, the following differential equa-
tion is obtained

mÈx+ kx = 0. (9)

A solution is given by the exponential function

x(t) = Cest (10)

with C ̸= 0 ∈ R and s ∈ C. Inserting in eq. 9 results in s = ±iΩn,

where Ωn =

√

k
m . The quantity Ωn is called natural frequency. The
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Figure 7: Graphical visualization of the equation of motion of a harmonic
oscillator (Rao, 2018).

general solution of eq. 9 for x(t) is obtained by substituting the two
solutions for s into eq. 10 and adding these exponential functions, i.e.,

x(t) = C1e
iΩnt +C2e

−iΩnt. (11)

Applying Euler’s formula eizt = cos(zt) + i sin(zt) with z ∈ R leads

x(t) = (C1 +C2) cos(Ωnt) + (C1 −C2)i sin(Ωnt). (12)

Let x(0) = x0 and ẋ(0) = ẋ0 be the initial conditions of x(t) and
ẋ(t). Inserting and transforming the equations of x(t) and ẋ(t) yields
C1 +C2 = x0 and C1 −C2 = ẋ0

iΩn
. Hence,

x(t) = x0 cos(Ωnt) +
ẋ0

Ωn
sin(Ωnt). (13)

By transformations of eq. 13, it can be shown that the equation of
motion corresponds to a harmonic oscillator (see Figure 7). For this,
let x0 = A cos(θ) and ẋ0

Ωn
= A sin(θ). Recalculation yields for the

amplitude A =

√

x0 +
(

ẋ0

Ωn

)

and phase angle θ = tan−1
(

ẋ0

x0Ωn

)

.

Overall,

x(t) = A cos(Ωnt− θ), (14)

which is indeed a harmonic oscillator.

3.1.2.2 Forced Vibration

Having analyzed how a system oscillates after a single excitation, the
case of a harmonic excitation is now considered in more detail. In the
vehicle, harmonic excitations occur, for example, due to imbalances
on the tire, which are transmitted to the body, or on the combustion
engine’s crankshaft, which converts the forces generated by combus-
tion into rotary motion (Mitschke and Wallentowitz, 2014a). Let an
undamped SDOF spring-mass system (see Figure 6) be given again
but with additional acting harmonic force FH(t) = F0 cos(Ωt) on the
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mass m. Here, Ω is the angular frequency. This changes the equation
of motion eq. 9 to

mÈx+ kx = FH(t). (15)

According to eq. 12 the homogeneous solution xh(t) has the form

xh(t) =W1 cos(Ωnt) +W2 sin(Ωnt). (16)

Recalculation shows that

xp(t) = A cos(Ωt) (17)

is a particular solution, where

A =
FH

k−mΩ2
=

δst

1−
(

Ω
Ωn

)2
. (18)

The general solution of the linear inhomogeneous second order dif-
ferential eq. 15 is xh + xp. Overall, this results in

x(t) =






x0 −

δst

1−
(

Ω
Ωn

)2






cos(Ωnt) +

ẋ0

Ωn
sin(Ωnt)

+
δst

1−
(

Ω
Ωn

)2
cos(Ωt), (19)

where W1 and W2 were determined by substituting the initial condi-
tions x0 and ẋ0.

Case 1: 0 < Ω
Ωn

< 1

In this case, a positive prefactor is obtained, and the harmonic system
response xp has the same phase as the external excitation.

Case 2: Ω
Ωn

> 1

In this case, a negative prefactor A is obtained, and the harmonic
system response xp is out of phase by π compared to the external
excitation. Moreover, Ω

Ωn
→∞ leads to A→ 0, i.e., the system hardly

responds to high-frequency external excitations.

Case 3: Ω
Ωn

= 1

This case is also called resonance. Transformations and application of
L’Hospital rule, yield for x(t) then

x(t) = x0 cos(Ωnt) +
ẋ0

Ωn
sin(Ωnt) +

δstΩnt

2
sin(Ωnt). (20)

Here, the amplitude increases linearly over time.

A parameter not considered further for free vibration and harmon-
ically excited vibration due to the focus of the thesis is damping. It
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causes the amplitudes of the oscillating system in the case of free
oscillation to go towards zero with time if no further energy is sup-
plied to the system. In the case of the excited harmonic oscillation, the
damping leads to the system’s vibration being dominated by xp and
the xh term going towards zero (Mitschke and Wallentowitz, 2014a).

3.2 vehicle vibrations

Vehicle vibration is an everyday problem affecting drivers and passen-
gers. Although often considered a mere inconvenience, vehicle vibra-
tion can have several negative effects, both on the occupants and the
vehicle itself. Determining vehicle vibrations is crucial to increasing
driver and passenger safety and improving ride comfort. In addition,
knowledge gained in this area can also be used to increase vehicle life
by reducing components’ wear and tear.

This section first presents the causes and effects of vehicle vibra-
tions. Then, various strategies for reducing and eliminating vehicle
vibrations are explained. In the previous section, simple mechanical
vibrations and their equation of motions were described. In contrast,
a vehicle is a highly complex vibration system whose equations of
motion and behavior can be determined analytically or by numerical
simulation. This is beyond the scope of this thesis. Detailed mathe-
matical and physical discussions of models for describing vehicles as
a vibration system can be found in (Zeller, 2012b).

3.2.1 Causes

According to Newton’s first law, a body remains in a state of rest
unless an external force acts on it. For a vehicle that vibrates, knowl-
edge of excitations that cause vibrations is therefore of interest. These
can be divided into the categories of internal and external excitations.
The most crucial external excitation influencing the vibration comfort
in the vehicle is due to the road unevenness (Küçükay, 2022). Vertical
motions up to 30Hz in the vehicle are excited by them. Since the road
surface is generally not uniform, the roadway excitations are also re-
ferred to as stochastic excitation, i.e., the roadway unevenness occurs
with different amplitude and wavelength at irregular intervals (Sauer,
Kramer, and Ersoy, 2017). Another external excitation is the wind act-
ing on the vehicle. The driver, who influences the driving behavior by
utilizing the steering wheel, accelerator, brake, and clutch pedals, is
also an external excitation source (Küçükay, 2022).

The powertrain is one of the two primary sources of internal excita-
tion. These include the periodic mass and gas forces in internal com-
bustion engines and the friction and contact processes in the transmis-
sion, roller bearings, and clutches. In an internal combustion engine,
forces and torques are induced by the movements of the pistons and
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Yaw

Pitch

Roll

Figure 8: The vehicle coordinate system.

the combustion processes. Via the engine suspension, which connects
the engine to the vehicle body, the vehicle body vibrates, which can
cause disturbing noises for the driver (Mitschke and Wallentowitz,
2014b).

The second primary source is the internal excitation of chassis com-
ponents. These include imbalances on wheels, tires, or brakes. Under
load, these imbalances lead to fluctuations in the radial force when
the wheel rolls. The radial force is the force acting in the running
direction of the wheel. At higher speeds, this causes the vehicle to
vibrate disruptively (Zeller, 2012b).

In addition to how excitation is induced, it is also possible to dis-
tinguish in which direction vibration phenomena occur in the vehi-
cle. Vibrations in the direction of the three translational degrees of
freedom of the longitudinal, lateral, and vertical dynamics (x, y, and
z direction) specified in the standardized vehicle coordinate system
can arise. Likewise, they can occur in the direction of the rotational
directions of motion ψ,ϕ, θ, referred to as pitch, roll, and yaw. Figure 8

shows the vehicle coordinate system. Vertical dynamic vibrations oc-
cur due to uneven road surfaces or imbalance and out-of-roundness
of the wheels.

One goal in vehicle development is to avoid unpleasant pitching
movements. When driving over an uneven surface, the vehicle body
should ideally have a parallel movement in the z-direction. This is
achieved by tuning the front and rear axles, which reduces pitching
movements. The powertrain dynamics mainly cause longitudinal vi-
brations. Rolling motions are, for instance, the source of either the
driver’s steering movements or different excitations of the road act-
ing on the left and right sides of the vehicle (Zeller, 2012b).

3.2.2 Effects

The transmission of excitations within a vehicle is a complex process
that involves various components. These excitations originate from
the engine and the wheel. They are transmitted to the bodywork,
allowing the passenger to perceive them through the seat, the floor,
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Figure 9: Transmission paths within the vehicle from the excitation to the
passenger (Wallentowitz, 2005).

and the steering wheel. Figure 9 outlines the primary paths through
which a single excitation travels to the passenger, who can perceive it
both tactically and acoustically. These excitations give rise to a range
of vibration phenomena summarized in Table 1. The table provides
information on the frequency ranges associated with each vibration
phenomenon and identifies the corresponding excitation responsible
for it (Wallentowitz, 2005).

Vibrations tangible to humans are typically limited to frequencies
up to 30 Hz. Nevertheless, it should be noted that this particular
threshold is highly dependent on the individual. The human audi-
tory range encompasses frequencies between 15 Hz to approximately
20 kHz. The emergence of noise arises from a vibrating object caus-
ing the surrounding air molecules to vibrate and can be perceived by
the human ear. As people age, their ability to hear higher-frequency
sounds decreases. An 80-year-old person normally cannot hear fre-
quencies above roughly 5 kHz. The transition range between tangible
and audible vibrations, referred to as roughness, is from 20 to 100 Hz
(Küçükay, 2022). Due to the occurrence of primarily frequency-mixed
signals in vehicles, oscillations can be simultaneously perceptible to
touch and hearing. The overall mechanical and acoustic vibrations
experienced by passengers are what constitute driving comfort. In the
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field of vehicle-specific vibration technology, this is commonly re-
ferred to as NVH, which stands for Noise, Vibration, and Harshness

(Pletschen, 2010).
The level of driving comfort experienced by a driver depends on

several factors that can be considered in vehicle development. These
include driving characteristics (smooth or sporty), suspension tuning
(soft or hard), and the presence of features that make driving easier
(e.g., driver assistance systems or power steering. Interior noise also
contributes to driving comfort, with customers of higher-end vehi-
cles expecting lower noise levels. Driving comfort is relevant not only
when the vehicle is moving but also when the vehicle is stationary
with the engine idling. Proper tuning of spring stiffness and damper
constants can greatly enhance driving comfort. Active suspension sys-
tems, which allow the spring and damper parameters to be adapted
to different vehicle maneuvers, can also significantly improve driving
comfort (Sauer, Kramer, and Ersoy, 2017).

In addition to passengers and their driving comfort, vibrations also
affect the components in the vehicle. This impact can result in com-
ponent failures, material fatigue, loosening of components, and in-
creased friction between elements. Components can only function for
a shorter period when exposed to strong vibrations, i.e., the wear re-
serve decreases more quickly. Therefore, there is a positive correlation
between the vibration amplitude and stress levels. The loosening of
components in the vehicle can be caused by incorrect assembly. Over
time, loosening problems can increase, leading to misalignment or
imbalance and ultimately causing mechanical systems to fail. Addi-
tionally, vibrations can increase friction between individual vehicle
components, leading to wear and tear. In the worst-case scenario, this
can result in catastrophic failures as the vibrations cause components
to collide, resulting in damage or even destruction. Such collisions
can occur between rotating components and their housings, causing
damage to both (Jauregui Correa and Lozano Guzman, 2020a).

3.2.3 Mitigations

The extent to which vibrations are permitted depends on the market
positioning of a vehicle. Consumers are more likely to expect and ac-
cept these in a sporty, agile vehicle than in a comfort-oriented SUV
(Sauer, Kramer, and Ersoy, 2017). However, if vibrations exceed an
acceptable level, countermeasures must be taken in vehicle develop-
ment. They can be divided into passive, semi-active, and active mea-
sures based on energy consumption.

Passive measures aim to influence the transmission behavior of vi-
brations on the transfer paths (see Figure 9) by adjusting compo-
nent parameters. They do not require any additional energy. Semi-

active measures also influence the transmission behavior of vibrations
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Vibration 

Phenomenon

Excitation

f(Hz)

from – to

Road Imbalance Powertrain

Vehicle Body Vibration 0.5 5 ++

Riding, Freeway Hop 2 5 ++

Longitudinal Jerking 4 10 ++

Jerking, Shaking 7 15 ++ +

Bouncing 7 25 ++

Backlash 8 20 ++

Axle Vibration 10 15 ++ +

Steering Unsteadiness 10 20 +

Brake Rubbing 15 25 +

Engine Trembling, Shaking 15 40 ++

Idling Shaking 20 30 ++

Exhaust System 20 1000 ++

Roar 30 70 ++ + ++

Axle Harshness 30 80 ++

Rolling 30 300 ++

Engine Noise 200 5000 ++

Gearbox Noise 400 500 ++

Table 1: Vibration phenomena in the vehicle (Wallentowitz, 2005).

on individual transfer paths, but individual adjustments are made
depending on the driving condition. Therefore, actively controllable
or adjustable vehicle components are installed that can change their
physical properties. They require an additional energy supply for op-
eration. In contrast to the first two measures, active measures do not in-
fluence transfer paths but use auxiliary systems to generate compen-
sation forces to counteract vibrations. However, the systems required
for this need a considerable energy supply, as they are typically in
continuous operation.

Passive measures in the field of vibration reduction involve alter-
ing the resonant frequencies of components. This is achieved through
modifications to stiffnesses or masses that impact the resonant fre-
quency. Elastic mounting is the most common passive measure and
can be accomplished by either decoupling the excitation source from
the environment or isolating the excited component from the exci-
tation. For example, the engine mount connects the engine to the
body. It isolates the component bodywork from the excitation source
by reducing vibrations to the bodywork through the elastic isolating
element. The bearing element is designed to transmit the excitation
frequency’s amplitude only at a weakened level. Elastomers such as
rubber have good damping properties and are also used for bearing
elements. Damping reduces kinetic energy from the vibrating system
and converts it into thermal energy, thus reducing the amplitude of
the vibration. Innovations in the field of engine mounts enable semi-
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active measures, making it switchable depending on the operating
condition (Zeller, 2012b).

In the chassis, semi-active dampers are used to adapt damping
to different axle loads, driving conditions, and routes. Fully active
damping systems are currently not installed in road vehicles due to
their high energy consumption and price (Sauer, Kramer, and Ersoy,
2017). However, active measures are already being utilized in some
cases in vehicle interiors to reduce noise. The Active noise cancella-

tion (ANC) technology, often integrated into modern headphones,
can also counteract the wind and rolling noises in the vehicle inte-
rior. The basis of this technique lies in the principle of sound super-

position, wherein the interference of sound waves can result in their
mutual cancellation. First, ANC uses a microphone to detect a noise
field. Then a sound compensation field is generated via a loudspeaker
so that the interference source is superimposed and the sound pres-
sure for the occupant is minimized. The success of this methodology
depends heavily on the accuracy of the sound compensation field
(Zeller, 2012b).

3.3 accelerometers

To observe and analyze the vibrations of components in a vehicle, cor-
responding sensor technology is necessary. For this purpose, acceler-
ation sensors are employed, commonly referred to as accelerometers.
These sensors generate a signal proportional to the acceleration expe-
rienced by the sensor in the direction of measurement. The accelera-
tion experienced is related to the equation of motion of the vibration
as the second derivative.

Accelerometers are versatile because they detect a wide range of
frequencies, particularly very high frequencies in the kilohertz range
(Ahmed and Nandi, 2020). They are also lightweight, usually weigh-
ing only a few grams. In vehicles, they are used in the control sys-
tem for triggering airbags and seat belt pre-tensioners, in the anti-lock

braking system (ABS), or in the chassis control system for detecting
vehicle body acceleration. The acceleration is usually specified using
the acceleration due to gravity, where 1 g is approximately 9.81m

s2
.

The measurement range of accelerometers can be several hundred g.
The measuring principle for accelerometers is based on determining
the inertial force acting on a small part called the proof mass located
in the sensor. The second Newton’s law (F = ma) can be employed
to infer the acceleration (Reif, 2012). The proof mass is fixed in the
sensor via an elastically deformable mount, such as a leaf spring. The
deflection of the proof mass is then used to derive acceleration given
linear spring forces.

The most prominent sensor variants generate a change in resis-
tance, capacitance, or electrical charge via the deflections of the mass.
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They are electrical transducers, i.e., they transfer the physical quantity
of the acceleration into an electrical signal. The acceleration signal
can then be inferred from the value of the electrical signal, e.g., the
current. A distinction is made between AC and DC accelerometers. The
first group can only measure dynamic accelerations, whereas the sec-
ond can also measure static accelerations, such as the acceleration due
to gravity. Capacitive, resistive, and piezoresistive are the most com-
mon DC accelerometers. Details on the transduction principles and
the operation of the sensor types can be found in (Watzka, Scheler,
and Wilhelm, 2012). Piezoelectric accelerometers are the most preva-
lent AC accelerometers. The piezoelectric effect describes the appear-
ance of an electrical charge on a solid body when it is subjected to
mechanical stress. The mechanical stress τ describes the internal stress
on a body when it is subjected to an external load and is expressed in
Pascal (1 Pa = 1 N

m2 ). Piezoelectric materials are, for instance, quartz
crystals, widely used in accelerometers. The deflected proof mass in
the accelerometer causes stress in the crystal. The piezoelectric effect
produces a charge whose amplitude is measurable.

Transduction
Principle

Measurement 
Range in g

Frequency Range 
in Hz

Operating Temperature
Range in °C

Capactive -500 – 500 0 – 1.000 -40 - 80

Resistive -1.000 – 1.000 0 – 5.000 -20 - 71

Piezoresistive -60.000 – 60.000 0 – 5.000 -20 - 85

Piezoelectric -120.000 – 120.000 0.2 – 20.000 -54 - 250

Table 2: Measurement and frequency ranges of commercial accelerometers
based on the study by (Elies and Ebenhöch, 2015).

A market evaluation of more than 100 commercial acceleration sen-
sors with prices between 1 and 3000 Euro, used in aerospace, automo-
tive, railway, and consumer electronics, was conducted by Elies and
Ebenhöch (2015). Table 2 shows the differences between the trans-
duction principles and their measurement and frequency ranges. The
capacitive acceleration sensors have the lowest measurement and ac-
celeration range. However, they are also inexpensive to manufacture
due to modern semiconductor technology, and they can also measure
static accelerations (Weber, 2012). Resistive and piezoresistive were in
the middle field in the measurement and frequency range. Neverthe-
less, they can also detect very low frequencies down to 0 Hz, which
is impossible with the piezoelectric ones. These had the highest mea-
surement and frequency range, but they can only measure dynamic
accelerations. Furthermore, they have the broadest range of operating
temperatures, which allows their use in hot operating locations.

The study showed no significant correlation between the measure-
ment range and energy consumption. The maximum value among all
tested sensors was 1 Watt. Most of the sensors have a volume of less
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than 10 cm3. Almost all sensors weigh between 0.1 and 100 g. Overall,
all sensors require little installation space and are lightweight.

The sensor type selection considerably influences the measurement
results, which is why the decision must be made carefully, consider-
ing the respective application’s financial and technical requirements.
Piezoelectric sensors were used for test drives as part of this thesis
since dynamic driving-dependent vibrations in the chassis needed to
be recorded. Therefore, no DC accelerometer was required, and the
piezoelectric sensors with a wide frequency range were the favored
type. A guide from TE Connectivity (2017), a leading sensor technol-
ogy manufacturer, provides use case dependent detailed instruction
for selecting the optimal accelerometer type.

3.4 vibration-based monitoring

Vibrations frequently occur in technical systems, originating from var-
ious internal sources such as motors and turbines or external sources
such as weather conditions like rain and wind. The key is that the
structure is set in motion. The CM technique, also known as vibration

or vibration-based monitoring, is utilized to analyze these signals (Tinga
and Loendersloot, 2019). These techniques are well-suited for me-
chanical components in machinery and operating equipment, making
them an integral part of a CM program in the industrial environment
(Mobley, 1998).

Feature extraction is a crucial aspect of vibration monitoring to
identify system response characteristics, allowing for inferring the
structure’s state. Vibration monitoring often focuses on the measured
vibration and statistical parameters, such as vibration level, kurto-
sis, or skewness. Conversely, vibration-based monitoring employs ad-
vanced signal processing methods to identify specific failure causes.
Raw vibration signals are no longer considered, and instead, signals
based on them, like derivatives or Fourier transforms, are analyzed
(Tinga and Loendersloot, 2019). Refer to Chapter 4 for more infor-
mation on these transformations and feature extractions of vibration
signals.

The advantages of vibration-based monitoring include the follow-
ing (Ahmed and Nandi, 2020):

(i) Accelerometers enable a non-intrusive form of diagnostics. No
component of a machine needs to be destroyed for this purpose.

(ii) Vibration analysis is effective because nearly 80% of all rotating
machinery problems are due to imbalance or misalignment.

(iii) Accelerometers are easily accessible and affordable. They can
even be found in smartphones.
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(iv) The hardware to convert the analog signals into digital ones and
store them is affordable due to technological progress.

(v) They can be evaluated directly at the machine but also online.

(vi) The techniques for diagnosing failures of rotating components
have been well-established and have been proven for decades.
Furthermore, the failures are explainable on a physical level.
These include the detection of bearing failures (Dyer and Stew-
art, 1978), cracks (Mayes and Davies, 1984), and shaft imbalance
(Bishop and Parkinson, 1965).

3.5 outlook

The current chapter has introduced the fundamental aspects of me-
chanical vibrations, outlining vibrations that occur in vehicles, their
underlying causes, and some methods for their prevention. Addition-
ally, the use of acceleration sensors as a measurement technology for
recording vibrations and vibration-based monitoring was examined.

In the discussion of mechanical basics, it was determined that the
free vibration of an SDOF system results in a harmonic vibration.
However, in the case of vehicles, vibrations involve multiple degrees
of freedom, are damped, and are influenced by various excitation
sources. The next chapter will demonstrate that even such complex
vibrations are composed of harmonic oscillations and can be decom-
posed into them via mathematical transformations.

It is now apparent that a vehicle is a complex vibration system with
various influencing factors and transmission paths. Therefore, opti-
mizing acoustic behavior based on customer needs is essential when
developing and integrating new vehicle components. The V-model,
which is widely used in the automotive industry for the development
process, assumes that every requirement for functions that can be bro-
ken down into a system and component level is also matched by a test
and verification. This ensures that acoustic requirements are also met
in the production vehicle. Further details of the V-model can be found
in (Gonter et al., 2021). While computer simulations of acoustic vehi-
cle properties were not discussed in this chapter, it is worth noting
that such simulations can be carried out using finite element methods

(FEM) (Jung and Langer, 2001). Modern FEM models, which include
several million elements that describe the powertrain, axles, interior,
and body structure, are available today. As a result, the development
process is supported by vehicle simulation, which makes predictions
about acoustic vehicle behavior (Zeller, 2012a).

The trend toward electric mobility is also significantly impacting ve-
hicle acoustics. Generally, electric cars are quieter than internal com-
bustion vehicles. However, the electric drive and power electronics
give rise to new airborne and structure-borne sound sources that
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must be considered in the acoustic design of vehicle development
(Seeck et al., 2021). For instance, bearings installed to dampen exci-
tations from the powertrain must be designed for other frequency
ranges (Pletschen, 2010).

The cause, effect, location, and measurement of vibrations in the
vehicle were introduced, laying the groundwork for data acquisition,
which is the first step of a vibration-based CMS (see Figure 4). The
recorded data is validated in the subsequent data processing step,
and features are extracted. Therefore, the next chapter will explore
the methodology for analyzing and extracting features from vibration
data.



4
V I B R AT I O N S I G N A L A N A LY S I S

The analysis of vibration signals is an essential tool for characteriz-
ing and diagnosing mechanical systems and structures. This analysis
provides insights into mechanical components’ behavior, condition,
and remaining functionality (Mobley, 1998). This chapter gives a de-
tailed overview of techniques and methods used in the field of vi-
bration analysis. These originated in the engineering subfield of sig-

nal processing (Palani, 2022b), so a brief introduction to signals and
their types is first presented to classify those of accelerometers. Af-
ter that, properties describing vibration data in the time domain are
discussed. This is followed by considering signals in the frequency
and time-frequency domains. Finally, graph domain analysis is in-
troduced, representing vibration signals in graph form and enabling
analysis techniques of complex networks (Strogatz, 2001).

4.1 signals

According to Scheithauer (1998), we have become an information so-

ciety in which information or messages are generated, sent, received,
and traded. Information needs a carrier, and this is called a signal. For
human speech, this is air pressure, which is changed through the vo-
cal cords, causing sound waves to propagate. For radio and television,
the receiver processes electromagnetic waves to decode the message
(Scheithauer, 1998). Information is knowledge content, and the rep-
resentation of this knowledge as a physical quantity is a signal. For
example, the body temperature of a human being is a signal that pro-
vides information about the state of health (Meyer and Mildenberger,
2002). In the same way, the vibration data in the vehicle considered in
this thesis are signals that give information about the wear condition
of a component. Oppenheim, Willsky, and Nawab (1996, p. xxvii) de-
fine signals as "functions of one or more independent variable" containing
"information about the behavior or nature of some phenomenon".

In most cases, signals are functions depending on time, but they
can also depend on other quantities (Palani, 2022a). For instance, an
image can be interpreted as a 2D signal, where the pixel values de-
pend on the position. Due to the focus of this thesis on vibration data,
time-dependent signals are classified in more detail below.

43
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4.1.1 Continuous and Discrete Signals

Let x(t) be a signal with x : Dt → R, t 7→ x(t). This is called a
continuous-time or analog signal if t is a continuous variable (Hsu,
2011). A variable t is called continuous if and only if Dt is uncount-
able, for example, when Dt ⊂ R is an interval of real numbers. On
the other hand, a discrete variable t takes only finitely many or count-
ably many values, and the respective signal is called discrete-time sig-
nal (Fahrmeir et al., 2004). If the image of the signal x is continu-
ous, the signal is called value-continuous and otherwise value-discrete

(Scheithauer, 1998). A discrete-time signal x[n], n ∈ Z, can arise be-
cause the signal is inherently discrete like the daily closing price of
a stock or because it arises from sampling at the points t0, . . . , tn of a
continuous-time signal x(t), i.e.,

x[n] = x(tn). (21)

For vibration data measured with an accelerometer, the sensor en-
sures that the sampling is uniform, i.e.,

x[n] = x(nT), (22)

where T ∈ R is the sampling interval and Fs = 1
T the sampling rate

(samples per second). In other fields, discrete-time signals are often
called time series. When processing the vibration data, the signal is
converted by an analog/digital converter into a digital number, e.g.,
with 16 or 32 bits. Such a discrete-time and value-discrete signal is
called digital signal. The representation as a digital number, named
quantization, has hardly any influence in practice nowadays because
of the high number of digits and can often be neglected (Scheithauer,
1998).

4.1.2 Sinusoids and Complex Exponentials

The following section is based on the definitions and discussions in
(Proakis and Manolakis, 2006).

A continuous-time signal or a discrete-time signal x is called peri-

odic if and only if

x(t) = x(t+ T) ∀t ∈ R (23)

x[n] = x[n+N] ∀n ∈ Z, (24)

respectively. Here, 0 < T ∈ R and 0 < N ∈ N are the smallest values
for which the corresponding equality holds. These values are called
fundamental period of x. Their reciprocals are called fundamental fre-

quency. The condition for the periodicity is similar to the motion equa-
tion in Section 3.1 for mechanical vibrations. A sinusoid, which also
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appears in harmonic oscillations, is a special periodic signal, which
for continuous-time signals x(t), t ∈ R, has the functional form

x(t) = A cos(Ωt+ θ) (25)

= A cos(2πFt+ θ), (26)

where A is the amplitude, Ω the angular frequency given in radians

per second (rad/s), and θ as phase in radians. Alternatively, the fre-
quency F in cycles per second (Hz) with Ω = 2πF is used to represent
x.

Analogously, the discrete-time sinusoidal x[n], n ∈ Z, is repre-
sented as

x[n] = A cos(ωn+ θ) (27)

= A cos(2πfn+ θ), (28)

where ω is now the angular frequency in radians per sample. Alterna-
tively, x can be expressed using the frequency f with unit cycles per

sample where ω = 2πf.
Since this thesis focuses on vibration data as discrete-time signals,

two essential differences between discrete-time and continuous-time
sinusoids should be pointed out. Discrete-time sinusoids are only
periodic if the frequency f is a rational number. Furthermore, all
discrete-time sinusoids xk whose frequencies differ by multiples of
2π are identical, i.e.,

xk[n] = A cos(ωkn+ θ) ∀k ∈N (29)

ωk = ω0 + 2πk, −π ⩽ ω0 ⩽ π, (30)

which results from the 2π periodicity of cosine. Any 2π interval ω1 ⩽

ω ⩽ ω1 + 2π thus contains all distinct discrete-time sinusoids. There-
fore, in the following, the interval for ω is fixed as −π ⩽ ω ⩽ π or
0 ⩽ ω ⩽ 2π, the most common ones in the literature (Proakis and
Manolakis, 2006). If the sinusoid has a frequency |ω| > π or |f| > 1

2 ,
there exists a sinusoid identical to it with |ω| < π. Hence, the si-
nusoid with |ω| is called alias. In contrast, distinct sinusoids occur
for continuous-time sinusoids for all Ω, F with −∞ < Ω < ∞ and
−∞ < F < ∞, respectively. The sinusoids are closely related to com-
plex exponentials x(t) given by

x(t) = Aei(Ωt+θ) = A(cos(Ωt+ θ) + i sin(Ωt+ θ)), (31)

where the second equality holds due to Euler’s formula (Moskowitz,
2002). It is easy to conclude from this that the determined properties
of discrete-time and continuous-time sinusoids also apply to discrete-
time and continuous-time complex exponentials. A real-valued sinu-
soid can be represented as a complex exponential by

A cos(Ωt+ θ) =
A

2
ei(Ωt+θ) +

A

2
e−i(Ωt+θ), (32)

where it consists of two complex exponentials, also called phasors,
rotating in opposite directions with ±Ω radians.
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4.1.3 Further Classes of Signals

If the course of a signal is known in advance, it is called a deterministic

signal. If, on the other hand, the course is unknown and random, as
is the case with vibration data in a vehicle, then it is a stochastic signal

(Hsu, 2011). For instance, the road surface is a source of excitation
that causes stochastic vibrations in the vehicle (Ersoy et al., 2017).

In addition, signals can also be distinguished by their energy and
power. The energy W(t1, t2) of a continuous-time signal is equal to

W(t1, t2) =
∫t2

t1

|x(t)|2 dt. (33)

This definition of energy is proportional to the physical quantity of
energy. For example, in a circuit with voltage v(t) and resistor with
resistance R, the energy dissipated at the resistor is 1

R

∫t2
t1
v2(t)dt.

The signal’s total energy is then

W =

∫∞

−∞

|x(t)|2 dt. (34)

The signal x(t) is called energy signal if it has a finite total energy. For
discrete-time signals the total energy is given by the sum

W =

∞∑

k=−∞

|x[k]|2 T . (35)

According to the physical definition of power, the average power of
x(t) for the continuous and discrete case is as follows

P = lim
L→∞

1

L

∫ L
2

−L
2

|x(t)|2 dt, (36)

P = lim
N→∞

1

2N+ 1

N∑

k=−N

|x(kT)|2 . (37)

If the average power is finite, the signal x(t) is a power signal. The
definition of an energy signal indicates that its average power is 0.
Hence, energy signals are always power signals. (Scheithauer, 1998).
Energy and power signals play an essential role in the context of the
Fourier transform (Oppenheim, Willsky, and Nawab, 1996). Since the
vibration signals recorded in the vehicle are simultaneously limited
in time and amplitude, they are energy signals.

4.2 time domain analysis

The vibration data recorded by the accelerometer are available in their
raw form as discrete-time signals, respectively, time series. As dis-
cussed in Chapter 3, in complex vibration systems such as a vehicle,
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several excitation sources are often responsible for the vibrations of
a component. This makes it difficult to directly infer the state of a
component from the raw signal. The standard approach is to extract
features from the raw signal that summarize the characteristics of the
signal and can be used as indicators for the CMS (Ahmed and Nandi,
2020).

4.2.1 Statistical Features

Statistical features do not necessitate significant computing resources
and are, as a result, relatively simple to integrate into a CMS. These
features can be evaluated against predefined thresholds to classify
the condition of a machine (Sánchez et al., 2018). Additionally, the
statistical features can be employed to train ML models that can pre-
dict the state of a machine. The statistical features discussed here are
the most commonly utilized ones for condition monitoring of ma-
chines, according to a comprehensive review of the field by (Ahmed
and Nandi, 2020). The features are presented only for discrete-time
signals x with

x : {0, . . . ,N− 1}→ R,n 7→ x[n], (38)

since negative indices are irrelevant for measured vibration signals.
For the continuous-time case, versions exist where integrals are used
instead of sums.

(i) The mean amplitude is defined as

x̄ =
1

N

N−1∑

n=0

x[n].

(ii) The variance σ2x is given as

σ2x =
1

N− 1

N−1∑

n=0

(x[n] − x̄)2,

and the standard deviation is equal to σx.

(iii) The root mean square value xRMS is expressed as

xRMS =

√

√

√

√

1

N

N−1∑

n=0

|x[n]|2.

(iv) Let xmax be the maximum and xmin be the minimum value of
x[n] for 0 ⩽ i ⩽ N − 1. The peak-to-peak amplitude is then the
difference between the maximum and minimum amplitude, i.e.,
xPTP = xmax − xmin.
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(v) The crest factor xCF measures the ratio of the peak values in the
signal to a type of average signal value. It is calculated as

xCF =
1

2

xPTP

xRMS
.

(vi) The shape factor xSF is the ratio of the root mean square value to
the average absolute value of the signal, i.e.,

xSF =
xRMS

1
N

∑N−1
n=0 |x[n]|

.

(vii) The clearance factor xCLF is a well-established statistical parame-
ter for detecting damage to bearings based on vibration signals
(Shrivastava and Wadhwani, 2013). Inner and outer race faults
of bearings, for example, show lower clearance factors than bear-
ings in normal conditions. It is defined as

xCLF =
xmax

1
N

(∑N−1
n=0

√

|x[n]|
)2

.

(viii) The third normalized central moment is called skewness. It is
a measure of the asymmetry of the probability density function

p(x) of the vibration signal. If the vibration data is considered
as a random variable,

∫b
a p(x)dx gives the probability that the

amplitude lies between a and b (Tappe, 2013). The skewness is
expressed as

xSK =

∑N−1
n=0 (x[n] − x̄)3

Nσ3x
.

(ix) The kurtosis is the fourth centralized moment. It is a shape pa-
rameter that measures the peakedness of a probability density
function.

xKU =

∑N−1
n=0 (x[n] − x̄)4

Nσ4x
.

4.2.2 Correlations

In addition to statistical features extracted from a single signal, the
measurement of the similarity between multiple signals is of interest.
One similarity measure is the (unbiased) cross-correlation. This com-
putes the similarity of two signals with different time lags. It is used
to determine whether one signal is a time-shifted version of the other
or to identify similar patterns in two signals (Tranquillo, 2014). For
discrete-time signals x and y, the unbiased cross-correlation is de-
fined as

Cxy(k) =
1

N− L

N−L−1∑

n=0

x[n]y[n+ k], 1 ⩽ k ⩽ L, (39)
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where L << N, so there is a sufficient number of summands. The
cross-correlation is called unbiased because it is divided by N − L

instead of N. What is calculated here is actually the "sample cross-
correlation," an estimator for the cross-correlation corresponding to
the expected value E[x[n]y[n+ k]] under the assumption that x and
y are realizations of ergodic stochastic processes (Smith, 2007). For more
details on stochastic processes and their role in signal processing, re-
fer to (Park, 2018). By the maximum determination of Cxy, it can be
recognized with which delay k of the signals to each other the largest
correlation can be reached. The case x[n] = y[n] in eq. 39 is called
auto-correlation. The cross-correlation value depends on the signals’
amplitude. By using the covariance,

CVxy =
1

N

N−1∑

n=0

(x[n] − x̄)(y[n] − ȳ) (40)

the correlation coefficient can be defined. The correlation coefficient is
equal to

ρxy =
CVxy

σxσy
, (41)

which lies between −1 and 1 and measures the (linear) correlation
between the signals x and y on a uniform scale (Meyer and Milden-
berger, 2002).

4.3 frequency domain analysis

As derived in Section 3.1.2, harmonic oscillations occur naturally in
free, damped, and forced vibrations of mechanical components. How-
ever, the numerous excitation sources and transmission paths in the
vehicle (see Section 3.2.1 and 3.2.2) lead to the superposition of differ-
ent vibrations so that an accelerometer mounted on a component in
the vehicle generally measures a complex vibration signal where the
harmonic components are no longer immediately recognizable. The
following introduces methods from frequency analysis to decompose
a signal into its harmonic components

This section relates, for the most part, to the discussion in (Oppen-
heim, Willsky, and Nawab, 1996), which gives a detailed introduction
to signal processing. If not stated otherwise, the information is taken
from there, especially Sections 3.6, 4.1, 5.1, and 7.1.

4.3.1 Fourier Series

First, let x[n] be a discrete-time periodic signal, i.e.,

x[n] = x[n+N], ∀n ∈ Z (42)
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with fundamental period N and fundamental frequency ω0 = 2π
N .

This type of signal is generated, for example, by vibrations of rotating
machines at a constant speed (Randall, 2021). The goal is to represent
the signal x[n] as a sum of harmonically related complex exponentials
Φk[n] expressed compactly as

x[n] =
∑

k

akΦk[n], (43)

where the parameters ak ∈ C are called spectral coefficients and Φk[n]

is the kth harmonic (Palani, 2022b) equal

Φk[n] = e
ikω0n = cos(kω0n) + i sin(kω0n), k ∈N. (44)

Notice that all Φk have multiples of 2π
N as the fundamental frequency

and that

Φk[n] = Φk+rN[n] for r ∈N. (45)

Hence, there are only N many different complex exponentials of the
type given in eq 44. Due to this linear dependency, it is sufficient to
sum only over 0, . . . ,N− 1 to represent x[n], i.e.,

x[n] =

N−1∑

k=0

akΦk[n]. (46)

This results in a system of N equations with N unknowns ak since
the equality must hold for n = 0, . . . ,N− 1. For the proof of the linear
independence of the set of these equations, refer to the literature. It
follows that there exists a unique solution. This solution is given by
the discrete-time Fourier series (DTFS), which is defined below.

Definition 5 The discrete-time Fourier series (DTFS), ak, 0 ⩽ k ⩽ N− 1,

of a periodic discrete-time signal x with fundamental period N is

ak =
1

N

N−1∑

n=0

x[n]e−ikω0n (analysis equation),

where

x[n] =

N−1∑

k=0

ake
ikω0n ( synthesis equation).

From eq. 45 it can be concluded that ak = ak+N, i.e., the spectral
coefficients repeat after N successive values. This periodicity is the
reason why it is sufficient in the definition to consider only the ak of
k = 0, . . . ,N− 1. However, any successive sequence of length N can
be used as values for k.

For the complex conjugate signal x∗[n] the relation x∗[n] DTFS←→ a∗−k

holds. It follows that for real-valued signals ak = a∗−k. The spectral
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coefficients decompose x[n] into complex exponentials. However, for
real-valued signals like vibration signals, by exploiting the symmetry
properties, it can be shown that the synthesis equation can also be
represented through sinusoids. The imaginary parts of the complex
exponentials are canceled out, resulting in

x[n] = a0 + 2

L∑

k=1

|ak| cos
(

2π

N
kn+ θk

)

, (47)

where L = N
2 for the case if N is even and N−1

2 if it is odd (Proakis
and Manolakis, 2006). The DTFS is a linear operation. By applying
the synthesis equation, the frequency-domain representation of x is ob-
tained, and by applying the analysis equation, the signal is converted
back to the time domain. It is important to note that the representation
of a periodic discrete-time signal using discrete-time Fourier series
is a finite sequence, unlike continuous-time signals, which are repre-
sented by an infinite sequence.

4.3.2 Discrete-Time Fourier Transform

The next goal is decomposing an aperiodic discrete-time signal x[n]
into complex exponentials. The idea is to construct a periodic discrete-
time signal x̃ that matches x over one period and then let the length
of that period approach infinity so that both signals match for any
finite value. First, let x[n], n ∈ Z, have a finite length with

x[n] = 0 for n /∈ {0, . . . ,N1 − 1}, N1 ∈N. (48)

A periodic discrete-time signal x̃ with

x̃[n] = x[n] for n ∈ {0, . . . ,N1 − 1} (49)

can be constructed from x[n] by choosing a fundamental period N

with N > N1 where

x̃[n] = x[n mod N] for n ∈ Z. (50)

If N → ∞, then x̃ coincides with x for any finite value n. Now con-
sider the spectral coefficients ak of x̃ equal

ak =
1

N

N−1∑

n=0

x̃[n]e−ik 2π
N n =

1

N

N1−1∑

n=0

x[n]e−ik 2π
N n (51)

=
1

N

∞∑

n=−∞

x[n]e−ik 2π
N n, (52)

exploiting the fact that x outside 0, . . . ,N1 − 1 is equal to 0. The func-
tion XDTFT (ω), also called the spectrum of x, is defined as

XDTFT (ω) =

∞∑

n=−∞

x[n]e−iωn. (53)
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The convergence is not a problem here, since x has only a finite length.
It is noticeable that the ak of x̃ are only scaled samples of this function,
i.e.,

ak =
1

N
XDTFT (kω0), (54)

with ω0 = 2π
N . Rewritten, x̃ is then

x̃[n] =

N−1∑

k=0

1

N
XDTFT (kω0)e

ikω0n (55)

=
1

2π

N−1∑

k=0

XDTFT (kω0)e
ikω0nω0 (56)

Eq. 56 converges for N → ∞ to an integral with a width of 2π. Since
x̃[n] = x[n] for n→∞, x[n] is equal to

x[n] =
1

2π

∫2π

0

XDTFT (ω)eiωndω. (57)

Because XDTFT (ω)eíωn is 2π periodic, an arbitrary interval of length
2π can be chosen for calculating the integral.

Definition 6 The discrete-time Fourier transform (DTFT) of a finite aperi-

odic discrete-time signal x is

XDTFT (ω) =

∞∑

n=−∞

x[n]e−iωn, (analysis equation),

where

x[n] =
1

2π

∫

2π

XDTFT (ω)eiωndω. (synthesis equation).

The DTFT can also be defined for a broader class of signals with infi-
nite lengths. If x is absolutely summable, i.e.,

∑∞
n=−∞ |x[n]| <∞, then

the analysis equation converges uniformly (this implies pointwise) to
a continuous function XDTFT (ω). Suppose x has finite energy but is
not absolutely summable. Then the analysis equation converges in
mean squared error, i.e., in L2[−π,π] but not pointwise (Haykin and
Veen, 1998). Alt (2012) provides an introduction to the theory of the
function space L2 and more generally Lebesgue spaces. The synthesis
equation, on the other hand, has no convergence issues because the
integral is calculated over a finite interval.

Since XDTFT (ω) is generally complex-valued, it can also be repre-
sented in polar coordinate form as XDTFT (w) = |XDTFT (w)|e

iϕ(w)

(Palani, 2022b). For real-valued signals x[n], |XDTFT (w)| is an even
function and is called magnitude spectrum and ϕ(w) is an odd function

and is called phase spectrum. For general signals the relation x∗[n] DTFT←→
X∗
DTFT (−Ω) holds and therefore for real-valued signals like the vibra-

tion signals XDTFT (Ω) = X∗
DTFT (−Ω) (Proakis and Manolakis, 2006).
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4.3.3 Fourier Transform

Since accelerometers measure the continuous physical quantity of ac-
celeration that is only converted into a discrete-time signal by the
sensor and its sampling, the relationship between the spectrum of
the continuous-time signal given as the Fourier Transform (FT) and the
DTFT is of interest. In the application case of this thesis, the aim is to
assign the discrete frequencies ω unambiguously to continuous fre-
quencies Ω that can be observed on a vehicle’s component and which
may change over its lifetime. Under which conditions this is possible
is clarified in the following.

Definition 7 The Fourier transform (FT) of a continuous-time signal x is

XFT (Ω) =

∫∞

−∞

x(t)e−iΩtdt, (analysis equation),

and the inverse Fourier transform (IFT) is

x̂(t) =
1

2π

∫∞

−∞

XFT (Ω)eiΩtdΩ. (synthesis equation). (58)

Let x̂m = 1
2π

∫m
−m XFT (Ω)eiωtdΩ, and x be an energy signal. Then,

for m→∞, x̂m converges to x in L2. However, this does not guaran-
tee pointwise convergence. If x satisfies the so-called Dirichlet condi-

tions (Singh et al., 2022), then x̂(t) = x(t) except for the t for which
x(t) is not continuous. The conditions are that x(t) is absolutely inte-
grable and has a finite number of minima, maxima, and discontinu-
ities for each finite interval. In addition, the discontinuities must have
a finite value.

The DTFT of a discrete-time signal x[n] = x(nT) sampled with
Fs = 1

T can be expressed through the FT of the continuous-time signal
x(t) as follows

XDTFT (ω) =
1

T

∞∑

n=−∞

XFT (Ω−nΩs) , (59)

where Ω = w
T and Ωs = 2π

T . From eq. 59, it can also be derived that
XDTFT is periodic with period 2π. The DTFT of x[n] is the superpo-
sition of shifted and scaled by 1

T versions of the FT of x(t). However,
under what conditions do these versions of the FT not overlap? Let
x(t) be band-limited, i.e., X(Ω) = 0 for |Ω| > ΩB. They do not overlap
if

ΩB < Ωs −ΩB ⇐⇒ ΩB <
1

2
Ωs ⇐⇒ FB <

1

2
Fs. (60)

Figure 10 shows the influence of Ωs on the DTFT. The results are
summarized in the Nquist-Shannon sampling theorem.
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Figure 10: Influence of sampling on the frequency domain: In (a), the FT of
the original signal is presented, where (b) and (c) show the contin-
ued DTFT for the cases Ωs > 2ΩB and Ωs < 2ΩB (Oppenheim,
Willsky, and Nawab, 1996).

Theorem 8 (Nquist-Shannon sampling theorem) For a continuous-

time band-limited signal x(t), t ∈ R, with X(Ω) = 0 for Ω > ΩB, x is

uniquely determined by the sampled signal x[n] = x(nT), n ∈ Z and
1
T = Fs, if

ΩB <
1

2
Ωs ⇐⇒ FB <

1

2
Fs. (61)

This is a remarkable result because some information is lost through
sampling. It reveals that the accelerometer in the vehicle, even if it
only measures a sampled version of the vibration signal, encodes the
complete information about the vibration in the sampled signal (apart
from the quantization error) if the vibrations are band-limited, and
the sample rate is chosen sufficiently. It also shows that selecting a
sensor with a sufficiently high sample rate is crucial for further anal-
ysis.

4.3.4 Discrete Fourier Transform

The DTFT XDTFT (ω) is a continuous function depending on the fre-
quency ω. Frequency analysis is usually performed on digital signal
processors, which can only process and store a finite number of val-
ues. Accordingly, the DTFT is not a computationally favorable rep-
resentation for frequency analysis (Proakis and Manolakis, 2006). In-
stead, the discrete Fourier Transform (DFT) is computed in real appli-
cations, approximating the DTFT. It corresponds to the sampling of
the DTFT in the frequency domain. For this, the discrete-time signal
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x[n] is considered only for a finite number of N samples. This sec-
tion is called a window and corresponds to a period of NT seconds
(Meyer and Mildenberger, 2002). If this window is considered as a
finite-duration signal, i.e., assuming x[n] = 0 for n < 0 and n > N− 1,
then the DTFT of x[n] is

XDTFT (ω) =

N−1∑

n=0

x[n]e−iωn, 0 ⩽ ω ⩽ 2π. (62)

The DFT is obtained when this function is evaluated at the frequen-
cies ω = 2πk

N , 0 ⩽ k ⩽ N− 1, which are equally spaced.

Definition 9 The N-point discrete Fourier transform (DFT) of a discrete-

time signal x[n] is defined as

XDFT [k] =

N−1∑

n=0

x[n]e−i2πk n
N , k = 0, . . . ,N− 1

and the inverse discrete Fourier Transform (IDFT) as

x[n] =
1

N

N−1∑

k=0

XDFT (k)e
i2πk n

N , n = 0, . . . ,N− 1.

Recall that the relation Ω = ω
T holds between the discrete-time fre-

quency ω and the continuous-time frequency Ω. For the kth entry
of the DFT, this gives the corresponding frequency k

NT Hz, i.e., a fre-

quency resolution of 1
NT Hz. This assumes that the conditions of the

sampling theorem are met. Since XDFT [k] = X∗
DFT [N − k] for real-

valued x, it suffices to consider only the X[k] from k = 0, . . . , ⌊N2 ⌋
(Müller, 2015). The X[k] are called frequency bins.

There is a close connection between the DFT and DTFS. If the DFT’s
window is continued periodically, then for this periodic signal, it
holds that XDFT = Nak (Proakis and Manolakis, 2006). From this,
it can be seen that the DFT implies a periodic signal or a periodic
continuation. However, suppose the signal from which the window
was formed is not periodic or an unsuitable window length was cho-
sen. In that case, the continuation will produce discontinuities that do
not exist in the original signal. The effect on the DFT is called leakage

effect because the spectrum is smeared. This effect is prevented using
window functions, which act like weighting functions. The signal’s
considered window is multiplied before applying the DFT with the
window function, which lets the values disappear at the edges (Meyer
and Mildenberger, 2002). The most commonly used window function
is the Hanning window (Lyon, 2009) given by

hann[n] =
1

2

(

1− cos
(

2πn

N− 1

))

, 0 ⩽ n ⩽ N− 1. (63)
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If x and XDFT are written in vector notation, it is easy to express
the DFT as a matrix W ∈ CN×N that maps x to XDFT , i.e., the DFT is
a linear transformation and the time complexity of the computation
is O(n2) (Proakis and Manolakis, 2006). By exploiting symmetries in
the matrix, the runtime can be reduced to O(N log(N)). These opti-
mized algorithms are called fast Fourier transforms (FFTs). For a win-
dow length of N = 4096, there is already a factor of 341.3 between
the computing times of the DFT and the FFT (Scheithauer, 1998). The
most common FFT algorithm is the Cooley-Turkey algorithm, which re-
cursively divides the DFT of length N = N1 ·N2 into smaller DFTs of
lengthN1,N2 (Cooley and Tukey, 1965). Since there is limited compu-
tational capacity on a microcontroller for executing a CMS, efficient
feature extraction algorithms are critical to successfully applying a
CMS in practice.

4.4 time-frequency domain analysis

It was pointed out in the last section that the DFT implicitly assumes
that the signal is periodic. In this case, the frequency components
do not change over time. However, it is known from subsection 3.2.1
that in the vehicle, for example, stochastic excitations are generated
by the road surface, which produces a signal with a non-constant
spectrum (Ersoy et al., 2017). Similarly, the vibration signal of rotat-
ing machines that increase their number of revolutions per minute,
like during a speed-up, generates a spectrum that changes over time
(Ahmed and Nandi, 2020). This also occurs during acceleration in the
vehicle’s gas engines and piston movements. The signal is transferred
into the time-frequency domain for analyzing such time-varying vibra-
tions. The adapted version of the FT is called short-time Fourier trans-

form (STFT), and it was first introduced by Gabor (1946). For the dis-
crete case, the STFT describes the computation of successive N-point
DFTs, where the windows of the DFTs are x[nH] to x[nH +N − 1],
respectively (Garrido, 2016). The variable H ∈ N, H ⩽ N, is called
hop size, and with its choice, the percentage overlap N−H

N of the DFT
windows can be specified.

Definition 10 Let x be a discrete-time signal. The short-time Fourier trans-

form is given by

XSTFT [n,k] =
nH+N−1∑

m=nH

x[m]h[n−m]e−i2πkm
N ,

where h is a N-point window function and H ∈N is the hop size.

The (power) spectrogram results from the STFT through

Spec[n,k] =
∣

∣STFT [n,k]2
∣

∣ , (64)
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Figure 11: Spectrogram a) has a high frequency resolution, whereas b) has a
high time resolution.

i.e., it specifies how the energy of a signal is distributed in the time-
frequency domain (Kehtarnavaz and Kim, 2005). For the magnitude

spectrogram, the squaring of the STFT value is omitted. Let nwind ∈
N be the number of windows used for calculating the STFT of a real-
valued signal x, then is Spec ∈ Rnwind×⌊N

2 ⌋+1. When calculating a
spectrogram, a trade-off exists between the time and frequency res-
olution (see Figure 11). If a small window length N is chosen for
the DFT, corresponding to a short period NT , i.e., a high time reso-
lution, it leads to a low frequency resolution 1

NT . Alternatively, the
frequency resolution can be high due to a large N, but then the time
resolution is low. High values for both simultaneously is impossible
due to Heisenberg’s uncertainty principle (Krishnan, 2021). The spectro-
gram is a well-established feature for monitoring the condition of
machines or machine parts (Léonard, 2007; Manhertz and Bereczky,
2021; Wodecki et al., 2019).

Recently, as a feature for audio classification of (structure-born)
sound data, a modified version of the spectrogram has been partic-
ularly successful. In a subtask for machine condition monitoring of
the DCASE Challenge 2022 (Dohi et al., 2022), the most famous com-
petition for ML with sound data, Mel-spectrograms have been the fa-
vored and most applied feature. The unit Mel is based on the pitch
perceived by humans. The Mel scale is a linearized scale of the hu-
man auditory system, i.e., a value twice as high on the Mel scale also
sounds twice as high to the human ear. According to O’Shaughnessy
(2000), the conversion formula for the frequency fHz to fMel is given
by

fMel = 2595 log10

(

1+
fHz

700

)

. (65)

The transformation of a spectrogram into a Mel-spectrogram with
nmels ∈N number of Mels, is done using a triangular filter bank ma-
trix B ∈ R(⌊N

2 ⌋+1)×nmels (see Figure 12), where MelSpec = Spec ·B ∈
Rnwind×nmels (Kopparapu and Laxminarayana, 2010). Dörfler, Bam-
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Figure 12: Illustration of a Mel filter bank. As the frequency increases, more
frequency bins are utilized to calculate the corresponding Mel
bin.

mer, and Grill (2017) argue that the reason for the success of Mel-
spectrograms in ML tasks is the property that at typical window
lengths of DFTs such as 1024, 2048, or 4096, the frequency dimen-
sion is oversampled, and the Mel-spectrogram itself acts like a feature
extractor, reducing the dimension in the frequency domain and sum-
marizing higher frequencies, which usually contain little information.

4.5 graph domain analysis

Graph-based approaches are another method for analyzing vibration
signals. They are a newer form of vibration analysis and were first
proposed by Ou and Yu (2016) for the fault diagnosis of roller bear-
ings. They have emerged due to the rise of the field of complex net-

works (Strogatz, 2001). The initial step is to convert the vibration sig-
nals into a graph and then extract features from these graphs that
can be utilized for CM. The following describes different graphs that
can be created from vibration data and are well-established in analyz-
ing vibration signals. Furthermore, the most significant properties of
these graphs extracted for CM are introduced.

For a graph G, let V be the set of vertices and E be the set of edges

of G. In shorthand notation, uv is written for an edge e = {u, v} ∈ E.
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Figure 13: Transformation of a time series into its HVG and VG, respectively.

4.5.1 Visibility Graphs

Given the discrete-time signal (time series)D = ((t1,d1), . . . , (tN,dN)),
the horizontal visibility graph (HVG) of D is the graph HVG(D) =

({1, . . . ,N},E), where

E = {ij : di > dk < dj for all 1 ⩽ i < k < j ⩽ N}. (66)

In other words, an edge exists between two vertices in a HVG if and
only if the data points can see each other, i.e., all data points between
these two lie below the horizontal line connecting them (Luque et al.,
2009).

A closely related graph is the visibility graph (VG) (Lacasa et al.,
2008). Its edge set is given by

E = {ij : dk < di + (dj − di)
tj − tk

tj − ti
for all 1 ⩽ i < k < j ⩽ N}, (67)

i.e., they can see each other if they can be connected by a straight line
without intersecting an intermediate data height. Figure 13 illustrates
a HVG and VG generated from the same time series.

Weighted variants of HVGs and VGs can also be defined, where
for each edge eij ∈ E, a weight wij indicates the strength of the
relationship between the vertices i and j. Various recommendations
exist in the literature for the weight wij. For instance, Zhu et al. (2014)
propose

wij =






∣

∣(dj − di)(j− i)
∣

∣+ 1, ij ∈ E

0, otherwise.
(68)
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Supriya et al. (2016) introduce a geometric variant that chooses as
weight the angle of the slope line of two data points

wij =






arctan
(

dj−di

j−i

)

, ij ∈ E,

0, otherwise.
(69)

The HVG is a subgraph of the VG, and it is, therefore, faster to
calculate. The fastest algorithms calculate a HVG in O(n) (Schmidt
and Köhne, 2023), whereas the fastest algorithms for the VG are only
in O(n logn) (Fano Yela et al., 2020). The transformation of a time se-
ries D into a HVG or VG is invariant under (strictly positive) scaling
and arbitrary translations of D (Lacasa et al., 2008). Yela, Stowell, and

Adding Noise

HVG HVG

Figure 14: Invariance of HVG under additive noise.

Sandler (2019) used VGs as a similarity measure for analyzing audio
signals with harmonic content. Because of their invariances to transla-
tions (see Figure 14), superior results could be obtained even for noisy
audio data compared to frequency-based methods. The application
areas of VGs and HVGs for analyzing and classifying discrete-time
signals are very diverse. They range from plasma physics (Acosta-
Tripailao, Pastén, and Moya, 2021), fluid dynamics (Manshour, Tabar,
and Peinke, 2015), neuroscience (Zhu et al., 2014), and finance (Rong
and Shang, 2018; Yang et al., 2009) to chemistry (Kartha et al., 2022). In
particular, HVGs and VGs were applied to vibration data for failure
detection of roller bearings (Gao et al., 2021; Roy et al., 2022; Zhang
et al., 2018).

4.5.2 Graph Features

Graph properties provide insight into the structure of a graph. They
can refer to individual vertices in the graph but can also provide
information about its global structure.

Let G = (V ,E) be a graph with |V | = N. The vertex v is incident with
the edge e if v ∈ e, i.e, v is one of the two vertices that e connects. The
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degree deg(v) of a vertex v ∈ V is the number of edges it is incident
to. A path Pm in G is a set of vertices {v1, . . . , vm+1} ⊆ V and edges
{v1v2, v2v3, . . . , vmvm+1} ⊆ E, where vi ̸= vj for all 1 ⩽ i < j ⩽

m+ 1 ⩽ N. The length of the path Pm is equal to m.
The properties presented in the following have been used in the

literature to analyze EEG or vibration data (Gao et al., 2021; Zhang et
al., 2018; Zhu, Li, and Wen, 2012; Zhu, Li, and Wen, 2014). Here, they
are defined only for unweighted graphs, but there are also adapted
forms for weighted graphs.

(i) The degree distribution DD ∈ Nn gives information about how
likely it is that vertices have a certain number of edges. The
kth entry is obtained by counting the number of vertices with
degree k divided by the number of vertices n.

(ii) The graph entropy that is derived from the degree distribution
with Shannon’s entropy formula

H = −

N−1∑

k=0

DD(k) log(DD(k)).

(iii) The mean vertex degree

µ(G) =
1

N

∑

v∈V

deg(v).

(iv) The standard deviation of the vertex degree

σ(G) =

√

1

N

∑

v∈V

(deg(v) − µ(G))2.

(v) The clustering coefficient C defined as

C =
1

N

∑

v∈V

λG(v)
1
2deg(v)(deg(v) − 1)

,

with λG(v) as the number of triangles on v, i.e., the number of
subgraphs of G with 3 edges and 3 vertices of which v is one.
The denominator is the maximum number of possible triangles,
in this case

(deg(v)
2

)

= 1
2deg(v)(deg(v) − 1).

(vi) The average path length

P =
1

N(N− 1)

∑

i̸=j

dist(i, j),

where dist(i, j) is the length of the shortest path between i, j ∈ V .
If no path exists from i to j, then dist(i, j) is equal to 0.
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4.6 outlook

The analysis methods for vibration signals presented here form the
basis for the feature extraction, which is the central part of the data
processing step of a CMS in a vehicle with acceleration sensors. Of
course, the features are only a careful selection since vibration and
audio signals are an active field of research with several emerging
approaches. For instance, in deep-learning-based audio classification
algorithms, Wang et al. (2017) proposed replacing spectrograms or
Mel-spectrograms with trainable layers. In this way, a time-frequency
representation is learned in parallel during training. Lostanlen et al.
(2019) demonstrate that they can achieve more robustness against
noise in environmental sound classification tasks with these learned
features. One approach not discussed for the time-frequency analysis
is using wavelets, which, in contrast to STFTs, do not have an equally-
spaced frequency and time resolution. Stéphane (2009) gives an ex-
cellent introduction to the theory of wavelets in his book A Wavelet

Tour of Signal Processing. They achieve a high frequency resolution for
lower frequencies and a high time resolution for higher frequencies
(Kehtarnavaz and Kim, 2005). However, the frequency-based analysis
combined with background knowledge of vehicle vibration phenom-
ena can help improve the explainability of algorithms, as they can
be related to concrete physical processes. Therefore, the focus was in
this thesis limited to Fourier analysis. Feature selection was not directly
discussed in this chapter. It was limited to selecting the signal’s rep-
resentation appropriately depending on the properties of the signal.
Nevertheless, which feature is ultimately selected for a CMS in the
vehicle for a specific use case should be decided based on data by
evaluating the performance of the CMS with the respective feature
and the algorithms used. Other requirements, such as computational
complexity, may influence the selection of the feature. This is partic-
ularly relevant for applications that run on edge devices and not in
the cloud, i.e., the CMS is computed directly on a microcontroller in
the vehicle. The entire CMS, therefore, has only limited computing
capacity available, which is why fast feature extraction methods are
crucial to ensure the real-time capability of a CMS.



5
T I M E S E R I E S A N O M A LY D E T E C T I O N

According to Hawkins (1980, p.1) an anomaly or also referred to as out-

lier is "an observation which deviates so much from the other observations as

to arouse suspicions that it was generated by a different mechanism". Aggar-
wal (2017) states that in data-generating applications, anomalies occur
when the observed system behaves unusually. Detecting anomalies,
therefore, provides valuable insights into the system’s condition. Ap-
plied to the case of this thesis, this means that anomalies may arise
when the vehicle is in a faulty operating state, for example, because
a component has failed due to wear. Anomaly detection (AD), com-
pared to classification, allows the recognition of deviations from the
expected behavior without relying on predefined classes. This flexi-
bility enables a more versatile and adaptive approach to identifying
unusual and unknown events in the data, accommodating dynamic
operating conditions and emerging fault patterns.

This chapter introduces algorithms used to detect anomalies in
time series, including vibration signals, as a special type of time se-
ries. The chapter begins by covering the fundamentals of AD and
then delves into various algorithms from the fields of statistics, ma-
chine learning, and deep learning.

5.1 basics of time series anomaly detection

The following provides definitions of basic terms in AD, introduces
various approaches for detecting anomalies, and presents metrics for
evaluating the algorithms.

5.1.1 Terminology

An ordered sequence of data points Y = (y1, . . . ,ym) with yi ∈ Rn

is called a time series, i.e., it corresponds to a discrete-time signal. The
time series is referred to as univariate, if n = 1, and for n > 1 multivari-

ate. For example, when using tri-axial accelerometers in the vehicle,
the vibrations are recorded in all three dimensions of the vehicle co-
ordinate system, resulting in a multivariate time series. Subsequences,
denoted as Yi,j = {yi, . . . ,yj}, 1 ⩽ i, j ⩽ m, of a time series Y corre-
spond to windows of a signal. They are often considered to divide the
time series into smaller parts for further analysis. A equidistant time
series is a time series where the time interval between two succes-
sive data points is a fixed constant. The installed accelerometer with
uniform sampling guarantees this in case of vehicle vibrations.

63
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The literature has no consistent definition of a time series anomaly.
Three types are generally distinguished: If individual points are con-
sidered anomalous, these are called point anomalies or sometimes also
outliers. A collective anomaly describes a subsequence whose single
data points are not considered anomalous, but form an anomalous
characteristic due to their common occurrence. However, it can also
appear that a subsequence itself is not anomalous, but in the respec-
tive context, it becomes anomalous. For instance, suppose temper-
atures above 30 degrees Celsius were measured in a German sum-
mer. In that context, this is not anomalous, whereas such a tem-
perature measurement in a German winter is a contextual anomaly

(Socoró, Alías, and Alsina-Pagès, 2017). Schmidl, Wenig, and Papen-
brock (2022) propose the following general definition for a time series
anomaly applicable to vibration data:

Definition 11 A time series anomaly is a sequence of data points Yi,j, i, j ∈
N, of length j− i+1 ⩾ 1 that deviates w. r. t. some characteristic embedding,

model, and/or similarity measure from frequent patterns in the time series Y.

In the case of vibrations in the vehicle, this is based on the assumption
that the vibrations change when the technical condition of the vehicle
changes, such as when a wheel becomes loose or the tire pressure
drops. Time series classification, where the goal is to assign an entire
time series to a class correctly, is closely related to time series AD.
This is usually done after an anomaly has been detected, and the
anomalous parts of the time series are further analyzed to identify,
for example, the failed component or function. In the field of CM,
this is also called fault diagnosis (Galar and Kumar, 2017).

The AD algorithm’s input can be a single data point, a subsequence,
or features extracted from them. In order to be able to compare dif-
ferent AD algorithms with each other, a uniform output format is
required. This is called anomaly scoring and assigns a value to each
data point of the time series, rating their degree of anomaly. The fol-
lowing definition for an anomaly scoring is based on the one from
Schmidl, Wenig, and Papenbrock (2022).

Definition 12 An anomaly scoring S = {s1, . . . , sm} with si ∈ R assigns

each data point yi ∈ Y an anomaly score si ∈ S. For any two scores si and

sj, it must be true that if si > sj , then yi is more anomalous than yj (in

their respective contexts).

Suppose an AD algorithm receives a subsequence Yi,j or a feature
like a Mel-spectrogram extracted from Yi,j as input. If its output is a
single anomaly score s, then an anomaly scoring can be generated by
setting sk = s for i ⩽ k ⩽ j. In the case of overlapping subsequences,
this results in multiple anomaly scores for one data point since it is
contained in multiple subsequences. Then, an aggregation function
such as mean, median, or maximum determines the final anomaly
score.
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5.1.2 Anomaly Detection Approaches

To abstract from the use case of time series, in the following, the data
elements to be analyzed are called samples. For times series, the sam-
ples are individual data points, subsequences, or features extracted
from them. In other contexts, they could also be, for instance, images,
text, or rows of tabular data. According to Hodge and Austin (2004),
AD distinguishes between three different fundamental learning ap-
proaches, described as Type 1, Type 2, and Type 3:

(i) Type 1 algorithms are also called unsupervised algorithms in the
ML context where there is no explicit training step to learn
what is normal or anomalous by an optimization procedure, i.e.,
anomalies of an unlabeled data set are determined based on the
inherent characteristics of the data set itself. In this approach,
the data is considered as a static distribution, assuming that
samples that are anomalies can be separated from the others be-
cause they differ significantly from the majority of the samples,
with the method of measuring this depending on the individ-
ual algorithm. The approach is initially retrospective, meaning
all data must be available before processing. However, predic-
tions can also be made for new samples by comparing them to
the existing data. Type 1 is most commonly used in real-world
scenarios because it does not require labeled data, which is of-
ten unavailable (Barbariol et al., 2022).

(ii) Type 2 algorithms use labeled data to detect anomalies, i.e., this
case is equivalent to supervised classification problems with the
classes ’normal’ and ’anomalous’ (Kotsiantis, 2007). First, they
use a training step to learn the assignment to the classes depend-
ing on an algorithm-specific training process. After that, they
can make predictions for new unknown samples. However, in
real-world applications, it is often very time-consuming or even
impossible to generate data of the anomaly class without huge
economic losses, e.g., when monitoring the state of an industrial
plant and anomalies lead to a stop of production. Therefore this
type is used seldom.

(iii) Type 3 is also called semi-supervised, where the algorithm is
trained only on data of the normal class and consequently
learns only this distribution. This approach is appropriate
when collecting a large amount of normal class data is more
effortless. New samples are then compared to what extent they
resemble this normal behavior to determine their anomaly
score.

Since it is usually much easier to record data of the normal condition
in the context of vibration data in the vehicle, this thesis focuses on
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algorithms of Type 3, which can be trained semi-supervised. Besides
the learning approach, the AD algorithms differ in their methodology
for calculating an anomaly score.

Distance-based methods calculate distances between samples based
on metrics. It is assumed that anomalous samples have a larger dis-
tance from other samples than normal samples. Depending on the
algorithm, the distances are mostly calculated to the nearest neigh-
bors or precomputed cluster centers (Mehrotra, Mohan, and Huang,
2017).

Distribution-based methods assume that the normal data is gener-
ated through a stochastic model. The assumption is that anomalies cor-
respond to highly improbable values according to this model. Statis-
tical tests can then be used to decide, for example, whether a sample
is anomalous or not. If assumptions about the distribution are made,
one speaks of a parametric model, estimated based on the normal data.
If no assumptions are made, it is called a nonparametric model (Chan-
dola, Banerjee, and Kumar, 2009).

Forecasting-based methods are an AD approach that is specifically
designed for time series data because of their sequential order. The
idea is to learn from past data points to predict the following or fur-
ther data points in the time series. The anomaly score is then deter-
mined from the error of the prediction. This methodology assumes
that the forecasting error for normal data will be less than for anoma-
lies since these were not present in the training data set, and the
anomalies show unknown patterns that are harder to predict (Filonov,
Lavrentyev, and Vorontsov, 2016).

Reconstruction-based methods learn the behavior of the normal data
by mapping a sample first into a lower dimensional latent vector
space and then reconstructing from this latent vector the original sam-
ple again. The anomaly score is calculated from the deviation between
the reconstruction and the original sample (Pang et al., 2021).

5.1.3 Evaluation Metrics

Consider the anomaly class as the positive class and the normal class
as the negative class. Predictions are classified as true positives (TPs),
false positives (FPs), true negatives (TNs), and false negatives (FNs).
The Area under the Curve (AUC) metrics, AUC-PR and AUC-ROC,
are the most common threshold-independent metrics for AD algo-
rithms (Davis and Goadrich, 2006). Their minimum value is 0, and
their maximum is 1. They take the maximum value when an AD al-
gorithm generates a scoring so that the anomaly class can be clearly
separated from the normal class. This means that there exists a thresh-

old G ∈ R such that all scoring values of data points belonging to
the anomaly class are greater than G and those of the normal class
are all less than or equal to G. AUC-PR represents the area under



5.1 basics of time series anomaly detection 67

the precision-recall curve, which describes the precision
(

TP
TP+FP

)

as a
function of the recall

(

TP
TP+FN

)

. On the other hand, AUC-ROC rep-
resents the area under the curve expressing recall as a function of
the false positive rate

(

FP
FP+TN

)

. Based on the definitions of the two

Figure 15: Illustration of a ROC curve and precision-recall curve. The
anomaly scoring 1 was generated by an algorithm with high pre-
cision and low sensitivity, and the anomaly scoring 2 by an algo-
rithm with low precision and high sensitivity.

metrics, it can be concluded that AUC-PR assigns higher ratings to
precise algorithms while AUC-ROC rates sensitive algorithms higher
(see Figure 15). AUC-ROC, unlike AUC-PR, is affected by class imbal-
ances. In AD tasks, class imbalances often occur, so paying attention
to the proportion of anomalies in the test data is essential because
this will affect AUC-ROC. When collecting data through test drives
in the case of vehicle condition monitoring, in general, there is much
more data from the normal class available since it is more expensive,
time-consuming, or even dangerous to collect data from the anomaly
class.

AUC-PR or AUC-ROC may be preferred depending on the appli-
cation and the importance of precision or sensitivity. If, by predict-
ing an anomaly, a CMS triggers a message that is communicated to
the driver that, for example, a component is worn and needs to be
replaced, then this prediction must be correct with a very high proba-
bility. Otherwise, the driver would visit a car repair shop for nothing,
which would lead to dissatisfaction with the CMS. So here, high pre-
cision would be crucial. Assume that the AD algorithm predicts the
condition of the component every second. If it were not so sensitive,
this would mean that it would detect the wear of the component
slightly later because it would first make a certain number of FNs.
The customer will probably rather accept this behavior from the CMS
except in very safety-critical use cases.

The binary assignment of the anomaly scores into the normal
and anomaly classes using a threshold leads to a trade-off between
precision and recall. For example, a customer’s request to the
AD algorithm may demand a certain level of precision. Then,



68 time series anomaly detection

the PR curve generated for calculating the AUC-PR can be used
to determine which threshold is necessary to reach the required
precision and which value the recall in that case takes. However, the
higher the precision requirements and, thus, the threshold, the lower
the corresponding recall value tends to be.

5.2 statistical models

The statistical models correspond to the distribution-based approach
for AD. The underlying stochastic model for the normal data and its
distribution is inherently not apparent. However, the idea is to apply
statistical methods to estimate the properties of this model based on
normal data, which are considered as realizations of the stochastic
model.

5.2.1 Parametric Models

In the case of the parametric models, let the parameters of the stochas-
tic model be denoted by Θ and let f(x,Θ) be the probability density
function. These are going to be estimated from the normal data. For
a test sample x, the anomaly score is calculated from the inverse of
f(x,Θ).

Furthermore, it is also possible to determine an anomaly score us-
ing a statistical test. The null hypothesis H0 is that the test sample
x was generated by the model with the assumed distribution. The
sample is classified as an anomaly if the null hypothesis is rejected.
Alternatively, the test statistic can be used to calculate a probabilistic
anomaly score from it (Chandola, Banerjee, and Kumar, 2009).

In the simplest case, it is considered that the data were gener-
ated from a univariate normal distribution N(µ,σ), where in prac-
tice, these parameters are estimated using the arithmetic mean x̄ and
empirical standard deviation σx. A straightforward technique from
the control of industrial manufacturing processes, dating back to She-
whart (1931), classifies all values that fall outside the range x̄± 3σx
as an anomaly. An alternative criterion from Chauvenet (1863) which
takes into account the number M of samples, determines for a sam-
ple xp that is potentially anomalous first the Z-value z = |xp−x̄|

σx
and

the probability pout = 1− P(−z ⩽
X−x̄
σx

⩽ z), where X−x̄
σx

∼ N(0, 1).
Afterward, the value poutM is calculated corresponding to the ex-
pected number of samples that deviate from x̄ at least as much as xp.
If poutM < 0.5, it is proposed to classify xp as an anomaly (Mehrotra,
Mohan, and Huang, 2017). The Grubb’s test follows a similar approach
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to detect anomalies in univariate data whose distribution is approxi-
mately normal (Grubbs, 1950). First, the test statistic

G =
maxi=1,...,M |xi − x̄|

σx
(70)

is determined. The null hypothesis states that the data has no
anomaly. Under the null hypothesis, G follows a t-distribution. The
null hypothesis is rejected at the α significance level, typically 0.05 or
0.01, if

za >
M− 1√
M

√

√

√

√

t2α
2M ,M−2

M− 2+ t2α
2M ,M−2

, (71)

where tβ,n corresponds to the β-quantile of a t-distribution with n de-
grees of freedom. This procedure is performed iteratively, i.e., when
an anomaly is found, the sample is removed from the data set, M is
decreased by one, and the test is repeated until no more anomalies
are found in the data set. Laurikkala, Juhola, and Kentala (2000) pro-
poses an adapted version of the test for multivariate data. In the prac-
tical application of parametric models, checking the distribution as-
sumptions in advance is crucial. This field of statistical research, also
known as outlier detection, has a long history with multiple tests that
impose different requirements on data distribution and varying de-
grees of restrictiveness against anomalies (Dixon, 1953; Rosner, 1983).
Hawkins (1980) provides a detailed overview of this field in his study.

Unlike the parametric models, the nonparametric models do not
assume a distribution for the underlying stochastic model. They are
flexible due to the smaller number of assumptions and can also rep-
resent very complex distributions (Chandola, Banerjee, and Kumar,
2009). Because of this flexibility, special attention must be taken to
prevent overfitting.

5.2.2 Nonparametric Models

The simplest nonparametric method is to use histograms to detect
anomalies. These estimate the probability density function and can
approximate an arbitrary distribution. First, the histograms are cre-
ated using the training data. For the evaluation of unknown samples,
it is checked if this sample falls into one of the existing bins. It is
classified as anomalous if it does not fall into existing ones. If it falls
into an existing bin, the height corresponding to the frequency of the
samples in the bin can also be used to indicate the anomaly score, in
which case bins with low height lead to high anomaly scores (Chan-
dola, Banerjee, and Kumar, 2009). One difficulty with histograms is
choosing the proper width of bins. If they are too narrow, normal data
will be classified as anomalous because they fall into low-frequency
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bins, and if they are too wide, anomalous samples may fall into high-
frequency bins.

For the case of multivariate data, the histograms can be determined
for each dimension individually, and an aggregate function can be
used to calculate the final anomaly score. Similarly, it is possible to
construct a grid structure where each axis corresponds to a dimen-
sion of the multivariate data. The cells of these grids then correspond
to the higher-dimensional version of the bins. A problem arises with
high-dimensional data, e.g., if a d-dimensional space is divided into
grid cells, at least 2d grid cells are created, i.e., the number grows
exponentially. Thus, the expected number of samples in a cell also de-
creases exponentially (Aggarwal, 2017). This problem can be solved
using dimensionality reduction techniques that map the data into
a lower dimensional space, such as PCA (Ringnér, 2008) or t-SNE

(Maaten and Hinton, 2008).
With kernel density estimation, the probability density function can

also be estimated as with histograms, but with smoother functions
instead of step functions generated through the binning in histograms
(Aggarwal, 2017). The estimated density function f̂(x) is obtained as
the sum of the kernel functions Kh centered around each sample in
the data set

f̂(x) =

M∑

i=1

Kh(x− xi), (72)

where h ∈ R is called the smoothing parameter that sets the width of
the kernel and the degree of smoothing. An example kernel function
is the Gaussian kernel (Weglarczyk, Stanislaw, 2018), which in the case
of d-dimensional data is defined as

Kh(x− xi) =

(

1

h
√
2π

)d

e
−

∥x−xi∥
2

2h2 . (73)

5.3 classical machine learning models

The following introduces well-established ML algorithms for AD,
each showing a different approach for solving this task.

5.3.1 Neighbor-based Models

The neighbor-based models use the distance approach to calculate an
anomaly score. The simplest neighbor-based model is formed using
the k-nearest neighbor (KNN) algorithm, which determines for a sam-
ple x its k-nearest neighbors, where the distance is computed using
a metric, for example, the Euclidean or Manhattan metric (Suwanda,
Syahputra, and Zamzami, 2020). A sample’s set of k-nearest neigh-
bors is called a KNN set in the following. In Ramaswamy, Rastogi,
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and Shim’s (2000) original version, only the distance to the kth near-
est neighbor is used as the anomaly score for a sample x. KNN-weight

introduced by Angiulli and Pizzuti (2002), proposes to use the sum of
the distances between x and all samples from the KNN set to reduce
the variance. Alternatively, other aggregation functions, such as the
median or mean, can be applied.

If the data set consists of M samples of dimension d, a naive
approach to find the KNN set for a single sample lies in the time
complexity class O(k ·M · d). However, this can be reduced to
O(k · log(M)) with optimized data structures like the k-d tree (Bentley,
1975). The idea of this data structure is to divide the data space
into smaller regions and create a hierarchical structure that allows
finding nearest neighbors with fewer operations. The creation of the
k-d tree itself is in the time complexity class O(d ·M · log(M)), which
is why the approach is advantageous, especially if many searches are
performed for anomaly score calculation based on the same data set
and one benefits from the faster runtime each time.

C
2

C
1

P
2+ P

1+

Figure 16: Data set with two clusters and varying local densities (Chandola,
Banerjee, and Kumar, 2009).

A problem with distance-based approaches such as KNN is when
the data is divided into areas with varying densities. This is illus-
trated in Figure 16, where two clusters with different densities are
shown, but they belong to one data set. If, based on distances in C1,
a threshold is set, from which distance to the KNN set a sample is
classified as an anomaly, then this threshold is so large that a sample
like p2 is no longer recognized as an anomaly (Chandola, Banerjee,
and Kumar, 2009).

The idea of the local outlier factor (LOF) is to take into account the
local neighborhood of a sample and its density in the anomaly calcula-
tion to overcome this issue (Breunig et al., 2000). In order to be able to
describe the LOF, some definitions are first introduced in the follow-
ing. Let Dk(x) be the distance from x to its kth nearest neighbor with
respect to the metric dist(x,y). Furthermore, let the k-neighborhood
Lk(x) be the set of all samples with maximum distance Dk(x). Typ-
ically, Lk(x) contains k many samples unless multiple samples have
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equal distances. The reachability distance between sample x and y is
defined as

Rk(x,y) = max{dist(x,y),Dk(x)}. (74)

The average reachability distance ARk(x) is then given as

ARk(x) =
1

|Lk(x)|

∑

y∈Lk(x)

Rk(x,y). (75)

The LOF is defined as the average of the ratios of ARk(x) and all
average reachabilities in its k neighborhood, i.e.,

LOFk(x) =
1

|Lk(x)|

∑

y∈Lk(x)

ARk(x)

ARk(y)
. (76)

If the density in individual cluster regions is homogenous, the LOF
of samples of any of these clusters will be close to 1, although the
density differs between clusters (Aggarwal, 2017). In order to han-
dle cases where the data is not spherically distributed, alternative
versions such as connectivity-based outlier factor (COF) have been de-
veloped, where the k-neighborhood is determined via a shortest-path

approach (Tang et al., 2002).

5.3.2 Autoregressive Models

Autoregressive models (AR) are an essential methodology from the field
of econometrics for modeling time series that describe, for example,
trends and relationships in economies and financial markets (Hayashi,
2000). Autoregressive models assume that the current values of a time
series depend on past values of the time series, with values in the near
past having more influence than older past values (Mehrotra, Mohan,
and Huang, 2017). They, therefore, attempt to model the time series
as a function of its past values. Let Y = (y1, . . . ,yM) be a univariate
time series. The simplest autoregressive model is the AR(p) model

yt =

p∑

i=1

= aiyt−i + µ+ ϵt, (77)

where the parameter p ∈N indicates how many historical values are
included, ai is the ith regression coefficients, µ ∈ R is the mean term, and
ϵt is the error term. The ϵt are assumed to be uncorrelated, have ex-
pected value 0, and constant variance σ2 (Aggarwal, 2017). The error
terms can be used to generate anomaly scores because they represent
unpredicted behavior. Eq. 77 gives M− p linear equations for a time
series of length M. Normally, M ≫ p, so it results in an overdeter-
mined system of equations. Therefore, the parameters are estimated
by the least-squares method (Björck, 1996). The AR(p) model can be
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combined with a moving average (MA) model. The MA(q) model is
defined as

yt =

q∑

i=1

biϵt−i + µ+ ϵt. (78)

where the regression parameters bi must also be learned using the
training data. This is more complex than in the case of the AR(p)
model since the errors can only be determined once the bi are known.
Therefore, they are determined sequentially using an iterative non-
linear procedure (Braei and Wagner, 2020).

The combination ofAR(p) andMA(q) model is called autoregressive

moving average (ARMA) model given by

yt =

p∑

i=1

aiyt−i +

q∑

i=1

biϵt−i + µ+ ϵt, (79)

The coefficients are typically determined using a maximum likelihood

method (Neusser, 2009). This method assumes a joint probability dis-
tribution for y1, . . . ,yM and calculates the coefficients that maximize
the probability that the given time series is observed. However, p and
q must first be chosen to estimate the coefficients. For this purpose,
the Box-Jenkins method is applied where the autocorrelation function and
partial autocorrelation function are examined (Box and Jenkins, 1970).
All models presented so far assume that the time series is stationary,
i.e., its distribution yt does not depend on t. However, some time
series contain a trend and thus do not fulfill the stationarity assump-
tion. For instance, this can be observed in global temperatures rising
due to climate change. For this case, the autoregressive integrated mov-

ing average (ARIMA) model was developed as a generalization of the
ARMA model, where y∗t = yt − yt−1 is fitted instead of yt, called
the first-order difference. If this new time series is non-stationary, the
process is iteratively repeated with y∗t (Neusser, 2009).

5.3.3 One-class Support Vector Machine

Support vector machines (SVMs) proposed by Cortes and Vapnik (1995)
are one of the most famous supervised machine learning algorithms
for classification. In a modified form, they can also be applied for AD.
Schölkopf et al. (1999) introduced a one-class SVM algorithm where
only the data of the normal class are used as training data. The goal is
to learn a discriminative boundary around the normal samples with
a maximum margin classifier so that all samples outside are classified
as anomalies (Chandola, Banerjee, and Kumar, 2009).

Let X = {x1, . . . , xM} be the set of all training data and Φ : X→ F be
a feature map that maps the training data into a inner product space
F, where the inner product is denoted as ⟨·⟩. Usually, Φ maps into a
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high-dimensional space to better separate the data that may not be
linearly separable in the sample space. The inner product between
Φ(x) and Φ(y) is calculated using a simple kernel function, i.e.,

K(x,y) = ⟨Φ(x),Φ(y)⟩. (80)

A simple kernel function is advantageous from a computational per-
spective since it expects the lower-dimensional samples as input but
computes the inner product in the higher-dimensional feature space
without explicitly evaluating Φ. This procedure is called kernel trick.
If a map Φ and inner product space F are chosen, it is not straight-
forward to find the kernel function. Therefore, in practice, the ap-
proach is the other way around. First, a simple symmetric and posi-
tive semidefinite function is chosen as the kernel. Then Mercers theo-

rem is applied (Lampert et al., 2009), which states that for any symmet-
ric and positive semidefinite function K(x,y), there exists a mapping
Φ into an inner product space F such that K(x,y) = ⟨Φ(x),Φ(y)⟩ as
required in eq. 80. The map Φ does not have to be constructed ex-
plicitly. The existence is sufficient since it is not evaluated due to the
kernel trick.

In the following, an algorithm is defined to generate a function f
that assigns the value 1 to a small area containing the majority of
the samples and −1 to the rest. The decision function f is based on
a hyperplane whose value depends on which side of the hyperplane
the sample is located

f(x) = sgn(⟨x,Φ(x)⟩− ρ), (81)

where sgn is the sign function and ρ the bias term. Schölkopf et al.’s
(1999) idea is to separate the samples in the feature space from the
origin using a maximum margin. They propose to solve the convex
quadratic programming problem

min
w∈F,ϵ∈RM,ρ∈R

1

2
∥w∥2 + 1

νM

M∑

i=1

ξi − ρ (82)

subject to






⟨w,Φ(xi)⟩ ⩾ ρ− ξi,

ξi ⩾ 0 ∀i = 1, . . .M.

Here, ξi denotes the slack variables, and ν ∈ (0, 1) is the regularization

parameter. The smaller ν is chosen, the more the optimization problem
becomes that of the hard margin SVM algorithm (Lampert et al., 2009),
allowing less misclassification in the training data set. However, this
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bears the risk of building an overfitted model. By considering the
dual problem

min
α

1

2

M∑

j=1

M∑

i=1

αiαjK(xi, xj) (83)

subject to






0 ⩽ αi ⩽
1

νM ,
∑M

i=1 αi = 1.

and determining the coefficients αi, it can be shown that for f holds

f(x) = sgn

(

M∑

i=1

αiK(xi, x) − ρ

)

. (84)

All xi for which αi ̸= 0 are called support vectors. The authors suggest

the gaussian kernel K(x,y) = e
−

∥x−y∥

2σ2

2

as the kernel function. Other
popular kernels are, for example the polynomial kernel or the sigmoid

kernel (Bounsiar and Madden, 2014).

5.4 deep learning models

Applying deep learning models has significantly improved detecting
anomalies in real-world time series compared to classical ML algo-
rithms (Pang et al., 2021). The following presents the most widely
used ANN architectures for AD in time series.

5.4.1 Autoencoders

An Autoencoder (AE) is a special ANN architecture consisting of an
encoder and a decoder, which are executed one after the other. The
encoder maps a sample x into a low-dimensional latent space, and the
decoder maps the latent vector back into the original data space (Braei
and Wagner, 2020). In the case of AD, the AE is trained exclusively
on the normal class data to learn to recover approximately x. The
anomaly score results from the error that occurs during the recovery
of the sample using the AE.

Let X ⊂ D be the training data set and D the data space. In the
case of vibration data, a sample x ∈ X could be, for example, a
subsequence or a magnitude spectrum. In this case, D would then
correspond to Rn×m with n,m ∈ N. Let the encoder be EΦ with
learnable weights Φ, mapping the sample x ∈ X to the latent vector
z = EΦ(x) ∈ Z. The decoder DΘ with learnable weights Θ then maps
z back to the original data space. The AE network AΦ,Θ is therefore
the composition of both functions

AΦ,Θ(x) = DΘ(EΦ(x)). (85)
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The encoder and decoder are arbitrary ANNs whose exact archi-
tecture depends on the application (Lempitsky, 2019). In the sim-
plest case, they are multi-layer perceptrons (Rosenblatt et al., 1962). For
image-like inputs such as spectrograms, convolutional architectures are
also commonly used (Khan et al., 2021). During the training, the goal
is to minimize the loss function L

L(Φ,Θ) =
1

|X|

∑

x∈X

∆(x,AΦ,Θ) (86)

where ∆ is a function that describes the dissimilarity between the
sample and its reconstruction by the AE. A common choice is the
Euclidean distance (Lempitsky, 2019). The loss function is minimized
during training with stochastic gradient descent (Ketkar, 2017).

One challenge with AEs is that when the latent space has a large di-
mension, they tend to learn the identity mapping since it minimizes
the loss function. However, the AE should learn a compact and sim-
pler representation of the data in the latent space. By applying regu-
larization techniques, a large norm of latent vectors or weights Φ and
Θ can be penalized during training to learn a sparse representation
in the latent space (Ng, 2011; Rifai et al., 2011). Another possibility is
to add noise to the samples during training so that the AE performs
denoising and reconstruction simultaneously, which prevents it from
learning the identity mapping (Vincent et al., 2008).

5.4.2 Recurrent Neural Networks

Classical feed-forward ANNs have the disadvantage that they cannot
incorporate the dependencies in sequential inputs like time series
since they have no memory and implicitly assume the samples are
independent. Recurrent neural networks (RNNs) offer a solution to this,
as they have hidden states and cycles, which allow them to take into ac-
count information that has already been processed and include them
in the current prediction (Zollanvari, 2023). Due to these advanta-
geous properties, they are widely used for modeling sequential data
and also for detecting anomalies in time series (Su et al., 2019).

Let (x1, . . . , xM) be the input sequence of training samples and
(y1, . . . ,yM) be the target sequence, where xi ∈ Rn and yi ∈ Rq. In
the following, the architecture of a vanilla RNN is explained, which
aims to learn to predict the samples of the target sequence based on
the input sequence. For this, let (ŷ1, . . . , ŷM) be the output sequence,
ŷi ∈ Rq, and (h1, . . . ,hM), hi ∈ Rl, be the hidden states. The for-
ward pass of a vanilla RNN is given by the recursive equation

ht = a(Wxhxt +Whhht−1 + bh), (87)

ŷt =Whyht + by, (88)
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where Wxh ∈ Rl×n is the input-to-hidden weight matrix, Whh ∈
Rl×l is the hidden-to-hidden weight matrix, Why ∈ Rq×l is the
hidden-to-output weight matrix, bh ∈ Rl and by ∈ Rq are bias terms,
and a is a non-linear element-wise activation function (Goodfellow,
Bengio, and Courville, 2016). Deeper RNNs can be created by stack-
ing s ∈ N hidden state layers, i.e., the hidden states ht from eq. 87

are used as input for the next hidden state layer, and only after the
sth hidden state layer ŷt is calculated as in eq. 88 (Zollanvari, 2023).

The weights of the RNN are adjusted during training to minimize
a loss function that calculates the deviation between the predicted se-
quence and the target sequence. Stochastic gradient descent is used to
accomplish this task. However, the classical backpropagation algorithm

cannot be applied to determine the gradients (Rojas, 1996). Instead,
an adapted version called backpropagation through time is used, where
the RNN is unrolled to essentially become a feed-forward network
again (Werbos, 1990).

It is difficult for the vanilla RNNs to learn relationships that ex-
tend over long intervals in sequences since vanishing gradients occur
during training, so earlier time points only have a diminishing effect
on later ones, and no long-term dependencies can be learned (Ben-
gio, Simard, and Frasconi, 1994). Advanced RNNs, such as long short-

term memory (LSTM) networks, have been developed to overcome this
weakness. These contain gating mechanisms so the network can better
learn which information to retain and which to forget, with improv-
ing capability for learning long-term dependencies (Hochreiter and
Schmidhuber, 1997).

Often, RNNs are trained in AD tasks with the objective to predict
future samples based on a sequence of historical samples, i.e., they try
to perform forecasting, and the anomaly score results from the error
between forecast and ground truth (Nguyen et al., 2021). Another
variant is integrating them as part of the encoder and decoder of
an AE and using a reconstruction error to determine the anomaly
score (Homayouni et al., 2020). In both cases, the RNN is trained
only on sequences of normal samples. It is assumed that a sequence
of anomalous samples has unknown patterns, making it harder for
the RNN to predict them accurately and leading to more significant
errors.

5.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of neural networks
proposed by LeCun (1989) that operate on grid-like structures.
Therefore, they are widely used for image data applications (2D
grid), such as image recognition and segmentation (Goodfellow,
Bengio, and Courville, 2016). However, their scope is not limited
to machine vision applications. They can also effectively detect
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anomalies in time series interpreted as 1D grid structures. A CNN is
an ANN that contains at least one convolutional layer. In this layer, a
operation called convolution is executed on the grid-structured data.
For the 1D discrete-time signals x and k, the discrete convolution of x
and k is defined as

y[m] = (x ∗ k)[m] =

∞∑

i=−∞

x[i]k[m− i], ∀m, (89)

where x is the input signal, y the feature map, and k the kernel . The val-
ues of the kernel are parameters that are adjusted during training. In
the 1D case, the size of the kernel is called width, which corresponds
to the length of the discrete-time signal, whereas in the 2D case, it has
the form width× height. In practice, the summations in eq. 89 are
finite because the signals are of finite length, with the kernel typically
being much smaller. The convolution operation can be imagined as
sliding a flipped version of the kernel over the input signal x and
computing the sum of the element-wise products of both signals for
the overlapping region. This operation can also be defined on higher
dimensions using multidimensional arrays as input and kernel. In
order to be able to learn also non-linear relations, a non-linear acti-
vation function a is applied after the convolution in the CNN layer,
as well as adding a bias term b ∈ R, i.e., the final output becomes
a(y[m] + b). After the convolutional layer, a pooling layer is usually
added in a CNN, where neighboring inputs are combined into one
by an aggregation function like the maximum. This reduces dimen-
sionality and makes the network invariant to small input translations
(Zollanvari, 2023).

CNNs have sparse connectivity. For instance, given a kernel with
width = 5, u[m] is affected only by five inputs, whereas in MLPs, all
inputs are used due to the weight matrix. This makes CNNs compu-
tationally very efficient. Since a single kernel has only a few parame-
ters but slides over the entire signal or image, CNNs are also highly
efficient from a memory perspective. This property is called param-

eter sharing. It has the additional advantage that the CNN layer be-
comes equivariant to translations (Goodfellow, Bengio, and Courville,
2016). This is precious for tasks like time series analysis, where trans-
lations mean shifts in time. CNNs leverage temporal equivariance to
efficiently detect patterns (e.g., trends, periodicities, or anomalies) at
different time positions in a time series without the need for separate
learning for each position.

For AD in vibration data, CNNs can be used as encoders and de-
coders in AEs. Here, they are trained semi-supervised to reconstruct
the time domain signal (1D) or a time-frequency representation (2D)
like a spectrogram (Khan et al., 2021).
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5.4.4 Graph Neural Networks

Graph neural networks (GNNs) are a special class of ANNs that operate
on graph-structured data. A graph G = (V ,E) is a set of vertices V
and edges E, where an edge uv ∈ E connects the vertices u and v.
Images with their 2D grid structure, as well as univariate time series
as 1D grids, can be viewed as special cases of graphs that have only
a certain subset of edges (Bronstein et al., 2021). Vertices are often
considered as objects or entities and edges describe relations between
them.

Many modern technical systems have an increasing number of in-
terconnected sensors that measure time series. Graphs as a data struc-
ture provide a way to model the relationships between these sensors,
which are viewed as vertices. GNNs can learn the complex relation-
ships and interdependencies between different sensors and detect de-
viations caused by anomalous events (Deng and Hooi, 2021).

Let N(u) be the neighborhood of a vertex u ∈ V , i.e., the set of all ver-
tices v ∈ V with uv ∈ E. The basic GNN consists of a set of vertex fea-
tures X ∈ Rd×|V | in addition to the input graph G. Since the vertices
correspond to objects, the vertex features provide additional informa-
tion about them in vectorial form. The goal during the training of
the GNN is to learn embeddings for the vertices so that the informa-
tion about the local neighborhood of the vertices is preserved in the
low-dimensional embedding space E ⊂ Rd. These embeddings can
then be used in downstream tasks, for example, to classify vertices,
to predict edges, or to assign an entire graph to a class (Hamilton,
2020).

At the beginning, the hidden embedding h0u of a vertex u corresponds
to the vertex feature. The essential operation of the GNN neural mes-

sage passing is iteratively applied during training, which can be con-
sidered a generalization of the convolution operation on graphs. Sim-
ilar to a kernel aggregating information of the surrounding pixels in
a CNN for 2D images, a GNN aggregates information from a vertex
neighborhood at each message-passing and then updates the hidden
embedding of the vertex:

hk+1
u = UPDATEk

(

hku,AGGREGATEk({hkv , ∀v ∈ N(u)})
)

(90)

= UPDATEk
(

hku,mk
N(u)

)

(91)

The AGGREGATE function takes as input the hidden embeddings of
the neighboring vertices and forms from them a message mk

N(u))
,

which is then combined by the UPDATE function with the previ-
ous hidden embedding hku to generate the new hidden embedding
hk+1
u of the vertex u. The AGGREGATE and UPDATE functions are

arbitrary, differentiable functions like neural networks. The message-
passings performed are also sometimes called the layers of the GNN.
If stopped after K iterations, the Kth hidden embedding can be taken
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as the final embedding for each vertex. The vertex embeddings can
also be combined into one embedding for the whole graph through
further aggregation functions (Hamilton, 2020).

5.5 outlook

The introduced algorithms for AD represent the step of data interpre-
tation in the context of CMSs for vibration signals in vehicles. Due to
the focus of the thesis, the algorithms presented were limited to those
that process only vibration data as a single data source. However, ad-
vanced ANN architectures can also process multi-modal inputs. Since
an increasing number of sensors are installed in modern vehicles,
there is more application potential for this in the future. For exam-
ple, Bogatinovski and Nedelkoski (2021) propose a novel forecasting-
based LSTM architecture for AD in multi-modal data sources. An
advantage of such approaches is that they can learn correlations be-
tween signals from different modalities. A multi-modal trained AD
algorithm can leverage the strengths of different data sources and
use them together to give a more accurate view of a technical sys-
tem’s condition.

The chapter did not address properties like algorithm explainabil-

ity. For this topic, refer to the work of Atakishiyev et al. (2023), who
present the current state of research in explainable ML algorithms
in automotive and propose an end-to-end framework for develop-
ing explainable algorithms for autonomous vehicles. Explainable al-
gorithms are advantageous for the application in the automotive sec-
tor since high standards exist on the reliability and accuracy of the
algorithms during the development towards series production. They
provide transparency in decision-making, enabling engineers, regula-
tors, and users to understand why a specific outcome or prediction
was generated. This transparency builds trust and confidence in the
system’s behavior, ensuring that safety-critical components and func-
tions are robustly designed and verified. Furthermore, explainable
algorithms can provide the necessary documentation and justifica-
tion for regulatory compliance. They help demonstrate that the CMS
operates as intended and meets the required safety and reliability
standards.
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C O U N T I N G H O R I Z O N TA L V I S I B I L I T Y G R A P H S

Juhnke-Kubitzke, Martina, Daniel Köhne, and Jonas Schmidt (2021).
Counting Horizontal Visibility Graphs. doi: https://doi.org/10.
48550/arXiv.2111.02723.

abstract

Horizontal visibility graphs (HVGs, for short) are a common tool
used in the analysis and classification of time series with applications
in many scientific fields. In this article, extending previous work by
Luque and Lacasa (2017a), we prove that HVGs associated to data
sequences without equal entries are completely determined by their
ordered degree sequence. Moreover, we show that HVGs for data se-
quences without and with equal entries are counted by the Catalan
numbers and the large Schröder numbers, respectively.
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7
D E N S I T Y B A S E D A N O M A LY D E T E C T I O N F O R
W I N D T U R B I N E C O N D I T I O N M O N I T O R I N G

Bernhard, Johannes, Jonas Schmidt, and Mark Schutera (2022). ªDen-
sity based Anomaly Detection for Wind Turbine Condition Moni-
toring.º In: Proceedings of the 1st International Joint Conference on En-

ergy and Environmental Engineering - CoEEE, INSTICC. SciTePress,
pp. 87±93. isbn: 978-989-758-599-9. doi: https://doi.org/10.
5220/0011358600003355.

abstract

Unsupervised and explainable approaches are critical in anomaly de-
tection for mechanical systems. This work proposes a density-based k-
nearest neighbor method to combine an unsupervised learning setup
with the added value of explainability. The algorithm is applied to
detect anomalies in vibration data from acceleration sensors or micro-
phones. In a training phase, we transform healthy vibration data into
Mel-spectrograms and extract feature patches representing healthy
turbines’ vibration energy distribution. We determine anomaly scores
by calculating a k-nearest neighbor similarity between operational
feature patches and healthy feature patches. Hence, we use basic
statistical methods with interpretable results, which contrasts with
deep learning techniques. The evaluation paradigm is data from dam-
aged and healthy wind turbines and a secondary machine audio data
set. This work introduces and explores a novel sensor-level anomaly
score. The model identified all damaged sequences as anomalies on
the wind turbine sequences. Furthermore, the method achieved com-
petitive results on the more complex DCASE sound anomaly data set
(Koizumi et al., 2020). Concluding, our anomaly score lays the foun-
dations for an interpretable condition monitoring system
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8
T I R E P R E S S U R E M O N I T O R I N G U S I N G W E I G H T E D
H O R I Z O N TA L V I S I B I L I T Y G R A P H S

Schmidt, Jonas (2022). ªTire Pressure Monitoring using Weighted
Horizontal Visibility Graphs.º In: 2022 International Conference

on Control, Automation and Diagnosis (ICCAD), pp. 1±6. doi:
https://doi.org/10.1109/ICCAD55197.2022.9853892.

abstract

Tire pressure monitoring systems have been proven to reduce fuel
consumption and increase driver safety. Today, direct measuring sys-
tems are installed in the car, which measure the tire pressure with
sensors inside the tire, or indirect systems, which detect a drop in tire
pressure through the relative change in the wheel speed. This work
proposes a novel way of detecting tire pressure conditions by trans-
forming the vibration data of chassis components into a weighted
horizontal visibility graph. Graph features are extracted from this rep-
resentation to serve as input to an XGBoost classifier. Drives on a test
track with tri-axial accelerometers on the upper control arm with low
and normal tire pressure are performed to evaluate the method. The
results indicate that the proposed method classifies the reduced tire
pressure with high precision while also allowing changes in tire pres-
sure to be detected quickly.
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D E T E C T I N G L O O S E W H E E L B O LT S O F A V E H I C L E
U S I N G A C C E L E R O M E T E R S I N T H E C H A S S I S

Schmidt, Jonas, Kai-Uwe Kühnberger, Dennis Pape, and Tobias
Pobandt (2023). ªDetecting Loose Wheel Bolts of a Vehicle Using
Accelerometers in the Chassis.º In: Pattern Recognition and Image

Analysis. Cham: Springer Nature Switzerland, pp. 665±679. isbn:
978-3-031-36616-1. doi: https://doi.org/10.1007/978-3-031-
36616-1_53.

abstract

Increasing road safety has been a society’s goal since the automo-
bile’s invention. One safety aspect that has not been the focus of re-
search so far is that of a loose wheel. Potential accidents could be
prevented with the help of early detection of loose wheel bolts. This
work investigates how acceleration sensors in the chassis can be used
to detect loose wheel bolts. Test drives with tightened and loosened
wheel bolts were carried out. Several state-of-the-art semi-supervised
anomalous sound detection algorithms are trained on the test drive
data. Evaluation and optimization of anomalous sound detection al-
gorithms shows that loose wheel bolts can be reliably detected when
at least three out of five wheel bolts are loose. Our study indicates
that acoustic preprocessing and careful selection of acoustic features
is crucial for performance and more important than the choice of a
special algorithm for detecting loose wheel bolts.
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A S I M P L E S C A L A B L E L I N E A R T I M E A L G O R I T H M
F O R H O R I Z O N TA L V I S I B I L I T Y G R A P H S

Schmidt, Jonas and Daniel Köhne (2023). ªA simple scalable linear
time algorithm for horizontal visibility graphs.º In: Physica A:

Statistical Mechanics and its Applications 616, p. 128601. issn: 0378-
4371. doi: https://doi.org/10.1016/j.physa.2023.128601.

abstract

Horizontal Visibility Graphs establish a connection between time se-
ries and complex networks. As a feature, they have shown strong
results in time series classification. For real-world applications, algo-
rithms for computing HVGs are necessary that work efficiently on
streamed data, that can be parallelized, and whose runtime is inde-
pendent of the type of time series. Our proposed algorithm extends
the fast horizontal visibility algorithm of Zhu, Li, and Wen (2012).
satisfying all these desirable properties. The extended version stays
worst-case in O(n), works additionally efficiently on streamed data,
and becomes parallelizable. Contrary to recent publications, it does
not require a complex data structure. This approach enables the com-
putation of HVGs with millions of vertices in a short period, opening
up new application areas of HVGs for time series generated batch-
wise or resulting from measurements with a high sampling rate.
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PAT E N T: C O M P U T E R - I M P L E M E N T E D M E T H O D
F O R T H E C A L C U L AT I O N O F C O N V O L U T I O N A L
N E T W O R K S

Schmidt, Jonas, Michael Hertkorn, and Martin Damian Trochowski
(2021). ªComputer-implemented method for the calculation of
convolutional networks.º Pat. DE 10 2020 202 871 A1.

abstract

The present invention enables faster inference of convolutional neu-
ral networks (CNNs) for overlapping input data. The patent claim
applies to using CNNs on microcontrollers for detecting siren signals
with microphones mounted on the outside of the vehicle. However,
the methodology can also be transferred to vibration data. The ap-
proach works as follows: A stream of audio input data is converted
into a feature representation x1 ∈ R2 that serves as the CNN’s input.
Suppose the subsequent input x2 overlaps with x1. By caching the
CNN’s intermediate layers output of the input x1 for the related parts
that overlap, the output of x2 can be computed with fewer computa-
tional operations by reusing the cached outputs of the hidden layers
and calculating all intermediate outputs only for the non-overlapping
parts of x2 and x1.
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D I S C U S S I O N

With the proposed simple and scalable algorithm for faster compu-
tation of HVGs for streamed data, such as vibration signals, feature
extraction as part of the data processing of a CMS is implemented
more efficiently (Schmidt and Köhne, 2023). For in-vehicle applica-
tions where the condition monitored by the CMS must be commu-
nicated with high frequency to other vehicle systems, efficient data
processing and feature extraction is crucial. In this case, edge com-
puting is often the only viable option since transferring the data to
be processed to the cloud creates additional latencies. Due to their
limited computing power, edge computing systems rely heavily on
efficient data processing and benefit particularly from optimized fea-
ture extraction methods.

The transformation of vibration signals in HVGs, which were then
analyzed in the graph domain, has proven effective for detecting low
tire pressure using acceleration sensors mounted on the upper con-
trol arm (Schmidt, 2022). Here, we also used graph features related
to the degree sequence. These features, such as graph entropy, were
very informative for classifying time series with HVGs also in other
studies (Luque and Lacasa, 2017b). We provided a reason for this
observation with the proof that if the HVG originated from a data
sequence containing no equal entries, it is completely determined by
its (ordered) degree sequence, i.e., all its information is encoded in
it (Juhnke-Kubitzke, Köhne, and Schmidt, 2021). This was previously
known only for a special case when the first and last values of the
data sequence of the HVG are the two largest (Luque and Lacasa,
2017b). However, there is still the restriction that no equal entries
may occur in the data sequence. Imagine a data sequence consisting
of 1024 entries that originates from a vibration signal. The quantiza-
tion for this sequence is done using 32-bit floating point numbers. In
that case, one can easily calculate (assuming an uniform distribution
and independence) that the probability for equal entries is only about
0.01%. This gives a heuristic explanation of why, in practice, the case
of equal entries with sufficient quantization has little relevance.

For tire pressure recognition, sensors that measure the pressure
in each tire directly or indirect systems that detect a pressure drop
using differences in the wheel speed signal are typically used. The
presented work has shown that a distinction between 1.0 bar (low)
and 2.3 bar (normal) is also feasible with an acceleration sensor. This
gives the option of either dispensing with direct measurement of the
pressure in the tire and saving costs for these sensors or, alternatively,
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using the information from the acceleration sensors to be still able to
make statements about the tire pressure if other sensors fail. Together
with semi-supervised AD algorithms, accelerometers mounted on the
upper control arm have also proven their value in detecting loose
wheel bolts (Schmidt et al., 2023). Here, we reliably detected these as
an anomaly if at least three of the five wheel bolts were loose.

One physical explanation for this result is that when a third wheel
bolt is loosened, an additional degree of freedom always occurs so the
wheel can move around this axis, i.e., it can wobble more. Consider-
ing the five wheel bolts on one wheel of our BMW series 5 test vehicle,
their arrangement forms a regular pentagon. Any selection of three
tight wheel bolts spans a plane, but when a further one is loosened,
the two remaining ones form a straight line so that the wheel can
wobble slightly about the axis perpendicular to it. The AD algorithm
will likely detect these additional vibrations as anomalies.

The window length, hop size, and the selection of acoustic fea-
tures had a decisive influence on the AD performance, which un-
derlined the importance of optimizing the acoustic hyperparameters
and applying domain knowledge. We also tested a MobileNetV2,
a CNN architecture designed to work particularly well on mobile
devices, for loose wheel bolt detection (Sandler et al., 2018). This
used overlapping Mel-spectrograms for the final determination of the
anomaly score. A future implementation on an in-vehicle microcon-
troller would benefit from our patent’s approach to optimize the infer-
ence of CNNs with overlapping inputs, in which intermediate layers
outputs are cached to reuse these outputs and save computational op-
erations on future inputs (Schmidt, Hertkorn, and Trochowski, 2021).

For the low tire pressure and loose wheel bolts experiments, the
test drives were carried out with a BMW 5 series (model F10), and the
trained ML algorithms are, therefore, only applicable to this vehicle
model. The transmission paths of vibrations and the installed compo-
nents vary depending on the chassis concepts of different models. As
a result, the vibrations measured by accelerometers also differ. There-
fore, we assume that such an ML-based CMS has to be adapted for
different vehicle models.

The factors influencing vibration data in the chassis are various.
These include road conditions, weather conditions, load, and driv-
ing behavior. For the test drives with the loosened wheel bolts, for
example, vibration data could only be recorded for a very limited
speed range of up to 30 km/h and on an even road surface. How-
ever, for the further development of such CMSs for series production,
they must function reliably for any road surfaces and speeds. Adjust-
ing the semi-supervised AD algorithms is necessary to detect loose
wheel bolts in more natural driving environments.

From the perspective of an ML-based CMS, there are several op-
tions to deal with these issues in the future. The first and most obvi-
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ous option is to record additional test drives and increase the training
data set, so the model can learn to determine the condition even from
this new vibration data distribution. However, it must be weighed for
the particular use case to what extent the costs incurred by additional
test drives are proportional to the added value for the model’s per-
formance. The challenge is the exponential growth of the parameter
combination, which can thus become very large even with a small
number of influencing factors.

A second option, and the approach we suggest to investigate fur-
ther, is to focus more on feature extraction of the vibration data and
incorporate domain knowledge into developing the AD algorithms.
Suppose the vibration signal is transferred from the time domain to
the frequency domain. In that case, we propose to study in future
work to what extent specific frequency ranges are affected by individ-
ual influencing factors such as braking, accelerating, or vehicle load.
For road excitation, for example, it is known from the literature that
it only causes vibrations up to 30 Hz (Ersoy et al., 2017). If this fre-
quency range is excluded from the AD algorithm by using high-pass
filters, it can be prevented that a surface such as an icy road, which
was not part of the training data, is falsely detected as an anomaly.
A CMS that works more robustly can be developed with close col-
laboration between machine learning developers and engineers with
expertise in the chassis field, who are familiar with the factors influ-
encing the vibrations at the respective sensor position.

Another aspect that has yet to be addressed due to the lack of data
in the current work is the differences between components of the
same type that result from tolerances in manufacturing processes. For
this, it needs to be investigated for the respective application and the
component to be monitored how strongly these tolerances affect the
observed vibrations in the vehicle. Alternatively, the algorithm used
for the CM can be trained on data from a fleet of vehicles so that a
generalization effect is achieved regarding component tolerances.

The explainability of the decisions is beneficial for the acceptance
and validation of a CMS in an industrial application. For this pur-
pose, we proposed a method based on a density-based KNN algo-
rithm for detecting anomalies in wind turbine vibration signals (Bern-
hard, Schmidt, and Schutera, 2022). In contrast to deep-learning ap-
proaches, the anomaly values can be more easily traced to specific
frequency ranges. By carefully selecting hyperparameters, the algo-
rithm beat the deep-learning-based baseline model on a more com-
plex audio AD data set. A KNN algorithm using Mel-spectrograms
as acoustic features for loose wheel bolt detection also performed
remarkably well. Although the best results were obtained with deep-
learning-based AD algorithms, the differences were mainly in detect-
ing only one or two loosened wheel bolts as anomalies. At the same
time, the ANN architectures tested were intentionally kept small or
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optimized for edge computing, such as MobileNetV2, to guarantee in-
vehicle executability. Overall, we concluded that very deep complex
neural network architectures are not necessarily required for AD in
vehicle vibration data.

As ZF Friedrichshafen AG is an automotive supplier, my research
has mainly focused on a single component or function, giving me
a limited view of the vehicle’s overall condition. In contrast, the car
manufacturer that installs a CMS in their vehicle has complete ac-
cess to all information, data, and sensors. There is great potential to
further improve CMSs by using additional sensors that allow conclu-
sions to be drawn about the condition of the component or function.
By combining information from multiple sensors and systems, sensor

fusion enables a more comprehensive view of the vehicle’s condition
(Muldoon, Kowalczyk, and Shen, 2002). This becomes particularly rel-
evant when different driving functions become more interconnected
and interdependent. However, car manufacturers often deny access
to the entire sensor information collected in their vehicle fleet. This
information deficit, which affects not only suppliers but even more
so research institutions, universities, and start-ups, is an inhibitor of
innovation. As mentioned in the section on CMSs in automotive ap-
plications, there is a lack of large public data sets with internal vehicle
data. One reason for the rapid progress in image recognition is that
large labeled public data sets such as ImageNet have been published
(Deng et al., 2009). Similar spurts of innovation are imaginable for
vehicle CMSs if more researchers had access to these data and could
test new approaches on them so that the results would also be com-
parable.

The EU initiative "Access to vehicle data, functions and resources",
intended to define conditions for using and accessing in-vehicle
generated data, gives rise to hope (EU Vehicle Data Initiative, 2022).
An innovation- and competition-friendly framework should be
developed to allow start-ups to enter the market with their digital
services. Allowing everyone to test their own approaches, ideas, and
models is the quickest and fairest way to achieve ZF Friedrichshafen
AG’s vision of zero accidents. May the best model win!
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C O N C L U S I O N

This dissertation aimed to develop computational efficient and ad-
vanced methods for anomaly detection in vibration-based CMSs, fo-
cusing on automotive applications. The research demonstrated that
accelerometers can be combined with AD algorithms to reliably de-
tect damage to gearboxes, low tire pressure, and loose wheel bolts
as anomalies. In addition, methods were developed to accelerate fea-
ture extraction from vibration signals and inference of CNNs on edge
devices.

The groundwork has been set for future vehicles to analyze and
monitor more of their internal parts, components, and functions be-
sides recognizing their external environment. Integrating such novel
CMSs into autonomous vehicles will improve road safety and in-
crease human acceptance and trust in this technology. The automo-
tive industry’s transformation trend toward zero-emission and au-
tonomous vehicles is a major challenge. The success and acceptance
depend not only on faultless vehicle control on the road but also on
safety-supporting systems such as CMSs.

However, the investment in its success is worth it. Ultimately, we
are expected to live in a society with less traffic congestion, cleaner air,
and more green spaces instead of parking areas. For passengers, there
will be increased safety on the road, more comfort and relaxation
during the ride instead of stress, and better accessibility of mobility
for people who cannot drive due to age or disabilities. Overall, it is
a more efficient and beneficial form of transportation for people as
individuals, society as a whole, and our global environment.
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A
R U N T I M E D ATA O F H O R I Z O N TA L V I S I B I L I T Y
A L G O R I T H M S F O R S Y N T H E T I C A N D E M P I R I C A L
T I M E S E R I E S

Schmidt, Jonas (2022). Runtime Data of Horizontal Visibility Algorithms

for synthetic and empirical Time Series. Version V2. doi: https://
doi.org/10.26249/FK2/MXFPLV.

description

This repository contains the computed runtimes of state-of-the-art
horizontal visibility algorithms for synthetic and empirical time se-
ries. The provided Python code was used to compute the runtime
data and includes implementations of various horizontal visibility
algorithms. The main contribution is a newly developed algorithm
that extends the fast weighted horizontal visibility algorithm of Zhu,
Li, and Wen (2012). The proposed algorithm works efficiently on
streamed data, is multi-processing capable, and has linear runtime
in the worst case.

103





B I B L I O G R A P H Y

Acosta-Tripailao, Belén, Denisse Pastén, and Pablo S. Moya (2021).
ªApplying the Horizontal Visibility Graph Method to Study Ir-
reversibility of Electromagnetic Turbulence in Non-Thermal Plas-
mas.º In: Entropy 23.4. issn: 1099-4300. doi: https://doi.org/10.
3390/e23040470.

Aggarwal, Charu C. (2017). ªProximity-Based Outlier Detec-
tion.º In: Outlier Analysis. Cham: Springer International
Publishing, pp. 111±147. isbn: 978-3-319-47578-3. doi: https :

//doi.org/10.1007/978-3-319-47578-3_4.
Ahmed, Hosameldin and Asoke K Nandi (2020). Condition monitoring

with vibration signals: Compressive sampling and learning algorithms

for rotating machines. John Wiley & Sons. isbn: 978-1-119-54462-3.
doi: https://doi.org/10.1002/9781119544678.

Alt, Hans Wilhelm (2012). ªFunktionenräume.º In: Lineare Funktional-

analysis: Eine anwendungsorientierte Einführung. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 39±98. doi: https://doi.org/10.
1007/978-3-642-22261-0_3.

Anderson, James M., Nidhi Kalra, Karlyn D. Stanley, Paul Sorensen,
Constantine Samaras, and Tobi A. Oluwatola (2016). Autonomous

Vehicle Technology: A Guide for Policymakers. Santa Monica, CA:
RAND Corporation. doi: https://doi.org/10.7249/RR443-2.

Anderson, Ronald T (1976). Reliability design handbook. Tech. rep.
Angiulli, Fabrizio and Clara Pizzuti (2002). ªFast Outlier Detection

in High Dimensional Spaces.º In: Principles of Data Mining and

Knowledge Discovery. Ed. by Tapio Elomaa, Heikki Mannila, and
Hannu Toivonen. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 15±27. isbn: 978-3-540-45681-0. doi: https://doi.org/10.
1007/3-540-45681-3_2.

Arena, Fabio, Mario Collotta, Liliana Luca, Marianna Ruggieri, and
Francesco Gaetano Termine (2022). ªPredictive Maintenance in
the Automotive Sector: A Literature Review.º In: Mathematical

and Computational Applications 27.1. issn: 2297-8747. doi: https:
//doi.org/10.3390/mca27010002.

Atakishiyev, Shahin, Mohammad Salameh, Hengshuai Yao, and
Randy Goebel (2023). Explainable Artificial Intelligence for Au-

tonomous Driving: A Comprehensive Overview and Field Guide for

Future Research Directions. doi: https : / / doi . org / 10 . 48550 /

arXiv.2112.11561. arXiv: 2112.11561.
BMWK (2022a). Automobilindustrie. url: https : / / www . bmwk . de /

Redaktion / DE / Textsammlungen / Branchenfokus / Industrie /

105



106 bibliography

branchenfokus - automobilindustrie . html (visited on
06/03/2023).

BMWK (2022b). FAQ Liste Umweltbonus. url: https://www.bmwk.de/
Redaktion/DE/Downloads/F/faq-liste-umweltbonus.pdf?__

blob=publicationFile&v=1 (visited on 06/04/2023).
Balke, Herbert (2020). ªSchwingungen von Systemen mit dem Frei-

heitsgrad 1.º In: Einführung in die Technische Mechanik: Kinetik.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 105±123. isbn:
978-3-662-59096-6. doi: https://doi.org/10.1007/978-3-662-
59096-6_4.

Bangalore, P. and M. Patriksson (2018). ªAnalysis of SCADA data for
early fault detection, with application to the maintenance man-
agement of wind turbines.º In: Renewable Energy 115, pp. 521±
532. issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.
2017.08.073.

Barbariol, Tommaso, Filippo Dalla Chiara, Davide Marcato, and Gian
Antonio Susto (2022). ªA Review of Tree-Based Approaches for
Anomaly Detection.º In: Control Charts and Machine Learning for

Anomaly Detection in Manufacturing. Ed. by Kim Phuc Tran. Cham:
Springer International Publishing, pp. 149±185. isbn: 978-3-030-
83819-5. doi: https://doi.org/10.1007/978-3-030-83819-5_7.

Bengio, Y, P Simard, and P Frasconi (1994). ªLearning long-term de-
pendencies with gradient descent is difficult.º en. In: IEEE Trans

Neural Netw 5.2, pp. 157±166.
Bentley, Jon Louis (1975). ªMultidimensional Binary Search Trees

Used for Associative Searching.º In: Commun. ACM 18.9, 509±517.
issn: 0001-0782. doi: https://doi.org/10.1145/361002.361007.

Bernhard, Johannes, Jonas Schmidt, and Mark Schutera (2022). ªDen-
sity based Anomaly Detection for Wind Turbine Condition Moni-
toring.º In: Proceedings of the 1st International Joint Conference on En-

ergy and Environmental Engineering - CoEEE, INSTICC. SciTePress,
pp. 87±93. isbn: 978-989-758-599-9. doi: https://doi.org/10.
5220/0011358600003355.

Bertoncello, Michele and Dominik Wee (2015). Ten ways au-

tonomous driving could redefine the automotive world. url:
https : / / www . mckinsey . com / industries / automotive - and -

assembly/our-insights/ten-ways-autonomous-driving-could-

redefine-the-automotive-world (visited on 07/08/2023).
Bezzina, Debby and James Sayer (2014). ªSafety pilot model

deployment: Test conductor team report.º In: Report No. DOT HS

812.171, p. 18.
Binnewies, Michael, Maik Finze, Manfred Jäckel, Peer Schmidt, Helge

Willner, Geoff Rayner-Canham, and Geoff Rayner-Canham (2016).
ªAnhang A: Einige Grundbegriffe der Physik.º In: Allgemeine und

Anorganische Chemie. Berlin, Heidelberg: Springer Berlin Heidel-



bibliography 107

berg, pp. 869±889. isbn: 978-3-662-45067-3. doi: https : / / doi .

org/10.1007/978-3-662-45067-3_26.
Bishop, Richard Evelyn Donohue and AG Parkinson (1965). ªSecond

order vibration of flexible shafts.º In: Philosophical Transactions of

the Royal Society of London. Series A, Mathematical and Physical Sci-

ences 259.1095, pp. 1±31. doi: https://doi.org/10.1098/rsta.
1965.0052.

Björck, Åke (1996). Numerical Methods for Least Squares Problems. Soci-
ety for Industrial and Applied Mathematics. doi: https://doi.
org/10.1137/1.9781611971484.

Bogatinovski, Jasmin and Sasho Nedelkoski (2021). ªMulti-source
Anomaly Detection in Distributed IT Systems.º In: Service-

Oriented Computing ± ICSOC 2020 Workshops. Cham: Springer
International Publishing, pp. 201±213. isbn: 978-3-030-76352-7.
doi: https://doi.org/10.1007/978-3-030-76352-7_22.

Bounsiar, Abdenour and Michael G. Madden (2014). ªOne-Class Sup-
port Vector Machines Revisited.º In: 2014 International Conference

on Information Science & Applications (ICISA), pp. 1±4. doi: https:
//doi.org/10.1109/ICISA.2014.6847442.

Box, G.E.P. and G.M. Jenkins (1970). Time Series Analysis: Forecasting

and Control. Holden-Day series in time series analysis and digital
processing. Holden-Day. isbn: 9780816210947.

Braei, Mohammad and Sebastian Wagner (2020). Anomaly Detection in

Univariate Time-series: A Survey on the State-of-the-Art. doi: https:
//doi.org/10.48550/arXiv.2004.00433.

Breunig, Markus M., Hans-Peter Kriegel, Raymond T. Ng, and Jörg
Sander (2000). ªLOF: Identifying Density-Based Local Outliers.º
In: SIGMOD Rec. 29.2, 93±104. issn: 0163-5808. doi: https://doi.
org/10.1145/335191.335388.

Bronstein, Michael M., Joan Bruna, Taco Cohen, and Petar VeličkoviÂc
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