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"It doesn’t matter how beautiful your theory is [...], if it doesn’t agree with
experiment, it’s wrong. In that simple statement is the key to science."

Richard Feynman (Erice, 1964)





Abstract

The formal definition of network coding by Ahlswede et al. in 2000 has led
to several breakthroughs in information theory, for example solving the bot-
tleneck problem in butterfly networks and breaking the min-cut max-flow
theorem for multicast communication. Especially promising is the usage of
network coding as a packet-level Forward Error Correction (FEC) scheme to
increase the robustness of a data stream against packet loss, also known as
intra-session coding. Yet, despite these benefits, network coding-based FEC
is still rarely deployed in real-world networks. To bridge this gap between
information theory and real-world usage, this cumulative thesis will present
our contributions to the integration, evaluation, and optimization of network
coding-based FEC.
The first set of contributions introduces and evaluates efficient ways to inte-
grate coding into UDP-based IoT protocols to speed up bulk data transfers
in lossy scenarios. This includes a packet-level FEC extension for the Con-
strained Application Protocol (CoAP) [P1] and one for MQTT for Sensor
Networks (MQTT-SN), which levels the underlying publish-subscribe archi-
tecture [P2]. The second set of contributions addresses the development of
novel evaluation tools and methods to better quantify possible coding gains.
This includes link ’em, our award-winning link emulation bridge for repro-
ducible networking research [P3], and also SPQER, a word recognition-based
metric to evaluate the impact of packet loss on the Quality of Experience of
Voice over IP applications [P5]. Finally, we highlight the impact of padding
overhead for applications with heterogeneous packet lengths [P6] and intro-
duce a novel packet-preserving coding scheme to significantly reduce this
problem [P4]. Because many of the shown contributions can be applied to
other areas of network coding research as well, this thesis does not only
make meaningful contributions to specific network coding challenges, but
also paves the way for future work to further close the gap between informa-
tion theory and real-world usage.
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Zusammenfassung (German Abstract)

Obwohl die formale Definition von Network Coding durch Ahlswede et al.
im Jahr 2000 zu entscheidenden Durchbrüchen in der Informationstheo-
rie geführt hat, wird Network Coding bisher in der Praxis selten einge-
setzt. Beispielsweise löst Network Coding zwar die Bottleneck-Problematik in
Schmetterlings-Netzwerken und bricht das Min-Cut Max-Flow Theorem für
Multicast, dennoch hat sich die Technik noch nicht in realen Netzwerken eta-
bliert. Dabei bietet besonders der Einsatz als Fehlerkorrekturverfahren auf
Paketebene zur Steigerung der Robustheit gegenüber Paketverlusten viel-
versprechendes Potential in drahtlosen Szenarien. Um diese theoretischen
Vorteile wirklich nutzbar zu machen, schlägt die vorliegenden kumulative
Dissertation deshalb die notwendige Brücke zwischen Informationstheorie
und Praxis. Dazu werden die geleisteten wissenschaftlichen Beiträge und Pu-
blikationen in den Bereichen Integration, Evaluation und Optimierung von
Network Coding-basierter Fehlerkorrektur zusammengefasst, diskutiert und
in einen gemeinsamen Kontext gestellt.
Der erste Bereich dieser Beiträge befasst sich mit der Integration von Net-
work Coding in UDP-basierte IoT Protokolle, um die Dauer von Over-the-
Air-Updates in verlustbehafteten Szenarien zu reduzieren. Speziell werden
dazu zwei Fehlerkorrektur-Erweiterungen vorgestellt und evaluiert, eine für
das Constrained Application Protocol (CoAP) [P1] und eine für MQTT for
Sensor Networks (MQTT-SN) [P2]. Die zweite Säule dieser Arbeit beinhaltet
die Entwicklung neuer Methoden zur Evaluation der potentiellen Network
Coding Vorteile. Dies umfasst link ’em [P3], eine Layer-2 Link Emulation
Bridge für reproduzierbare Netzwerkforschung, und SPQER [P5], eine neue
Metrik zur Bewertung des Einflusses von Paketverlust auf die Quality of
Experience (QoE) von Voice-over-IP (VoIP) Anwendungen auf Basis auto-
matischer Spracherkennung. Die dritte und finale Beitragsreihe befasst sich
mit dem Thema Padding Overhead für Anwendungen mit heterogenen Pa-
ketlängen. Dazu analysieren wir das Auftreten dieses Overheads für mehrere
echte Anwendungen [P6] und stellen ein neues Coding Schema vor, welches
den Overhead massiv reduziert, ohne die grundsätzlichen Paketstrukturen
zu verändern [P4]. Durch die Summe an wissenschaftlichen Beiträgen in den
drei Kategorien löst die vorliegende Dissertation nicht nur spezifische Proble-
me im Bereich Network Coding, sondern legt zusätzlich den Grundstein für
kommende Arbeiten um die Lücke zwischen Informationstheorie und Praxis
weiter zu schließen.
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1 Introduction

Despite its theoretical benefits, e.g., breaking the min-cut max-flow theorem
for multicast communication [19] or solving the coupon collector problem
for content distribution [15], network coding has not yet emerged as a sta-
ble technique in real networks. Some open problems still have to be solved
to bridge the gap between information theory and real-world usage. The
presented thesis contributes to this goal by solving existing challenges and
progressing the overall state-of-the-art of network coding-based Forward Er-
ror Correction (FEC).

In general, network coding can be distinguished into two different categories,
inter-session and intra-session network coding. While both approaches use
the same underlying Galois Field theory to encode packets in form of linear
combinations, they aim for different benefits. The traditional inter-session
coding approach combines packets across multiple data streams to solve rout-
ing problems and is typically used to increase the overall throughput in mul-
ticast or broadcast communication. A prominent example for inter-session
coding is Ahlswedes butterfly network [1], where an intermediate node does
not simply forward the received packets but sends linear combinations in-
stead to efficiently utilize the capacity of a bottleneck link. Intra-session
coding on the other hand is used to increase to robustness of a data stream
between two nodes against packet loss. This is done by injecting additional
encoded redundancy packets to enable packet-level Forward Error Correction
(FEC). Thus, intra-session coding can be interpreted as solving a system of
independent linear equations. If a sufficient number of packets are received,
the whole system can be solved and all original packets can be restored.
Thereby, it does not matter exactly which packet was received or lost. The
so increased robustness is especially helpful in mobile and lossy scenarios,
where packet loss occurs frequently due to interferences or signal degrada-
tion.

It has to be noted that the term intra-session network coding sometimes leads
to confusion. While both types of network coding use similar Galois Field
operations, the original idea of network coding was not to inject redundancy
for robustness, but combine packets to overcome information flow limitations.
Due to these roots, some of the initially developed formal fundamentals and
proofs are only valid for inter-session coding, e.g., one core assumption of the
work by Ahlswede et al. [1] is that all transmissions happen instantly. Thus,
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1 Introduction 1.1 Overall Goal & Main Contributions

for clarity, we use the term network coding-based FEC here instead of intra-
session network coding. A more detailed explanation of both network coding
types, their distinctions, and relation to other FEC coding approaches, will
be presented in Section 2.1.

1.1 Overall Goal & Main Contributions

The overall goal of this thesis is to improve the state-of-the-art of network
coding-based FEC to bring the theoretical benefits to practice. Thus, the
guiding motto of this work is to bridge the gap between information theory
and real-world usage, which is visualized in Figure 1.

Information
Theory

Real-world
Usage

Optimization Evaluation Integration

Network Coding

[P3] Link 'em: An Open Source 
Link Emulation Bridge for 
Reproducible Networking 

Research

[P5] SPQER: Speech Quality 
Evaluation using Word 
Recognition for VoIP 

Communication in Lossy and 
Mobile Networks

[P4] Packet-Preserving Network 
Coding Schemes for Padding 

Overhead Reduction

[P2] Improving Energy Efficiency 
of MQTT-SN in Lossy 
Environments using 

Seed-Based Network Coding

[P1] Adding a Network Coding 
Extension to CoAP for Large 

Resource Transfer

[P6] The Impact of Bit Errors on 
Intra-session Network Coding 

with Heterogeneous
Packet Length

Figure 1: Thesis motto: "Bridging the gap" between information theory
and real-world usage for network coding-based FEC.

In order to reach this goal, we made meaningful contributions to three differ-
ent research areas: the integration, evaluation, and optimization of network
coding-based FEC. This cumulative thesis summarizes and discusses our
contributions, which are essentially the following:

• Integration of network coding-based FEC for reliable file transfer
within UDP-based Internet of Things (IoT) protocols, namely a coding
extension for the Constrained Applications Protocol (CoAP) [P1] and
one for MQTT for Sensor Networks (MQTT-SN) [P2].

• Development of novel evaluation tools and methods to better quantify
possible coding gains. These are link’em [P3], a raspberry Pi-based
layer-2 link emulation bridge for reproducible networking research, and
SPQER [P5], a machine learning-based metric for VoIP Quality of
Experience evaluation in lossy networks.
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1 Introduction 1.1 Overall Goal & Main Contributions

• Coding overhead analysis for real-world applicationss and codec op-
timization for padding overhead reduction of data streams with het-
erogeneous packet lengths. This includes a novel packet-preserving
coding scheme [P4] and also an evaluation of the impact of bit errors
on potential coding gains [P6].

The connections between these contributions are visualized in Figure 2. We
will further dissected this figure in section 3, when linking our publications
and presenting the context of each one to highlight its place within this
thesis.

[P2], 2017
Improving Energy Efficiency

of MQTT-SN in Lossy 
Environments Using 

Seed-Based Network Coding

[P1], 2016
Adding a Network Coding 

Extension to CoAP 
for Large Resource Transfer

[P3], 2019  
([P3+], 2020) 

Link 'em: An Open Source 
Link Emulation Bridge 

for Reproducible 
Networking Research

[P5], 2020
SPQER: Speech Quality

 Evaluation using Word Recognition 
for VoIP Communication 

in Lossy and Mobile Networks

Start

Bauer et al., 2016
On the Potential of Wireless 

Sensor Networks for the 
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of Crop Leaf Area Index

PyNC Proxy:
 An Open Source 

Python-based
Network Coding Proxy
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overcome

packet loss 
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learned

Transparent
integration?

Network coding
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Laniewski, Schuetz et al., 2020
On the Impact of Burst Loss 
for QoE-Based Performance 

Evaluations for Video Streaming
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experience

Overhead
problem
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Impact of overhead
if bit errors are 
considered?

[P4], 2019
Packet-Preserving 

Network Coding Schemes 
for Padding Overhead Reduction

[P6], 2020
The Impact of Bit Errors

 on Intra-Session Network Coding 
with Heterogeneous Packet Lengths

used in

Application-specific
QoE evaluation and

codec parameterization

used in
How to 
Measure QoE 
coding gains?

Figure 2: Road map linking our contributions and publications.
This thesis’ structure is highlighted by the red path.
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1 Introduction 1.2 Thesis Structure

1.2 Thesis Structure

The structure of this thesis does not directly follow the chronological order
of our publications but is laid out in a more content-oriented form to better
show the connections between them. As highlight by the red path in Figure 2,
we first present our publications towards the integration of network coding-
based FEC, then show to the development of new evaluation methods, before
finally covering the topic of codec optimization. Sticking to our bridging the
gap analogy (c.f. Figure 1), we start on the practical side of network coding
and move from integration to evaluation, to finally arrive on the more formal
side of codec optimization.

More precisely, the remainder of this thesis is structured as follows: Follow-
ing this introduction, Section 2 summarizes the necessary basics and related
work. Section 3 then contains the three main subsections of this thesis, which
are our contributions towards the Integration, Evaluation, and Optimization
of network coding-based FEC. After summarizing and discussing the contri-
butions in each research area, Section 4 concludes the overall achievements
of this thesis and presents further challenges for future work. Finally, the
full texts of all our publications are attached.
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2 State-of-the-art & Related Work

2.1 Network Coding in a Nutshell

The following section gives a short and comprehensive overview about the
network coding basics. It is based on our explanation in [45] and follows
the notations by Sundararajan et al. in [49]. More in-depth introduction to
network coding can be found in [17]. The main idea of network coding is to
treat packets not as a sequence of immutable bytes but transform them into
algebraic symbols. This allows to add, subtract or multiply packets, and
especially to form and solve equations. The concept was firstly introduced
by Ahlswede et al. using a simple XOR coding [1], and later extended by
Li et al. to Linear Network Coding (LNC)[33]. Finally, Ho et al. showed
that the coefficients of these linear combinations can be chosen at random,
while still achieving linear independence of the encoded packets with high
probability [19], giving Random Linear Network Coding (RLNC) its name.

Algebraic Transformation: In network coding theory a packet is treated
as a vector over an extended binary Galois Field 𝐺𝐹 (2𝑞). The term Galois
field is used in honor of french mathematician Évariste Galois, who has made
major contributions to the field of abstract algebra by connecting field theory
and group theory. A commented version of Galois’ original paper is published
in [11]. The smallest viable Galois field, 𝐺𝐹 (21) contains only the elements
0 and 1. Thus, each field element represents one bit. By increasing the field
size, larger data types can be represented. In general, an element of 𝐺𝐹 (2𝑞)
represents 𝑞 bit of data. For example, an element of 𝐺𝐹 (22) represent 2-bits.
In this work, we use a field size of 28, which is recommended in [17], because
most networking operations work on a byte-level. With this approach, a byte
can be treated as a septic polynomial (degree of seven) over the chosen field.
For example, the 8-bit sequence 11001010 can be interpreted as an element of
𝐺𝐹 (28), by treating it as the polynomial 1𝑥7+1𝑥6+0𝑥5+0𝑥4+1𝑥3+0𝑥2+1𝑥+0.
Hence, each element of 𝐺𝐹 (28) represents a specific byte of data. Using
this transformation from the physical into an algebraic domain, an original
(uncoded) packet 𝑝 of length 𝑙 is not interpreted as a chain of bytes anymore
but as a concatenation of 𝑙 𝐺𝐹 (28) elements, which can be written as:

𝑝1 = [𝑝11, 𝑝12, . . . , 𝑝1𝑙] 𝑤𝑖𝑡ℎ 𝑝11, . . . , 𝑝1𝑙 ∈ 𝐺𝐹 (28) (1)
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2 State-of-the-art & Related Work 2.1 Network Coding in a Nutshell

It has to be noted that different fields of the same size can be created, de-
pending on the chosen generator polynomial. For the purpose of network
coding it is irrelevant which polynomial was used. It is only important that
all nodes use the same field, i.e., a field of the same size with the same
generator polynomial. We omit here further details about the creation and
operation definition of Galois Fields, but concentrate on the relevant infor-
mation regarding the usage for network coding. More formal information
and explanations can be found in [47]. What makes Galois fields especially
interesting for coding theory is their property of being closed against multi-
plication, addition, subtraction and division. Thus, any operation performed
on elements from the field again returns an element from the same field. This
property can be visualized using an addition table, as shown in Figure 3 for
𝐺𝐹 (22).

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Figure 3: Exemplary addition table of 𝐺𝐹 (22).

In Galois field arithmetics, addition is similar to an element-wise XOR oper-
ation. This can be verified by looking at the shown addition table of 𝐺𝐹 (22).
For example, converting element 3 to binary (11) and adding element 2 (10)
results in element 1 (01), similar do applying a bit-wise XOR. Because the
field is closed against such an operation, the result is again an element of
the field. This property is crucial for coding theory, and network coding in
particular. Adding or multiplying two elements results in an element of the
same size. Thus, forming a linear combination of two packets results in an
encoded packet of the same length.

Encoding & Decoding: Based on this Galois theory, an encoded packet
𝑞𝑖 can be created by forming a linear combination of original packets. For
example, a coded packet 𝑞𝑖 can be created as a linear combination of the
original packets 𝑝1, 𝑝2 by using the coding coefficients 𝛼1𝑖 , 𝛼2𝑖 ∈ 𝐺𝐹 (28):

𝑞𝑖 = 𝛼1𝑖𝑝1 + 𝛼2𝑖𝑝2 (2)

6



2 State-of-the-art & Related Work 2.1 Network Coding in a Nutshell

The number of packets, which are combined in the encoding step is called
the generation size 𝑔. The presented example above uses 𝑔 = 2. Due to the
high probability of linear independence when using random coefficients, it is
possible to create more than 𝑔 linear independent packets without a complex
code book. The amount of additional packets is called the redundancy rate 𝑟.
The example below shows the encoding process for traditional full density
RLNC with a generation size of 𝑔 = 2 and a redundancy of 𝑟 = 0.5.

𝑞1 = 𝛼11𝑝1 + 𝛼21𝑝2

𝑞2 = 𝛼12𝑝1 + 𝛼22𝑝2

𝑞3 = 𝛼13𝑝1 + 𝛼23𝑝2

(3)

Upon receiving a new linear independent packet 𝑞𝑖, the receiver adds it to
the decoder’s storage, forming the decoding matrix 𝐷. If the rank 𝑟𝑎𝑛𝑘 (𝐷)
of this matrix equals 𝑔, the receiver can decode the matrix to restore the
original packets. Since the coded packets are linear combinations, the de-
coding process corresponds to solving a system of 𝑟𝑎𝑛𝑘 (𝐷) linear equations
with 𝑔 unknowns, which can be solved by using Gaussian elimination. Thus,
the decoding condition can be written as: 𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔.

Because the encoder can produce at least 𝑔 + 𝑔 · 𝑟 ≥ 𝑔 independent encoded
packets, RLNC has an implicit packet-level Forward Error Correction (FEC)
property. The decoder can restore all original packets, even if some encoded
packets get lost, as long as the decoding condition is fulfilled. It is not nec-
essary to send feedback or request the retransmission of a specific packet
to achieve reliability. This network coding-based FEC is often referred to
as intra-session network coding and differs from the inter-session network
coding approach, where packets of different streams and/or senders are com-
bined. While intra-session coding is used to overcome packet loss within
one data stream, inter-session coding can be used as an alternative to tra-
ditional routing [19], with a prominent example being Ahlswedes butterfly
network [1]. This paper focuses on the FEC aspect of intra-session coding,
especially on a dedicated coding scheme, called systematic RLNC (sRLNC).
The distinct feature of systematic RLNC is the usage of two different encod-
ing phases. The first 𝑔 packets are send uncoded, which can be interpreted
as using an identity matrix to form the first 𝑔 linear combinations. This
so called systematic phase is followed by the redundancy phase, where 𝑔 · 𝑟
random linear combinations are created by combining all original packets.
An exemplary encoding process for systematic RLNC with 𝑔 = 2 and 𝑟 = 0.5

7



2 State-of-the-art & Related Work 2.1 Network Coding in a Nutshell

is shown in the following set of equations:

𝑞1 = 1𝑝1 + 0𝑝2

𝑞2 = 0𝑝1 + 1𝑝2

𝑞3 = 𝛼13𝑝1 + 𝛼23𝑝2

(4)

Since the first 𝑔 uncoded packets are guaranteed to increase the decoders
rank upon reception, there is no drawback in using sRLNC as a FEC scheme
on the first hop in comparison to traditional RLNC. Upon reception, the
decoder can directly make these uncoded packets available to the applica-
tion layer without the need for other packets to arrive. Thus, invoking less
decoding delay than traditional RLNC, where a packet can only be used by
an application after the reception of at least 𝑔 − 1 other encoded packets.

The following example demonstrates the usage of sRLNC FEC in a simple
end-to-end communication. Assume we have a network consisting of two
nodes 𝑆 and 𝑅, which are connected by link 𝐿. An application running on 𝑆

wants to transmit the original packets 𝑝1, 𝑝2, and 𝑝3 to a receiver application
on 𝑅. Further assume the link is prone to packet loss with packet loss rate
𝑃𝐿𝑅𝐿. To add robustness against this loss, an sRLNC encoder is deployed
on 𝑆 and a corresponding decoder runs on 𝑅. This setup is shown in the
following figure:

1 0 0

0 1 0

0 0 1

α14α24α34

α15α25α35q5

q4

q2

q3

q1

p3

p2

p1

q5

q4

q1 1 0 0

α14α24α34

α15α25α35

x

x

p1

p2 p3t5 :

t4 :

t3 :

t2 :

t1 :

Rec. AppDecoderLossy NetworkEncoderSrc. App

S R
L

Figure 4: sRLNC FEC example.

Upon receiving 𝑞5, the decoding condition 𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔 becomes fulfilled.
Thus, the decoder can restore 𝑝2 and 𝑝3 and forward them to the receiving
application. Despite the losses on the link and without additional feedback or
retransmissions, the communication still achieves full reliability. The figure
also illustrates the distinct advantage of sRLNC over traditional RLNC.

8



2 State-of-the-art & Related Work 2.1 Network Coding in a Nutshell

Because the first three send packets are basically uncoded, the red packet 𝑝1
can directly be forwarded to the receiver without decoding delay.

FEC Capability: In general, the FEC capability of a sRLNC codec de-
pends on the chosen generation size 𝑔, redundancy rate 𝑟, and the links loss
rate 𝑃𝐿𝑅𝐿. When analyzing possible coding gains by calculating the packet
loss rate after decoding 𝑃𝐸𝑅𝐷𝐸𝐶 , we must consider if the decoding condi-
tion 𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔 is fulfilled or if this is not the case. In other words, we
must distinguish if the subset of received packets contains at least 𝑔 packets
(𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔), or if it contains less than 𝑔 packets (𝑟𝑎𝑛𝑘 (𝐷) < 𝑔). Starting
with the simple case 𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔, due to linear independence, the decoding
matrix is always solvable (or at least with very high probability). Thus, all
received subsets, which contain at least 𝑔 packets result in a 𝑃𝐸𝑅 of zero and
must not be considered any further when calculating 𝑃𝐸𝑅𝐷𝐸𝐶 . On the other
hand, subsets with 𝑟𝑎𝑛𝑘 (𝐷) < 𝑔 must be analyzed more carefully, depending
on their composition. Because an identity matrix is used during the system-
atic phase of the encoding process, c.f., Figure 4, the first 𝑔 packets can be
treated as being uncoded. The receiver can forward these systematic pack-
ets to the application layer without further decoding, even if the decoding
condition 𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔 is not fulfilled. Thus, for subsets with 𝑟𝑎𝑛𝑘 (𝐷) < 𝑔,
the number of usable packets is equal to the number of systematic packets,
while redundancy packets must be ignored. Formalizing the thoughts above
leads to the following equation to calculate the average PER of an sRLNC
generation after decoding, denoted as 𝑃𝐸𝑅𝐷𝐸𝐶 :

𝑃𝐸𝑅𝐷𝐸𝐶 =

𝑔−1∑︂
𝑘=0

𝑔−𝑘−1∑︂
𝑖=0

(︃
𝑔

𝑘

)︃ (︃
𝑔 · 𝑟
𝑖

)︃ (︂𝑔 − 𝑘

𝑔

)︂
· 𝑃(𝑘, 𝑖) (5)

𝑤𝑖𝑡ℎ 𝑃(𝑘, 𝑖) = (1 − 𝑃𝐿𝑅𝐿)𝑘+𝑖 · (𝑃𝐿𝑅𝐿)𝑔 · (𝑟+1)−(𝑘+𝑖) (6)

Notice that the factor 𝑃(𝑘, 𝑖) weights each subset according to its probability
of occurrence by calculating the probability to receive exactly 𝑘 out of 𝑔

systematic while also receiving 𝑖 out of 𝑔·𝑟 redundancy packets. The binomial
coefficients additional factor in the amount of all possible combinations with
exactly this distribution of packets. As mentioned before, it is not necessary
to consider subsets with 𝑟𝑎𝑛𝑘 (𝐷) ≥ 𝑔 when calculating 𝑃𝐸𝑅𝐷𝐸𝐶 . Thus, the
upper limit of the first sum with index 𝑘 is set to 𝑔−1, while 𝑔 − 𝑘 − 1 is used
for the second sum, limiting the total cardinality of the analyzed subsets to
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Figure 5: Packet loss rate after decdoing (𝑃𝐸𝑅𝐷𝐸𝐶) for sRLNC.

𝑔−1. It has to be noted that the shown equation assumes a Bernoulli packet
loss distribution, where each packet has a independent loss probability of
𝑃𝐿𝑅𝐿. In reality, packet loss is seldom truly Bernoulli distributed, as we
have shown for traces of a WSN deployment [P2]. We will further discuss
the occurrence and modeling of packet loss in section 2.3.1. To visualize
the the FEC capability of sRLNC, we have implemented equation 7 and run
numerical calculations. The result is shown . As shown in in Figure 5, the
potential packet loss reduction depends heavily on the combination of the
chosen generation size 𝑔, redundancy rate 𝑟, and link loss rate 𝑃𝐿𝑅𝐿.

To further highlight its FEC benefits, the sRLNC coding gain can be ex-
pressed in terms of relative percentage change Δ%𝑃𝐿𝑅𝐷𝐸𝐶 :

Δ%𝑃𝐿𝑅𝐷𝐸𝐶 =
𝑃𝐿𝑅𝐿 − 𝑃𝐿𝑅𝐷𝐸𝐶

𝑃𝐿𝑅𝐿

· 100 (7)

This metric represents the packet loss reduction in percent, if network coding-
based FEC is used. For example, applying sRLNC(g=4, r=0.25) to a data
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Figure 6: Relative percentage change Δ%𝑃𝐿𝑅𝐷𝐸𝐶

for sRLNC after decoding.

stream on a link with a native packet loss rate of 𝑃𝐿𝑅𝐿 = 15% results in a
packet loss rate after decoding of 𝑃𝐸𝑅𝐷𝐸𝐶 = 7.18% (c.f., Fig. 5, blue dia-
monds). This corresponds to a relative PLR reduction of 52.20%. One way to
increase the FEC capability is to crank up the redundancy rate. For example,
using sRLNC(g=4, r=0.5) reduces the final loss rate to 𝑃𝐸𝑅𝐷𝐸𝐶 = 2.47%,
which is a gain of Δ%𝑃𝐿𝑅𝐷𝐸𝐶 = 83.52% (c.f., Fig. 5+6, blue crosses). A
higher robustness can also be achieved by setting a larger generation size,
i.e., sRLNC(g=16, r=0.25), to make the scheme more robust against occa-
sional burst losses. Finally, combining a larger generation size with a higher
redundancy yields the best results, i.e., using sRLNC(g=16, r=0.5). Such a
parameterization reduces the loss rate to 𝑃𝐸𝑅𝐷𝐸𝐶 = 0.23%, which is a gain
of Δ%𝑃𝐿𝑅𝐷𝐸𝐶 = 98.48% (c.f., Fig. 5+6, yellow crosses). While this coding
gain is significant, it comes at the cost of additional redundancy and a larger
decoding delay. Thus, selecting the right parameterization is one important
aspect when deploying the codec.
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Other FEC codecs: While network coding-based FEC is a rather young re-
search field, the first bit-level FEC code was already introduced by american
mathematician Richard Hamming in 1950. His now famous (7,4) Hamming
code was initially developed to make the execution of punched paper tape
programs robust against bit errors. By adding three parity bits, the code can
protect a sequence of four original bits against a single-bit error, thus, the
(7,4) notion. In 1960, Irving S. Reed and Gustave Solomon extended this
approach to a block-based codec, which enables a more efficient encoding
of large data batches. To distinguish network coding-based FEC from these
traditional bit-level codes, the following section will first present a short sum-
mary of traditional FEC codes, then highlight the differences. In general,
error correcting codes are not limited to network communication. Any data
transmission, which can be prone to errors and where feedback is not possi-
ble or prohibitively expensive, can profit from FEC. One prominent example
is the usage of Reed–Solomon codes to make optical disc media, e.g. CDs
and DVDs, robust against scratches. For critical, high-value data storage,
a similar coding scheme is used for protection against corruption. These
Error-correcting code memory (ECC memory) chips are especially relevant
for space missions, where bit errors are much more common due to solar
flares and can cause significant problems. Over the years, several different
coding strategies were developed with special optimizations and goals. For
example, low-density parity-check (LDPC) codes [12] are used in the IEEE
802.16 standard, i.e., WiMAX, because they have a very low complexity.
Turbo codes [7] on the other hand naturally apply interleaving to increase
the robustness against bit error bursts. Further information on the FEC
basics and different code types can be found in "Error Correcting Codes - A
Mathematical Introduction" by D J. Baylis [4]. A more networking-oriented
FEC introduction is given in [14].
The main difference of the previously mentioned traditional FEC codes in
comparison to network coding-based FEC is the payload level, on which they
operate. Hamming codes, Turbo codes, Reed-Salomon codes, LDPC codes,
and all related coding strategies work on a bit- oder byte level. Even though
interleaving (c.f. [7]) allows to spread the redundancy over a larger sequence
of bytes, the encoding itself is still done on a byte-level. Network coding on
the other hand directly forms independent linear combinations of packets.
Thus, while the other codes can correct bit or byte errors, network coding-
based FEC can recover lost packets. This characteristic difference enables
several advantages, but also offers new challenges, as will be highlighted in
the following chapters.
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2.2 Integration

The full potential of network coding can only be put into practice, if the
coding scheme is well integrated into the existing network infrastructure.
Yet, a sound integration offers unique challenges and is often easier said than
done. Thus, this section will present the state-of-the-art of network coding
integration and summarize the basic concepts of MQTT-SN and CoAP to
give the background for our contributions [P1] and [P2].

2.2.1 Related Integration Approaches

To distinguish our contributions from the related work, the following section
highlights the most prominent existing integration approaches, categorized
by the network stack layer on which they operate. This is shown in figure 7
using the IETF stack model, with the session, presentation and application
layer being merged for clarity. We have further added additional shim layers
to categorize cross-layer solutions. Even though the focus of this thesis
lies on intra-session coding, notable inter-session coding approaches are also
mentioned.

Starting with network coding on the physical layer (PNC), the most promi-
nent and often cited publication is "Hot topic: Physical-layer network cod-
ing" by Zhang et al. [55]. Instead of mixing bits and bytes, PNC directly
superimposes the electromagnetic waves of two signals on one another to
form signal-level linear combinations. While PNC is the most drastic way
to implement network coding, it also promises very significant gains. For
example, in [31], the authors provide an example, which shows a potential
throughput gain of 100% for a passive optical network (PON). The approach
was refined by Lu et al. in [34] to cope with the asynchrony between trans-
mitted signals. Still, the two main remaining problems of PNC are the
complex implementation and the missing compatibility with legacy systems.
Mixing two electromagnetic waves and outputting the result requires spe-
cial hardware and is not possible on regular network cards. Also, seamless
interoperability with traditional Ethernet or 802.11 Wi-Fi physical layers is
not given. More information on PNC can be found in a survey by Liew et
al. [31], which was published in 2013.
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1. Physical

2. Data Link

3. Network

4. Transport

5. Application

[55] Zhang et al., "Hot topic: Physical-layer network coding", 2006
[34] Lu et al., "Asynchronous physical-layer network coding", 2011

[20], Hundebøll et al., "Catwoman: Implementation and performance evaluation [...]", 2012

[26], Katti et al., "XORs in the air: practical wireless network coding"., 2008

[48] Sundararajan et al., "Network coding meets TCP", 2009

[53] Thai et al., "Joint on-the-fly network coding/video quality adaptation for real-time delivery", 2014
[P1] Schuetz et al., "Adding a Network Coding Extension to CoAP for Large Resource Transfer", 2016
[P2] Schuetz et al., "Improving Energy Efficiency of MQTT-SN Lossy Environments [...]", 2017
[42] Swett et al., "Coding for QUIC", 2020

[15] Gkantsidis et al., "Network coding for large scale content distribution", 2005

Figure 7: Related integration approaches, categorized by stack layer.

Even before PNC became its own research field, most network coding ap-
proaches targeted the data link or network layer. For example, in their
groundbreaking work [26], Katti et al. have inserted an XOR inter-session
network coding scheme on a shim layer between the network and data link
layer, called COPE. To send encoded packets downstream, Katti et al. ini-
tially wanted to use the broadcast mode of the underlying 802.11 MAC
layer. But due to poor reliability and missing back offs, they had to settle
for a pseudo-broadcast, which is in reality a modified unicast that can be
sniffed by the other nodes. Unfortunately, this approach works only if all
devices are set to promiscuous mode, which is not necessarily possible for
all consumer-grade network devices. For example, a common smartphone
can only overhear other packets if a root kit is installed, e.g., CyanogenMod
(discontinued) or its successor LineageOS 1 for android.

1https://www.lineageos.org/, accessed 02.08.2020
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A similar, yet more practical usable approach, called CATWOMAN, was pro-
posed by Hundebøll et al. in 2012 [20]. While the coding itself works similar
to COPE, CATWOMAN operates on top of the already well established mesh
routing protocol B.A.T.M.A.N.. By utilizing the inherited routing mecha-
nisms, CATWOMAN easily detects coding opportunities. The authors claim
that this approach achieves a performance gain of up to 60% compared to
a pure relaying scheme in a scenario with two bidirectional flows (known as
the Alice and Bob scenario). It has to be noted that the implementation
uses the advanced version of B.A.T.M.A.N., which switched the routing to
layer 2, making CATWOMAN essentially a link layer protocol. Yet, the
general idea would also work with the old layer 3 version of B.A.T.M.A.N..

The previously mentioned approaches focused on inter-session network cod-
ing to solve bottleneck or routing challenges. Ascending the stack naturally
leads from routing towards host-to-host communication services. In gen-
eral, inter-session coding is done low in the stack, while intra-session imple-
mentations reside on the upper layers. Thus, network coding-based FEC is
typically integrated above the network layer.

Probably the most popular publication of an intra-session coding scheme is
Coded TCP (CTCP) by Sundararajan et al. [48]. Prior to the development
of CTCP, several studies have shown significant problems of regular TCP
when used in lossy networks. Usually, TCP ensures fairness between com-
peting data streams using additive increase/multiplicative decrease (AIMD)
congestion-avoidance. This strategy was designed to cope with queue drops
in cable-bound networks but not with occasional packet loss due to interfer-
ence or signal degradation, which can happen in wireless communication. To
reduce the amount of packet loss, and, thus, increase the overall throughput,
CTCP uses encoded packets in combination with a new TCP acknowledg-
ment strategy. Instead of acknowledging sequence numbers, CTCP checks
for degrees of freedom by using the new notion of seen packets. This is the
main novelty introduced by Sundararajan et al. in [48]. More information
and implementation details on CTCP can be found in their follow-up paper
"Network Coding Meets TCP: Theory and Implementation" [49]. There, it
is also mentioned that their initial implementation resides on a shim layer
below the transport layer. Thus, we marked it accordingly in Figure 7.

While CTCP has shown great potential, it is essentially a new transport
layer protocol and not compatible with other devices in regular 802.11-based
networks. This legacy problem is not exclusively new for network coding
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protocols, but applies to any new transport layer protocol. Especially the
compatibility with middleboxes and firewalls is one crucial limitation. For
example, many firewalls include packet filter, which only allow traditional
UDP and TCP packets to pass. Other protocols will be dropped, which
greatly limits the deployability of a novel transport protocol. This problem
was also recognized by Googles development team, when creating the Quick
UDP Internet Connections protocol (QUIC) as a faster alternative for web
browsing than common TCP over HTTP/2. Already the first paragraph of
the official QUIC for Chromium website 2 describes this issue: "Because TCP
is implemented in operating system kernels, and middlebox firmware, mak-
ing significant changes to TCP is next to impossible. However, since QUIC
is built on top of UDP, it suffers from no such limitations." So instead of
developing a completely new transport protocol, QUIC simply works on top
of UDP. A similar approach was implemented for the Stream Control Trans-
mission Protocol (SCTP) by tunneling SCTP over UDP. The corresponding
UDP encapsulation was proposed in RFC 6951 [43]. Because such tunneling
is necessary and only TCP and UDP are possible candidates, this leads to the
question: Which transport protocol is better suited for coding integration,
TCP or UDP? In most cases, the answer is simple: UDP. One fundamental
principal of TCP is transport layer reliability. Therefore, depending on the
TCP flavor, a different type of automatic repeat request (ARQ) retransmis-
sion scheme is used. These retransmissions are triggered, before any packet-
level FEC capabilities would be applied on the layers above. Thus, TCP
is not suited as the underlying transport protocol for network coding-based
FEC. UDP on the other hand is often not chosen due to is missing reliability.
Yet, for the integration of packet-level FEC, this is not a problem, but an
opportunity, and, thus, the main reason why we have selected UDP-based
protocols for our coding integration approaches in [P1] and [P2].

A prominent UDP-based FEC empowered protocol is TETRYS, which is a
sliding window encoding scheme for real-time critical applications, especially
video streaming. The basic idea was published by Thai et al. in [53]. A fur-
ther definition of TETRYS as an application layer protocol was uploaded in
form of an experimental draft [10] of the IETF Coding for efficient NetWork
Communications Research Group (NWCRG).

The same working group also currently proposes a draft to add packet-level
FEC to QUIC, based on TETRYS’ sliding window encoding scheme [42].
QUIC is especially suited for a FEC extension, because is uses UDP as the

2https://www.chromium.org/quic, accessed 30.07.2020
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underlying transport protocol and also has a partial reliability feature to still
guarantee the completeness of a transfer. An early evaluation for different
packet loss rates and delays was presented by Michel et al. in [38]. The
study showed that the FEC extension can drastically lower the download
completion time for short web transfers but can lead to problems for longer
downloads or in low-bandwidth configurations.

Finally, there also exist applications with directly integrated coding. The
most prominent example, and one of the first commercial applications of net-
work coding, is the peer-to-peer (P2P) content distribution service Avalanche 3.
The software was developed by Pablo Rodriguez and Christos Gkantsidis of
the Microsoft research team. Avalanche works similar to BitTorrent, but
instead of just distributing chunks of the original content, the peers store
linear combinations of smaller blocks. Without coding, a receiving node
needs one copy of each individual chunk to restore the original content. Un-
fortunately, the probability to receive an independent chunk sinks with each
chunk already received. This problem is also known as the coupon collector
problem. If network coding is used, each encoded block is linear independent
with high probability. Thus, a receiving node just needs a sufficient number
of blocks, and not each individual original chunk. This idea is essentially
network coding-based FEC on a content level. Gkantsidis et al. presented
a performance evaluation in [15], claiming that coding can reduce the file
download time by more than 2-3 times. Additionally, the new system is
more robustness and better able to handle problematic scenarios where the
server and nodes leave the network.

2.2.2 CoAP & MQTT-SN

Due to the aforementioned legacy problems and integration constrains, we
focused our integration research on UDP-based protocols. We have chosen
to work on coding for IoT devices, because the constrained nodes often have
to communicate wireless under harsh conditions with limited power, which
makes robustness against packet loss a critical feat. Within the IoT, the
two most prominent approaches are the Constrained Applications Protocol
(CoAP) and MQTT for Sensor Networks (MQTT-SN). To give the back-
ground for our coding extensions, the relevant details of these two protocols
will be summarized here.

3https://www.microsoft.com/en-us/research/project/avalanche-file-swarming-with-
network-coding/, accessed 01.08.2020
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CoAP: The Constrained Applications Protocol (CoAP) is featured in our
first publication [P1]. The protocol was proposed in RFC 7252 [40] by the
IETF Constrained RESTful environments (CoRE) Working Group. It is de-
signed to give constrained devices access to the main features of a represen-
tational state transfer (REST) architecture. This includes resource requests
via get, put, post and delete, similar to HTTP. There are several design as-
pects to CoAP, which are helpful to integrate coding. For example, a 2-bit
type field T in each message header indicates, if it is confirmable or non-
confirmable request. Thus, by setting this field to non-confirmable, it is pos-
sible to disable CoAPs ARQ and implement FEC reliability instead, without
breaking the standard. Another important design aspect is the extensibility
of CoAP messages using option fields. By including an option, the sender
can force the receiver to process the containing message in a specific way.
CoAP’s specification [40] already includes two of these options to enable a
simple transfer scheme for large resource handling, called blockwise transfer.
While this approach works for non-lossy links, it uses a simple stop-and-wait
strategy, which suffers major throughput problems in the presence of packet
loss. To overcome this problem, our first publication [P1] introduces an effi-
cient way to integrate reliable file transfer with network coding-based FEC
into the protocol.

MQTT-SN: The Message Queue Telemetry Transport protocol for Sensor
Networks (MQTT-SN) [46] is an adaptation of the popular MQTT protocol,
which was initially developed for industrial condition monitoring, e.g., to
remotely assess oil pipelines. The core of both MQTT variants is a publish-
subscribe communication pattern, where a publisher sends its messages on
a specific topic to a broker, which then forwards these publications to each
subscriber of the topic. MQTT-SN is designed to enable this approach for
constrained devices. While MQTT-SN features the core concepts of MQTT,
it is designed to better work for constrained devices. Thus, it is adapted
to wireless links with limited bandwidth, high packet loss rates, and small
MTUs. The main difference to traditional MQTT to enable these advan-
tages is the change of the underlying transport protocol. Instead of rely-
ing on TCP, MQTT-SN works on top of UDP. Any reliability mechanisms
are implemented on the application layer in the protocol itself. This makes
MQTT-SN favorable for the integration of packet-level FEC over traditional,
TCP-based MQTT.
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2.3 Evaluation

In our publications [P3] and [P5], we have introduced novel tools and meth-
ods to evaluate potential coding gains. Thus, the following section will
summarize the relevant basics and present the related work, including an
introduction to packet loss modeling and QoE for VoIP communication.

2.3.1 Packet Loss Modeling & Link Emulation

Reproducible packet loss modeling is necessary to enable a systematic eval-
uation of potential coding gains. Due to its prominence, this thesis will
especially focus on the occurrence of packet loss in networks with a Ethernet-
based 802.11 network stack, e.g., Wi-Fi. In such systems, packet loss mainly
occurs either because of queue drops or due to bit flips on the medium. While
queue drops are a result of active queue management (AQM) in the network
interface controller (NIC) to prevent congestion and full buffers, these drops
can hardly be reduced using packet-level FEC. Sending additional redun-
dancy packets would stress the system even more, potentially leading to
even more drops. Thus, we focus on the second case here, bit flip induced
packet loss. Especially in wireless scenarios, this happens quite frequently
due to signal degradation or interference on the physical layer. Yet, these
physical effects are hard to model. Thus, often simpler loss models are used.

Because packet loss modeling is an essential part in all our publications,
especially [P2], the following section highlights the benefits and drawbacks
of different models. This is demonstrated using an exemplary packet loss
distribution. A more formal introduction to packet loss modeling is given
in [16]. The shown exemplary distribution is similar to the ones we have
observed in the traces of a real-world WSN deployment [5]. There, most
of the time only occasional packet losses happened, which may have been
caused by interferences or signal degradation. Yet, sometimes, especially
during periods of bad weather, the connection was heavily disturbed, which
resulted in longer loss bursts. Figure 9a shows a loss sequence with these
characteristics. Assume now, we want to train a model, which replicates this
loss distribution. This is necessary to reproduce the observed scenario in
a testbed environment when evaluating potential FEC gains. To highlight
each models specific traits, we have implemented all here discussed models in
Sagemath and rolled an exemplary loss sequence for each one. The models are
shown in Figure 8 with their corresponding loss sequences given in Figure 9.
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Figure 9: Loss models example.

Bernoulli Model: The simplest approach to model packet loss is to assume
each packet has an independent loss probability. This is similar to conducting
a weighted coin flip with probability of 𝑝 to create a packet loss and prob-
ability 1 − 𝑝 for a success. The resulting discrete binomial distribution can
be created using a Bernoulli model, if we interpret output 0 as packet loss,
and output 1 as a successful reception. Implementing a Bernoulli model can
be done by using a two state Markov chain with fixed output states 𝐺 = 1
and 𝐵 = 0, and transition probabilities 𝑃(𝐺 |𝐵) = 𝑝 and 𝑃(𝐺 |𝐵) = 1 − 𝑝.
Such a two state Markov chain is shown in Figure 8a. Exemplary rolling
the model 𝑛 = 50 times returns the packet loss sequence shown in Figure 9b.
By comparing this sequence to the exemplary trace, the limitations of the
Bernoulli model are obvious. Even though the model was initialized using
the traces average PLR for 𝑝, the distributions differ heavily. While assum-
ing a Bernoulli distribution allows for easy calculations, e.g. the average
packet loss rate is simply 𝑝, real-world packet loss is seldom truly binomial
distributed. Because the Bernoulli model does not have a form of memory,
each roll is independent, and, thus, it is not possible to create longer loss
bursts or extended sequences without losses.

Simple-Gilbert Model: This problem is fixed in the Simple-Gilbert model
by using non-symmetric transition probabilities. So instead of using 𝑃(𝐺 |𝐵) =
1 − 𝑝 for the transition back from the bad to the good state, a new param-
eter 𝑟 is introduced, which leads to 𝑃(𝐺 |𝐵) = 𝑟. This changes allows to
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create bursty patterns. The corresponding Simple-Gilbert model is shown
in Figure 8b. An exemplary loss sequence is presented in Figure 9b, which
highlights the new burstiness, despite having the same average PLR. While
this is a major improvement over the Bernoulli model, the Simple-Gilbert
can not produce gaps within a burst sequence. The same output is created
until a state transition happens. But even with this limitation, the model is
still very useful to model loss sequences with two fixed states. For example,
in our WSN deployments some sensor nodes usually worked perfect, but lost
the connection to the base station completely while rebooting. During such
interruptions, no packets at all could be received. This is a perfect case for
the Simple-Gilbert model. Yet, our here shown exemplary trace does not
have such distinct states. Even within a loss burst, some packets can still be
received.

Gilbert Model: The more advanced Gilbert model addresses this issue by
adding an additional output probability to the bad state, which is denoted by
parameter ℎ. When choosing ℎ > 0, the model is able to produce receptions
despite being in the bad state. These additional receptions are colored blue
in Figure 9c. Comparing the Gilbert sequence to our exemplary trace shows
a good similarity. Yet, there is still one open issue. The Gilbert model is
not able to create occasional losses while in the good state.

Gilbert-Elliot Model: Finally, adding the loss probability 𝑃(0) = 1 − 𝑘

to the good state leads to the prominent Gilbert-Elliot model. Due to its
ability to also create occasional errors without entering the bad state, the
Gilbert-Elliot model has become state-of-the-art for bit error modeling. It
has to be noted that all here mentioned Gilbert-based models were initially
developed to model bit errors. Yet, nowadays they are also widely used to
model packet losses, e.g., as implemented in the popular network emulated
𝑛𝑒𝑡𝑒𝑚. The final Gilbert-Elliot model is shown in 8d with the new occasional
packet losses are highlighted red in Figure 9d.

While the complexer approaches allow for more realistic packet loss model-
ing, this comes at the cost of additional parameters. The resulting greater
parameter space has several disadvantages. First, it is harder to create for-
mal equations. For example, formalizing the sRLNC coding gain (c.f., Equa-
tion 7) using a Gilbert-Elliot Model instead of a Bernoulli model is much
more complicated. Secondly, the variance between sequences of the same
model is higher due to the inherit burstiness. This is especially true if a
model with low transition probabilities is used. As a result, a much greater
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number of replications must be conducted to get significant testbed experi-
ments. This combination of bloated parameter space and increased number
of replications can lead to excessive experiment durations. Adding different
codec parameterizations to the evaluation, e.g., changing 𝑔 and 𝑟, amplifies
the problem further. Thus, many network coding studies and also some pub-
lications of this thesis still emulate packet loss using a Bernoulli model to
show general coding gains.

Trace-based Loss Emulation: While the aforementioned models allow
to fit the loss distribution and average PLR of a collected trace, as shown
in Figure 9, they rely on a random number generator (RNG), and, thus,
cannot replicate the trace in a packet-by-packet form. For example, in our
MQTT-SN work [P2], we trained a Gilbert-Elliot model to reproduce the
packet loss characteristics of an observed, finished WSN deployment. Yet,
this approach does not perfectly replicate the observed scenario. Doing so
requires a trace-based loss models, as we have implemented using our 𝑙𝑖𝑛𝑘 ′𝑒𝑚
bridge [P3]. While the framework also allows to use all previously mentioned
models, it is also possible to directly parse a 𝑝𝑐𝑎𝑝-trace into the emulator
to exactly recreate a recorded loss pattern packet-by-packet. This trace-
based emulation removes the variance completely to achieve more scenario-
specific results at the cost of less generality. Such a trace-based loss sequence
reproduction is shown in Figure 9f. More information on 𝑙𝑖𝑛𝑘 ′𝑒𝑚 will be
presented in Section 3.2.1.

Link vs. Network Emulation: For this work, to evaluate the benefits of
our FEC schemes, we only care about the link condition between encoding
and decoding node. It is not necessary to recreate a complete network, but
just emulate the link conditions between both interfaces, e.g., by applying
the aforementioned models to emulate packet loss. Thus, this section fo-
cuses on link condition emulation technologies and not network emulators,
e.g., MiniNet[13], or Core[2]. If one is interested in the research of network
coding for larger topologies, there exists an integration of the popular net-
work coding library Kodo into NS-3 4, which enables scalable simulation.
Also, this thesis aims to present the practical benefits of network coding
for real-world scenarios. Thus, we believe that running real applications on
real end-devices can achieve more meaningful results than relying on vir-
tual testbeds. This said, some evaluations can only be conducted well in a
real-world context. For example, for our MQTT-SN research [P2], we made
precise energy consumption measurements of a Raspberry Pi Zero using a

4https://github.com/steinwurf/kodo-ns3-examples, accessed 02.08.2020
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Fluke True-RMS digital multimeter. This would not have been possible with
the same precision on virtual devices. With this strong believe in practical
deployments, why should we still only emulate link conditions and not physi-
cally induce real packet loss? In short, physically recreating link conditions is
a difficult task, which requires dedicated, expensive hardware. One notable
approach to induce packet loss for network coding was conducted by Kim
et al. by using a domestic microwave oven in close proximity to generate
interferences [27]. Despite the ingenious idea and the experiments success,
we gently doubt its long term viability and good reproducibility. Thus, we
relied on the emulation of challenging link conditions in this thesis, especially
to generate packet loss.

The arguably most prominent tool to reliably create artificial packet loss
is the network emulator NetEM 5, which is part of Linux’ Traffic Control
(TC) packet. It has to be noted that NetEM can not only create packet loss,
but also emulate delay, reordering, corruption and duplication. An empirical
study of netems functionalities can be found in [24].

While iptables is usually one of the go-to tools for network administration,
e.g. to increase the security of a network by adding packet filtering to in-
coming traffic, it can also emulate certain link conditions. Using the statistic
mode of the iptables-extensions packet 6, it is possible to either drop random
packets with a given probability, or even reject every n-th packet. Unfortu-
nately, no complex models are implemented.

2.3.2 Quality of Experience for Voice over IP

Even tough traditional Quality of Service (QoS) metrics like delay, through-
put, and packet loss are still the backbone of networking research, Quality
of Experience (QoE) metrics have risen in popularity. These metrics try to
quantify the quality of a system from an end-user perspective. The COST
Action QUALINET defines the term Quality of Experience as follows [32]:
"The degree of delight or annoyance of the user of an application or service.
It results from the fulfillment of his or her expectations with respect to the
utility and / or enjoyment of the application or service in the light of the
user’s personality and current state."

5https://man7.org/linux/man-pages/man8/tc-netem.8.html
6https://ipset.netfilter.org/iptables-extensions.man.html
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QoE vs UX: It has to be noted that QoE is often associated or confused with
User Experience (UX), which also focuses on the end users perception of a
service or software. Even the COST Action definition of QoE is rather vague
and lets room for interpretation. Thus, we stick to the tighter definition by
Wechsung and De Moor [54]. They define QoE as primarily technology-
driven and quantified with software-based, standardized measurement tools.
UX on the other hand is characterized as a holistic approach with strong em-
phasis on qualitative research and done by interrogative user studies. With
this in mind, this section focuses on QoE and not UX.

QoE Use Cases: One prominent example for the benefits of a QoE-centric
evaluation is web browsing. Traditionally, Page Load Time (PLT) was the
go-to metric to rate the performance of a web browsing server or hosting
service. The PLT is calculated from the start of a request until the complete
website is rendered. One drawback of the PLT is that it even includes ele-
ments, which are not in the current view port of the user. Recognizing this
problem, the Speed Index (SI) metric uses a more user-centered approach
by only considering the crucial above-the-fold (ATF) portion of the page.
Thus, the SI better quantifies the real quality of experience. This change
has aided in the development of new techniques like transmitting the ATF
section of a website first using progressively rendering to achieve a higher
user satisfaction.

Another popular research field for QoE is real-time video streaming. Be-
cause the impact of traditional QoS metrics like packet loss depends heavily
on the video content, amount of movement between frames and cut fre-
quency, these metrics cannot reliably represent the user satisfaction. Ad-
ditionally, advanced compression techniques like inter-picture prediction, as
used by the popular H.264 codec, have a significant impact on the rendered
image. Thus, even traditional signal-based metrics like the Peak to Signal
Noise Ratio (PSNR) are outdated and more complex QoE metrics are used
to quantify the quality of such video streams. Popular examples are the
Structural Similarity Index Measure (SSIM) or the Video Multimethod As-
sessment Fusion (VMAF). Later is used by Netflix to measure the impact of
codec compression in their system.

QoE for VoIP: In our publication [P4], we have focused on QoE evaluation
for VoIP applications for tactical communication in lossy networks. While
running experiments with our PyNC network coding proxy, we realized that
the existing QoE metrics do not cope well with packet loss. Traditional ap-
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proaches, for example the Perceptual Evaluation of Speech Quality (PESQ)
metric, were developed to evaluate small artifacts and distortions, which
occur due to compression by the voice encoding. But especially in lossy
scenarios, this minor speech signal degeneration is often overshadowed by
packet loss-induced disruptions. For a good user experience, the amount of
understandable words is much more important than the negative impact of
small interferences, like noise or crackling. This is especially true for com-
munication in tactical and command-and-control scenarios. Similar effects
were not only shown for VoIP applications, but also in fundamental neurol-
ogy studies regarding speech processing in the human brain, e.g., [37]. The
following paragraph will present the most popular QoE metrics for VoIP,
based on our related work section in [P5].

Perceptual Evaluation of Speech Quality (PESQ): The default metric
for speech quality is the Perceptual Evaluation of Speech Quality (PESQ),
which is standardized in ITU-T recommendation P862 [21]. PESQ was ini-
tially developed for telephony systems but was directly applied also for VoIP
research. PESQ’s basic algorithm aligns the reference and the recorded sig-
nals in time and uses a fast Fourier transform (FFT) for filtering. The raw
PESQ value is then calculated based on disturbances in frequency and time,
which are aggregated using an Lp norm. The conversion term to convert
the raw PESQ values into Mean Opinion Score Listening Quality Objec-
tive (MOS-LQO) values is defined in ITU recommendation P.862.1 [22]. It
has to be noted that the Perceptual Objective Listening Quality Analysis
(POLQA, P.863, [23]) is the successor of PESQ and currently, the ITU rec-
ommended speech quality metric. The authors claim that POLQA "offers
an advanced level of benchmarking accuracy and adds significant new capabil-
ities for super-wideband (HD) and full-band voice signals, along with support
for most recent voice coding and VoIP/VoLTE transmission technologies" 7

in comparison to PESQ. Unfortunately, there is no free POLQA implemen-
tation available to the public.

Hearing-Aid Speech Quality Index (HASQI): A non-ITU alternative
is the Hearing-Aid Speech Quality Index (HASQI) [25], which was developed
to measure the effects of distortions on the speech quality for persons in need
of a hearing aid. HASQI is calculated by using two components. The first
component measures how well the spectral representations of a signal fits its
reference, measuring the effects of noise and nonlinear distortion. The sec-
ond component considers the impact of linear filtering and spectral changes

7http://www.polqa.info/, accessed 04.08.2020
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by analyzing the long-term average spectra. While there does not exist a
public repository, a MATLAB code of HASQI Version 2 can be obtained by
contacting the authors.

ViSQOL: Another notable VoIP metric is ViSQOL [18], which analyses
spectro-temporal signal characteristics to model human perception. Accord-
ing to a study by the authors, ViSQOL achieves a closer correlation to the
MoS than PESQ and POLQA. The software was recently made available to
the public8 but is still in early stages of development.

Further comprehensive information on the topic of QoE research in general
can be found in [39]. The book also contains a summary of speech commu-
nication specific QoE, starting on page 165 in chapter twelve.

8https://github.com/google/visqol

26



2 State-of-the-art & Related Work 2.4 Optimization

2.4 Optimization

After the initial publication by Ahlswede et al. in 2000 [1], network coding
has seen major research interest. While the idea was initially developed to
solve routing bottlenecks, the concept of packet-level coding was extended to
different scenarios. Especially the focus on its capabilities as a FEC scheme
brought up new challenges and use cases, which required further optimiza-
tions. Because network coding stems from the field of information theory,
some real-world implications were often neglected or simply unknown for
a long time. For example, early works often used a non-systematic RLNC
codec [33], where a linear combination is formed by all packets of the genera-
tion (c.f., Section 2.1). While this coding scheme can easily be implemented
using matrix operations, it has a significant downside. Only if at least 𝑔

packets are received, the decoded information can be forwarded, which re-
sults in large decoding delays. This issue can be fixed by using a systematic
RLNC, where the first 𝑔 packets are send basically uncoded, and, thus, can
be directly forwarded to the receiver. The TETRYS codec [53] takes this
early decoding one step further by using a sliding encoding window to make
network coding-based FEC applicable to time critical applications.

Other optimizations focused on the computing complexity of network coding.
For example, Silva et al. [41] presented a sparse coding scheme with over-
lapping generations, which reduces the complexity by allowing the decoder
to alternate between Gaussian elimination and back substitution. A differ-
ent approach was done by Lucani et al.[36], called Fulcrum network coding.
This schemes enables a fluid allocation of coding complexity by nesting and
levering different field sizes.

While the aforementioned optimizations mainly focused on the way in which
the linear combinations are formed, another important real-world challenge
is the handling of coding overhead. Because the optimization of this problem
is the main focus of our contributions [P4] and [P6], the following section
will explain the occurrence of coding overhead and summarize the existing
approaches to reduce it.
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2.4.1 Coding Overhead

The following section explains the occurrence of coding overhead based on
our explanations in [P4] (c.f.[P4], Section II) and [P6] (c.f.[P6], Section II).

Header Overhead: To enable successful decoding, a coding header must
be attached to each encoded packet, which contains at least the information
about the used coding coefficients to form this linear combination. The size
of this header depends on the generation size 𝑔 and the used field size 2𝑞.
Without further optimizations, this results in a header size of 𝑔 · 𝑞 bit. For
𝐺𝐹 (28), which is the most popular field size, each coefficient represents one
byte. Since 𝑔 coefficients are used to form an encoded packet, the resulting
minimal coding header has a size of 𝑔 bytes (𝑔·8 bits). Figure 10 visualizes the
coding header overhead in bits for different generation sizes and field sizes.
It has to be noted, that there are approaches to reduce the header size. One
idea is to use a fixed codebook and only transmit the index of the encoded
packet. If all parties share the same codebook, the coding coefficients can
be looked up by their index within the codebook. Another approach is
to transmit only a seed and initialize a random number generator, which
then deterministically rolls the coding coefficients. As a drawback, such
approaches either require additional information exchange or restrict the
coding schemes. For example, recoding at intermediate nodes is a problem
for seed-based coding. To form a fully functional protocol for a specific
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Figure 10: Coding header overhead in byte for different generation sizes
and field sizes without optimizations (only coefficients).
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purpose, the header should also include even more fields, e.g., a generation
ID and the chosen generation size. An example for such a fully functional
coding header is given in [10]. More information on coding headers and their
optimizations can be found in the survey-style work of Heide et al. [17].

Padding Overhead: For this thesis, the header overhead is of marginal
impact. Our studies [P4] and [P6] focus instead on a different type of over-
head, called padding overhead, which is invoked by packets of heterogeneous
lengths. Until the publication by Compta et al. [9] in 2015, it was often
assumed that the only relevant coding overhead stems from the coding co-
efficients. This was based on the assumption that all original packets have
the same or at least homogeneous packet lengths. Unfortunately, this is not
the case for many real-world applications. While Compta et al. have used
video streaming traces to highlight the problem, we presented heterogeneous
packet length distributions in [P4] for other applications as well. Figure 11,
which is taken from [P4], shows these in form of an empirical distribution
function. The plot was created from collected traces of real-world applica-
tions and highlights the different levels of packet length heterogeneity. The
UDP-based File Transfer Protocol (UFTP) for example creates packets of al-
most elusively the same length, as shown by the the magenta-colored graph.
Skype VoIP on the other hand creates heterogeneous distributed packet sizes.
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Figure 11: Empirical Distribution Function (ECDF) to highlight the packet
length heterogeneity of collected real-world traces. (c.f., [P4], Figure 10).

29



2 State-of-the-art & Related Work 2.4 Optimization

To show why this packet length heterogeneity is important to consider, we
must first explain how such a distribution leads to padding overhead. To do
this, we start with traditional full-density RLNC example. Given a genera-
tion 𝐺 = {𝑝1, 𝑝2, 𝑝3} shall be encoded, which consists of 𝑔 = |𝐺 | = 3 original
packets. Assuming the original packet lengths are |𝑝1 | = 4, |𝑝2 | = 2 and
|𝑝3 | = 3 bytes. By using a field size of 28, one byte of data corresponds to
one 𝐺𝐹 (28)-element, represented as one segment in the following Figure 12:

p3

p2

p1 |p1| = 4

|p2| = 2

|p3| = 3

Figure 12: Original packets 𝑝𝑖 with original lengths 𝑙𝑖

When using traditional full-density RLNC, an encoded packet 𝑞𝑖 is created
as a linear combination of all 𝑔 original packets 𝑝𝑖 ∈ 𝐺. Because we use
𝐺𝐹 (28), each encoded byte is formed by combining the original bytes at the
corresponding position in the packet. Therefore, all packets must have the
same length before encoding. thus, all original packets 𝑝𝑖 are padded with
zeros to the length 𝑙𝑚𝑎𝑥𝐺 of the longest packet in 𝐺, prior to starting the
encoding process. When applying this method to our example, all packets
will be pre-padded to length 𝑙𝑚𝑎𝑥𝐺 = |𝑝1 | = 4. This traditional, naive pre-
padding approach is depicted by the gray blocks in figure 13:

p1

p2

p3

|p1| = lmax = 4

|p2| = lmax = 4

|p3| = lmax = 4

Figure 13: Original packets 𝑝𝑖 padded to length 𝑙𝑚𝑎𝑥𝐺

The encoder then creates linear combinations of these pre-padded original
packets. In our example, we want to create 𝑟 = 1 additional redundancy
packet. Therefore, the encoder hast to produce 𝑔 + 𝑟 = 3 + 1 encoded packets,
namely 𝑞1, 𝑞2, 𝑞3 and 𝑟1. All resulting encoded packets have length 𝑙𝑚𝑎𝑥𝐺 .
The following figure 14 shows the encoding process for traditional full-density
RLNC. The coloration represents which original packet influenced the cor-
responding encoded byte. Since the encoding process is based on byte-wise
addition using the Galois-field arithmetics of 𝐺𝐹 (28) a zero-padded byte has
no influence on the creation of an encoded byte. In figure 14 the first two
bytes of each encoded packet are influenced by all three original packets 𝑝1,
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𝑝2 and 𝑝3, which is presented by the RGB-gradient. In contrast to this,
each third byte of an encoded packet is only influenced by 𝑝1 and 𝑝2 (RB-
gradient). And since 𝑝2 and 𝑝3 have zero-padding on the last byte, the value
of the fourth byte of each encoded packet is only impacted by 𝑝1 (solid red).

q1 = α11p1 + α12p2 + α13p3

q2 = α21p1 + α22p2 + α23p3

q3 = α31p1 + α32p2 + α33p3

|q1| = lmax = 4

|q2| = lmax = 4

|q3| = lmax = 4

Figure 14: Traditional full-density RLNC with pre-padding

Using this full-density RLNC approach with pre-padding, each encoded packet
has the length 𝑙𝑚𝑎𝑥 = |𝑝1 | = 4. As a result, the created encoded packets have
a combined length of 16 bytes. Since the original amount of data is only 9
bytes, the total overhead of the shown RLNC encoding is 7 bytes.

For systematic RLNC this overhead does not occur for the first 𝑔 packets,
but only for the 𝑔 · 𝑟 redundancy packets, created in the second phase of the
encoding algorithm. As shown in Figure 15.

q1 = 1p1 + 0p2 + 0p3

q2 = 0p1 + 1p2 + 0p3

q3 = 0p1 + 0p2 + 1p3

|q4| = lmax = 4q4 = α41p1 + α42p2 + α43p3

|q1| = 4 = lmax

|q2| = 2

|q3| = 3

Figure 15: Padding overhead of systematic RLNC.

While this overhead seems marginal, its significance growth with increasing
packet sizes. Thus, in our publications [P4] and [P6] we will evaluate the
impact for the aforementioned real-world applications and show a new coding
scheme, which reduces the overhead, while preserving the original packet
structure.
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2.4.2 Padding Reduction Schemes

In their initial work[8], Compta et al. did not only introduce the problem
but also presented three simple approaches to solve the issue: fragmentation,
bundling and chaining with fragmentation. The first algorithm, called sim-
ple fragmentation, cuts long packets into multiple small packets to achieve
a better overall homogeneity. While simple fragmentation can reduce the
padding overhead, sending more small packets can invoke additional over-
head on lower layers. Unfortunately, the authors did only simulate the ben-
efits of this scheme without a real network stack, and, thus, did not include
the impact of this problem. The second strategy is named chop and bun-
dle, which forms larger packets by concatenating multiple smaller ones. If
very long packets exist, these are chopped into two smaller ones before con-
catenating them. This approach is very effective, but works only for packet
distributions where multiple smaller fragments can be concatenated within
the MTU limit. The third strategy, called chaining with fragmentation, con-
catenates the packets to a consecutive bytestream, then splits this chain into
new, even-sized packets. Chaining with fragmentation showed the best re-
sults, reducing the padding overhead to below 5% (c.f. [8]). One drawback of
all these strategies is the need to indicate how the new packets were formed,
which requires additional information to be communicated. Secondly, the
original packets have to be reconstructed after decoding, which can invoke
additional processing delay. In [50], Taghouti et al. have analyzed additional
traces to emphasize the significance of the zero-padding impact and verified
the previous findings of Compta et al. [8].

A different approach, which is closer to our publication [P4], was presented
by Taghouti et al. in [51]. Their solution divides the original packets into
groups of bytes (if 𝐺𝐹 (28) is used), called macro-symbols. Thereby, each
packet is split into 𝑛 = ⌈ 𝑙𝑚𝑎𝑥

𝜇
⌉ macro-symbols of length 𝜇 (cf. [?, sec. II.C]).

The encoding is then done by combining subgenerations of macro-symbols.
This approach is closer to our publication [P4] since it also uses the original
packet lengths as information. While the macro-symbol approach uses a
similar encoding scheme, it does not operate on a packet-level, and, thus,
does not preserve the original packet structures.
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3 Contributions

3.1 Integration

Our first two publications [P1] and [P2] introduce efficient ways to integrate
intra-session network coding into application layer IoT protocols, namely the
Constrained Applications Protocol (CoAP) and MQTT for Sensor Networks
(MQTT-SN). The goal in both scenarios was to reduce the necessary ra-
dio uptime for reliable file transfer in lossy scenarios, e.g., when deploying
over-the-air firmware updates in harsh weather conditions. Sticking to our
motivational bridging the gap motto, we started building the network coding
bridge from the practical side of things. The choice was made to experience
possible real-world challenges on first hand and get our own insights into
potential coding gains.

One thing, which distinguishes our approach from many related studies is the
fact that we have truly implemented the coding schemes into both protocols
and conducted the experiments in testbeds on real hardware. Because the
network coding has its roots in information theory, this is not always the
case. Many results are presented on a theoretical level or are verified only
by simulation. Yet, we believe that running the code achieves more realistic
results and can lead to new insights. This is in line with the unofficial
IETF motto, defined by David D. Clark: "We believe in rough consensus
and running code" 9.

9D.D. Clark, "A Cloudy Crystal Ball: Visions of the Future", plenary presentation
at 24th meeting of the Internet Engineering Task Force, Cambridge, Massachusetts, July
1992.
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3.1.1 Adding a Network Coding Extension to CoAP
for Large Resource Transfer

Extended Abstract (c.f.[P1]): Our first paper [P1] presents a smooth
way to include network coding-based FEC in the Constrained Application
Protocol (CoAP) for large resource transmissions. IoT devices usually com-
municate using short messages with little data. In some cases, for example,
requesting firmware updates, bigger resources need to be transferred. While
CoAP’s normal blockwise transfer scheme can handle large resources, it is
not efficient in lossy environments. The paper first demonstrates the limi-
tations of CoAP’s existing blockwise transfer scheme, then presents a new
approach to overcome this problem by using network coding-based packet-
level FEC. Our proposed extension introduces two new CoAP message op-
tions, called NC Control and NC Coefficients. These are used to implement
a three stage file transfer scheme, consisting of an initialization, a transmis-
sion, and a termination phase. In conjunction with the new message options,
the scheme was implemented into the cantcoap library 10 in form of an addi-
tional extension layer, as shown in Figure 16. Testbed measurements using
an implemented client-server application with emulated packet loss and delay
confirm the advantage of our network coding extension over CoAP’s regular
blockwise transfer. The resulting signififantly reduced file transfer durations
are highlighted in Figure 17 for different codec parameterizations and block
sizes.

Implemented Application

Request Layer (cantcoap)

Methods Options NC-Options

Extension Layer

Blockwise Network Coding

Message Layer

Reliablity Separate/Piggyback

Ressource
Directory
(cantcoap)

Figure 16: Application structure of the implemented network coding-based
transfer for CoAP (c.f., [P1], Figure 9).

10https://github.com/staropram/cantcoap, accessed 18.11.2020
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C. Network Coded Transfer

In the Network Coding extension, there are two parameter
directly affecting the transfer duration: NOS and SOS. The
FFE parameter does not directly influence the completion time,
but is also important for the transfer scheme. A high enough
FFE must be chosen to guarantee successful decoding with
high probability, depending on the SOS and NOS parameters.
Following [5], SOS and NOS shall be chosen as high as possi-
ble, to allow maximum throughput. The here shown parameter
combinations are based on Kodo example applications [13].
For a deployable implementation of the here proposed design,
the parameters are restricted by constrains of the hardware
used and should be considered carefully.

In a generation-based Network Coding scheme, the client
requests generations of data-chunks, instead of single chunks.
Changes to SOS and NOS have a similar effect on the comple-
tion time, regarding losses and delay. This is based on the rela-
tion between the resource-size sr, the required generations gt,
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Figure 12. Effect of delay on Network Coding transfer for different NOS
and SOS parameter,fixed 0% packet losses.
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Figure 13. Effect of losses on Network Coding transfer for different NOS
and SOS parameter, fixed 0ms delay.

the generation-size sg and the coding parameter SOS and NOS.
The relation is given in the following equation:

gt =
s

sg
=

s

(SOS ·NOS)
(4)

To successful transfer a file of size sr, at least gt genera-
tions have to be transferred. Each of this generation contains
sg bytes, defined by NOS and SOS. Higher coding parameter
lead to a larger generation-size, resulting in less required
generations and thus in a lower effect of losses and delay. The
reverse effect is given, when using lower coding parameter.

In Network Coding, responses do not need to be retransmit-
ted. The responding sender does not realise, if a coded packet
gets lost. Due to the rateless nature of Network Coding, the
sender can create a new coded packet and keep transmitting. To
ensure a successful transfer, only the loss of a new generation-
request must trigger a retransmission. The less generations
needed, the lower is the effect of losses and delay. This is
shown in the Figures 12 and 13. The parameter combinations
[SOS/NOS], which result in larger generation-sizes, achieve
lower completion times. A larger generation-size is the key for
completion time reduction, not only to resist message-losses,
but also to reduce delay-indicated effects.

D. Comparison

The direct comparison, shown in Figure 14, reflects the
previous results. Blockwise transfer is limited, due to it’s
acknowledgement system. The shortest completion time for
blockwise transfer can be achieved, by using the maximum
blocksize of 1024 bytes. When choosing a parameter com-
bination, which results in a generation-size, larger than 1024
bytes, the advantages of Network Coding are obvious. But even
if the generation-size is smaller than the maximum blocksize,
the coding extension results in a shorter completion time. This
can be seen, when comparing nc[64/8] and block[1024] in
Figure 14. The generation-size of nc[64/8] is only 512 bytes,
but the scheme still performs significant better under losses.
This demonstrates the beneficial loss resistance of the here
presented Network Coding extension.
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Figure 14. Comparison between blockwise transfer and Network Coding
transfer in a lossy environment, fixed 60ms delay.

Figure 17: Comparison between CoAPs traditional blockwise transfer and
the novel network coding extension (c.f., [P1], Figure 14).

Context & Discussion: As shown in the road map for this thesis, c.f.
Figure 2, this study was the start of our network coding research. The moti-
vation for this work was to get first hand experience with network coding, see
potential coding gains in practice and learn from the given challenges. The
thereby learned lessons and findings were very helpful in the development of
the integration extension for MQTT-SN [P2], as will be further discussed in
section 3.1.2.

The main challenge was the development of a stoppage strategy without the
usage of much feedback that operates within the bounds of the underlying
protocol. For the targeted use case of over-the-air firmware updates, an
early stoppage is especially problematic. Sending an insufficient number of
redundancy packets results in non-decodable generations, which can lead to
massive data inconsistency and even non-functioning devices (bricks). Yet,
sending excessive packets clogs the link and wastes valuable bandwidth and
radio uptime. Thus, the total file transmission system still requires small
amounts of feedback to inform the sender about successful decoding. To
solve this issue, the introduced CoAP extension uses a three-phase trans-
fer scheme. After initializing the transfer and transmitting most data, the
final termination phase is started by the server, when encoding the last gen-
eration of the requested resource’s data. This is communicated from the
server to the client by using a flag in the responses of our novel introduced
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NC_Coefficients option. After decoding the last generation, the client re-
turns a confirmable message to the server, including a NC_Control option
with the same flag also set. When receiving this stop-message from the client,
the server acknowledges it and stops creating coded packets. The transfer is
then reliably completed. While this approach does not only solve the stop-
page problem with minimal use of feedback, it is also in line with the usage
of the more flag in CoAP’s traditional blockwise transfer.

In regards to related work, the developed extension for CoAP [P1] (and
also for MQTT-SN [P2]) can be closest compared to the FEC extension for
QUIC [42]. In both cases, an existing transport/application layer protocol is
enhanced with coding to supply a reliable communication architecture for the
final application itself. It has to be noted that our work was published first.
Paper [P1] was presented in November 2016 and [P2] was presented in Oc-
tober 2017. The first draft of the QUIC extension by contrast was proposed
later in March 2018 [42]. While all extensions level network coding-based
FEC to overcome packet loss, the underlying codec differs. Our studies use
a seed-based RLNC codec with fixed generations, the QUIC extension in-
stead implements a sliding window coding scheme, which is similar to the
TETRYS codec [53]. Despite not reducing the total transfer duration, using
such a sliding window codec can reduce the decoding delay by making indi-
vidual packets earlier available to the decoder. In our use case of firmware
updates, this is not really important, but for applications with stronger real-
time constrains, e.g., web browsing via QUIC, it can be beneficial. One
drawback of a sliding window codec is the need for feedback to inform the
encoder about the optimal window size to enable reliability. Our system
design instead guarantees reliability with the aforementioned stoppage al-
gorithm in conjunction with a more simple, seed-based RLNC codec that
requires less feedback. Yet, the developed architecture still allows to switch
the underlying FEC codec, which is an interesting topic for future work.
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3 Contributions 3.1 Integration

3.1.2 Improving Energy Efficiency of MQTT-SN in Lossy
Environments Using Seed-Based Network Coding

Extended Abstract: This paper presents an energy-efficient solution to
overcome packet loss in Wireless Sensor Networks (WSNs) by adding seed-
based Network Coding to MQTT for Sensor Networks (MQTT-SN). Whereas
most sensors in common WSN devices consume little energy, using the radio
is costly. Thus, devices try to minimize their radio uptime, while still satisfy
timeliness and reliability of data delivery. The proposed approach uses an
optimized seed-based Network Coding scheme for Forward Error Correction
to shorten the sensor node’s radio uptime and reducing its power consump-
tion. The solution is conform to the MQTT-SN specification and, thus,
interoperable with existing systems. The presented evaluation is based on
collected traces from a real-world WSN deployment in the context of Pre-
cision Agriculture. Radio uptime and power consumption measurements in
an experimental testbed confirm the achieved benefits. The potential daily
energy savings are highlighted in Figure 18, if the proposed coding approach
is applied to the links of the motivational WSN deployment. As indicated by
the same-colored dotted and solid lines, a saving of up to 127.25 mWh (43.79
%) per day (Link 𝐵 → 𝐺) is possible, depending on the link quality. On
average, the network coding extension reduces the consumed energy in the
transmission phases by 96.70 mWh (38.21 %) in our motivational scenario.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Time of Day in h

0

50

100

150

200

250

300

C
on

su
m

ed
Tr

an
sm

is
si

on
E

ne
rg

y
in

m
W

h

A1→G, NC
A1→G, Base
A2→G, NC
A2→G, Base
A3→G, NC
A3→G, Base
A4→G, NC
A4→G, Base
B→G, NC
B→G, Base
no loss

Figure 18: Predicted daily radio interface energy consumption for each link
of the motivational WSN deployment(c.f., [P2], Figure 7), if network

coding is used (NC) in comparison to the basic approach (Base).
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Context & Discussion: The initial motivation to explore potential coding
gains for MQTT-SN was given by the challenges, which were observed in a
WSN deployment of our college Jan Bauer. Due to a combination of poor
weather conditions and constrained transmission power of the used Telos B
sensor nodes, the system suffered from heavy packet loss. Our previously
conducted CoAP study [P1] had already verified the potential of an FEC
extension to overcome such a problem and reduce the transmission duration
for large file transfers. Because a good network trace data base was collected
during the deployment, a unique opportunity was given to reproduce the
deployment in our lab and explore the benefits of network coding in a more
practical scenario.

While it would have been possible to choose other integration approaches or
protocols, MQTT-SN can especially benefit from a network coding extension,
because it implements the Iot-friendly publish-subscribe-based communica-
tion pattern on top of UDP. As mentioned before in Section 2.2.1, network
coding integration favors UDP over TCP as the underlying transport proto-
col. The main problem of TCP-based approaches, such as traditional MQTT,
lies within the underlying automatic repeat request (ARQ) retransmission
scheme of TCP, which interprets packet loss as congestion. TCP was initially
developed for wired communication, medium-induced packet loss was simply
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Figure 19: Activity diagram of one transmission phase with our MQTT-SN
network coding extension (c.f., [P2], Figure 3).
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not thought of. This problem can cause a large amount of retransmissions
or even lead to connection timeouts, as highlighted in the practical study by
Bauer et al. [6]. In such scenarios, our developed approach achieves a higher
reliability, not only because MQTT-SN is based on connectionless UDP, but
also because the network coding-based FEC extension adds an additional
layer of robustness.

While there are similarities between our MQTT-SN extension [P2] and our
CoAP extension [P1], especially MQTT-SN’s underlying publish-subscribe
communication pattern offered new challenges. Our final solution to inte-
grate network coding-based FEC into MQTT-SN’s publish-subscribe archi-
tecture is shown in Figure 19. Instead of transmitting all queued data as
QoS 1 messages and wait for acknowledgements, the publisher sends with
QoS 0 until a subscriber has received enough encoded packets to restore all
original data by decoding. This guarantees reliable transfer without possibly
suffering from retransmission delays. If the decoding-condition is satisfied,
the decoder sends out a STOP -control message to inform the encoder. This
single control message is send as a reliable QoS 1 publication, using MQTT-
SN’s build-in ARQ mechanism. When the subscriber at the sensor node
receives this control message, an internal flag is activated, stopping the pub-
lication of coded packets. Again, similar to our CoAP extension [P1], this
approach does not work completely without feedback, but keeps the nec-
essary amount to a minimum, while still guaranteeing reliability. Because
the sender does not have to wait for acknowledgements or retransmit lost
packets, file transfers can be completed faster. Thus, the sender can turn
off its radio and enter its deep sleep phase earlier, which leads to the energy
consumption savings shown in Figure 18.

Because we did implement our coding scheme, it would have been possible to
follow up the testbed studies with a real-world deployment. While [P1] used
a simple Bernoulli packet loss model, the evaluation in [P2] was already
based on collected traces. Observing a real-world deployment would have
been the next logical step and could have yielded very interesting results.
Unfortunately, no opportunity for such a deployment occurred. Thus, we
shifted our focus to the research of novel evaluation tools and methods to
better quantifiy possible network coding gains, which will be presented in
the upcoming section. Especially the developement of our link emulation
bridge link’ em was heavily influenced by the work on [P2].
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3.2 Evaluation

Sticking to our bridging the gap motto, we move on to the second pillar of
our network coding bridge, which is the development of new methods for a
better evaluation of potential network coding gains. The following section
highlights and discusses our contributions to the field. These are namely the
development of a novel layer-2 bridge for reproducible link emulation, called
link’ em [P3], and a machine learning-based QoE metric for VoIP traffic,
called SPQER [P4].

3.2.1 Link ’em: An Open Source Link Emulation Bridge
for Reproducible Networking Research

Extended Abstract: Publication [P3] presents link ’em, an open source
link emulation bridge for reproducible networking research. While repro-
ducibility is one keystone of good research, most available link emulators are
lacking crucial features or are prohibitively expensive. link ’em is essentially
a Raspberry Pi-based layer-2 bridge that runs an extended version of netem
in conjunction with a trace database to achieve reproducible link emulation.
Because the node has two Ethernet interfaces, it can be used to connect two
hosts and emulate the link conditions between them, without any configura-
tion on the end devices them selfs. An image of a link ’em prototype with
a custom 3D-printed casing is shown in Figure 20. The link ’em framework
also contains a novel packet loss module, which builds upon sagemath and
NetfilterQueue, to run more sophisticated packet loss models in addition to
netem’s existing ones. An overview of the general system architecture is
presented in Figure 21.

Figure 20: link ’em prototype in a custom 3D-printed case.
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Figure 21: link ’em system architecture (c.f., [P3]).

Context & Discussion: While inter-session network coding is theoretically
beneficial even without the presence of packet loss, e.g., by solving routing
bottlenecks, intra-session FEC is only useful if there are packets to recover.
Thus, the evaluation of potential FEC benefits requires a proper packet loss
emulation. Yet, emulating a link nad reliably reproducing packet loss distri-
butions is easier said than done. We stumbled upon this challenge during our
integration of network coding into MQTT-SN [P2]. During the deployment
of an in-situ WSN [5] to measure the growth of crop, the gateway node also
recorded network traces for further analysis. Upon inspection, these traces
contained vast amounts of packet loss. Depending on the sending node, be-
tween 13.38% and 19.42% of all transmissions failed. Additionally, these
losses did not follow a Bernoulli distribution but occurred in heavy bursts.
Following the state-of-the art, a Gilbert-Elliot model was parameterized to
reproduce the link conditions in the lab for our MQTT-SN testbed. Unfor-
tunately, due to the burstiness, the trained model had one good and one
very bad state, with small state transition probabilities. This resulted in
strongly fluctuating outcomes, depending on how the transitions were drawn
by Netem’s internal random number generator. While this was sufficient
for a general evaluation of our MQTT-SN FEC extension [P2], the model
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Figure 22: link ’em demonstration testbed for reproducible packet loss
emulation (c.f., [P3]).

just emulated a similar loss distribution but could not exactly replicate the
observed loss pattern of the deployment. It would have been very interest-
ing to see how our approach had fare in direct comparison to the real-world
deployment, if it was tested packet-by-packet against exactly the same loss
pattern. Such a trace-based loss emulation is not possible with traditional
loss emulators, but can now be done using our link’em bridge.

An early prototype of the bridge was shown at the NetSys 2019, where
is was received very well by the scientific community and members of the
industry alike. A refined version was then successfully presented at the LCN
demonstration track, where it won the best demonstration award. Figure 22
shows the testbed in our lab, which is similar to the one used in the LCN
demonstration. The showcase mainly highlighted the trace-based packet
loss emulation feature of link’em. This was done by showing the impact of
a model-based link emulation via netem and a trace-based emulation using
our link ’em bridge on a video live stream, in comparison to a pre-captured
reference stream. As seen in Figure 22, the left monitor (black) displays
the original pre-recorded video with packet-loss induced artifacts. While
the link’em-impaired stream (yellow) shows similar artifacts to the captured
video, the current frame of the netem impaired video looks different. In the
content of this thesis, link’em was also used in the SPQER [P5] testbed to
evaluate the impact of packet loss on VoIP QoE.

For the LCN demonstration track submission, we created an extended ver-
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sion of our initial paper [P3]. Because it was not published in the main
conference proceedings, we uploaded the extended version to our project’s
website 11. A more detailed description of the setup and the necessary steps
to install and deploy the bridge can also be found there. For the LCN
demonstration, we also improved the software and fixed minor issues. These
improvements from link’em v1 (shown at NetSys) to link’em v2 (shown at
LCN) are visualized in Figure 23. While the first version already worked
better than traditional Netem, it still had had some inconsistencies in terms
of reproducibility. Although the packet loss was replayed on a packet-by-
packet basis, the reproduced video still showed minor differences to the orig-
inal reference video. This lead to a reduced SSIM score, which can be seen
in the left subplot of Figure 23. The visible dips of the golden link’em
v1 graph were the result of an odd queuing behavior in the internal delay
buffer of the underlying Netem implementation. Yet, even with this issue,
link’em v1 (golden graph) achieved a better score than traditional Netem
(blue graph). After fixing the queuing problem, the second iteration of our
software, link’em v2, achieves a nearly perfect SSIM score, as highlighted by
the green graph. While each line in the left subplot only visualizes the SSIM
scores of the first 2500 frames, each boxplot on the right side contains the
data for all transmitted 11093 frames. It has to be mentioned, that we did
not re-evaluate our experiments with these changes merged backed into the
traditional netem, which is still noted future work.

One point of critique, which was brought up at the LCN demonstration, is
the choice of a Raspberry Pi as the underlying hardware platform. Compared
to full-sized desktop systems, the Pi’s performance is rather limited, which
can restrict the potential application of Link’em. For example, while the
emulation of packet loss to evaluate the performance of TCP connections
in high speed gigabit WiFi yields very interesting research questions, the
on-board Ethernet port and potentially also the CPU of the Raspberry Pi
is simply to slow for this use case. However, the link’em framework also
runs on most Linux-based systems and can easily be installed on different
platforms. Thus, a computer with better specs can be used to overcome
possible performance problems. We have already verified this approach by
building a multi-path prototype on the basis of a Dell Optiplex 5070 desktop
computer. This new prototype is equipped with two DeLock i350 four-port
PCIe network cards, which enables the emulation of packet loss and delay
for multi-path scenarios with upto four links.

11https://sys.cs.uos.de/linkem/index.shtml
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Figure 23: Improvement from link’em v1 [P3] to link’em v2 (LCN
Demonstration, https://sys.cs.uos.de/linkem/index.shtml) for the SSIM

score of a transmitted video.

While link’em was initially developed to enable trace-based replay of packet
loss sequences, its integrated custom loss module can be also used for other
purposes. Because the loss module uses the NetfilterQueue library to link
a socket to an iptable rule set, it is possible to fetch, alter or drop spe-
cific packets. For example, our co-author Dominic Laniewski has used this
approach in his publication "On the Impact of Burst Loss for QoE-Based
Performance Evaluations for Video Streaming" [30]. There, the custom loss
module of link’em is extended to drop specific packets within an RTP video
stream. The recorded video is then processed with QoE metrics to evaluate
the impact of specific loss sequences. This study does not only highlight
the versatility of link’em but also gives a glimpse on its potential for future
research.
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3.2.2 SPQER: Speech Quality Evaluation Using Word
Recognition for VoIP Communication in Lossy
and Mobile Networks

Extended Abstract: Publication [P5] introduces SPQER (pronounced
speaker), a novel approach to evaluate the quality of experience for real-time
Voice over IP (VoIP) communication in mobile and lossy networks. Since
most VoIP applications aim to provide low latency communication, they are
based on RTP over UDP. Thus, there is no transport layer reliability to
recover lost packets. This can lead to gaps in the rendered speech signal
at the receiver, resulting in non-understandable words, which ultimately re-
duces the user experience of the VoIP call. Figure 24 depicts such a problem.
While the error-free transmission (blue) does not contain loss-induced gaps,
the error-prone recording (yellow) is heavily interrupted. Traditional speech
quality metrics, e.g., Perceptual Evaluation of Speech Quality (PESQ) or
the Hearing-Aid Speech Quality Index (HASQI), can not cope well with
such heavy interruptions, because they directly compare frequencies and
amplitudes to calculate the received signal distortions. SPQER instead uses
machine learning classification to evaluate the percentage of recognizable
words in conjunction with a time-based decay function to penalize delay and
cross-talking. So instead of evaluating noise, SPQER directly answers the
question: What percentage of words is the recipient able to understand? The
paper includes a sensitivity analysis, which is based on testbed experiments
for different packet loss rates and simulated delays, to asses the impact of
challenging link conditions. As shown in Figure 25, a final correlation analy-
sis to a short user study shows that SPQER can better evaluate the amount
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Figure 24: Exemplary impact of packet loss on VoIP audio recordings.
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Figure 25: Correlation of SPQER and other VoIP metrics to the results of
a short user study for different packet loss rates (c.f. [P5]).

of understandable words than PESQ and HASQI, while still giving a more
precise indication about the voice quality than the Word Error Rate (WER)
metric.

Context & Discussion: Most network coding research focuses on the im-
pact of network coding in terms of packet loss reduction. While this QoS
perspective is reasonable, it does not directly allow to make assumptions
about the coding gains in terms of end user experience. For example, when
streaming a video, even little amounts of packet loss can lead to heavy ar-
tifacts, as shown in our co-authored work [30]. Other applications are more
robust and can cope better with packet loss, for example web browsing.
Thus, it is important to use application-specific QoE metrics to truly quan-
tify the potential benefit of network coding for the end user.

The motivation to develop SPQER was given by the challenges, which we
observed while conducting QoE testbed experiments for a variety of ap-
plication types to find optimized, application-specific codec parameteriza-
tions.The therefore build testbed consisted of two Dell Optiplex desktop
computers, which were connected by a link’em bridge [P3] to emulate packet
loss and delay. This setup once more showed the usefulness of link’em for re-
producible networking research. Upon listening to exemplary collected loss-
prone VoIP recordings, we realized that many words were not understandable
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due to gaps in the rendered speech signal. This problem is highlighted in
Figure 24. Thus, the following research question arose: How can we quantify
the amount of understandable words and by how much does network coding-
based FEC increase this value? While the existing speech quality metrics,
e.g., PESQ [21] and HASQI [25] are made to evaluate disturbances, they do
not directly answer the question. This led to the development of SPQER,
which was finally published in the IEEE Open Journal of the Computer
Society in July 2020.

While SPQER was developed to quantify potential coding gains, publication
[P5] only introduces the SPQER metric and does not include an evaluation
for network coding as it would have stretched the scope of the paper. Thus,
to complete the picture, we will present a coding gain approximation for
VoIP in terms of SPQER QoE here. Unfortunately, due to parameter space
scaling, it is not possible to replicate the testbed experiments of the SPQER
journal publication for all relevant codec parameterizations. The original
experiments were conducted in physical testbed with the audio recording
running in real time. This took almost six weeks for the data set of [P5].
Running the setup for different generation sizes and redundancy rates would
blow up the parameter space, making this approach infeasible. Thus, instead
of replicating the testbed experiments, we approximate the corresponding
SPQER value for each codec parameterization by using the corresponding
remaining packet loss rate after decoding (c.f., Figure 5). For example, as
previously shown in Figure 5, applying systematic RLNC with 𝑔 = 8 and
𝑟 = 0.5 on a link with 𝑃𝐿𝑅𝐿 = 25% results in a final loss rate after decoding
of 𝑃𝐿𝑅𝐷𝐸𝐶 = 7.2%. The SPQER value for this parameterization can then
be approximated by taking the the one of the best fitting link loss rate of the
[P5] experiments. Thus, for the aforementioned example parameterization,
we assume:

𝑆𝑃𝑄𝐸𝑅𝑁𝐶 (𝑃𝐿𝑅𝐷𝐸𝐶 = 7.2%) ≈ 𝑆𝑃𝑄𝐸𝑅 [𝑃5] (𝑃𝐿𝑅𝐿 = 7%).

While this approach does not yield perfectly accurate results, it still allows
to make reasonable assumption about possible coding gains. The so ap-
proximated results for different SRLNC parameterizations are presented in
Figure 26, where the gray graph represents the SPQER values from [P5] as
the uncoded reference. As shown, network coding-based FEC can greatly
increase the QoE of VoIP applications. For our previous example (𝑔 = 8,
𝑟 = 0.5, 𝑃𝐿𝑅𝐿 = 25%), the SPQER value can be nearly doubled from 0.36
to 0.73. This can be seen in Figure 26 by comparing the green crosses at
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Figure 26: Approximated impact of network coding-based FEC
on SPQER for the evaluation of VoIP applications.

𝑃𝐿𝑅𝐿 = 25% to the gray-colored uncoded reference. Other parameteriza-
tions, especially those with higher redundancy rates, lead to an even larger
gain. For example, when using 𝑔 = 32 and 𝑟 = 1.0, the QoE is still perfect
for packet loss rates of upto 35%.

Regarding the publication itself, one justified point of critique, which was
mentioned by one reviewer of the journal submission, is the usage of a
general-purpose classifier. The results in [P5] were calculated using the
Google S2T classifier12, which was trained on carefully created annotations
of known texts to achieve the highest score in correspondence to this ground
truth. Yet, such a classifier does not directly reflect the true human hear-
ing capability. Thus, it would be interesting to train a special classifier for
SPQER, which does maybe not achieve a perfect score compared to the an-
notation data set, but instead better mimics the human reception of speech.

12https://cloud.google.com/speech-to-text, accessed 03.03.2021
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3.3 Optimization

The third and final set of contributions is the evaluation of coding overhead
and the introduction of an optimized coding strategy for applications with
heterogeneous packet lengths. Because network coding stems from the field
of information theory, some real-world implications were often neglected. As
mention in Section 2.4.1, one such topic is the occurrence of coding overhead.
Here, we focus especially on the padding overhead, which is invoked by
packets of heterogeneous lengths.

3.3.1 Packet-Preserving Network Coding Schemes
for Padding Overhead Reduction

Extended Abstract: While many network coding studies assume homo-
geneous packet lengths, this is often not the case for real-world applica-
tions (c.f., Section 2.4.1, Figure 11). Such heterogeneity results in excessive
padding overhead and is a critical problem when using network coding for
real-world data in the wild. Current coding schemes either apply exces-
sive zero-padding or rely on communication-intensive packet reconstruction
strategies, i.e. bundling or chaining. Our contribution [P4] presents novel
encoding strategies to reduce the padding-induced overhead while preserving
the original packet structures. The most sophisticated one, called size-based
coding with padding-on-demand, is shown in Figure 27. Instead of padding
shorter packets prior to encoding, the original packets are first ordered as-
cending to their size and then encoded using a sparse, growing coding win-
dow. Only packets within this coding window are combined during the en-
coding process. Thus, shorter packets must only be padded to the lengths of
the longest on in this window. The conducted evaluation is based on traces of
datagram-based real-world applications, namely browsing via QUIC, Skype

p3

p2

p1

|p2| = 2

|p3| = 3

|p1| = 4

(a) Original packets
sorted by size.

w = 1; q1 = [α11p2] + 0p3 + 0p1

w = 2; q2 = [α21p2 + α22p3] + 0p1

w = 3; q3 = [α31p2 + α32p3 + α33p1]

|q1| = 2

|q2| = 3

|q3| = 4

(b) Encoded packets using a sparse, size-based
coding window.

Figure 27: Size-based Coding with padding-on-demand for padding
overhead reduction (c.f. [P4], Figures 8+9).
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Figure 28: Average coding overhead of size-based coding in comparison to
existing coding schemes. The results are shown for the Skype trace using a

fixed redundancy rate of 12.5%. (c.f. [P4], Figure 12).

VoIP, FFmpeg video streaming, and UFTP file transfer. The results verify
that the packet-preserving coding schemes can significantly reduce the over-
head of transmitted bytes for different generation sizes and packet loss rates
without the need for additional communication about packet reconstruction.
This is exemplary highlighted in Figure 28 for the Skype trace.

Context & Discussion: We first observed the problem of excessive padding
overhead while developing a transparent Python-based network coding proxy,
called PyNC. During testing with the traditional full-density RLNC codec [19],
a huge discrepancy was detected between the amount of original uncoded
payload and the number of transmitted bytes. This overhead is shown in
Figure 29. The existing solutions to reduce such overhead, e.g., fragmen-
tation, bundling and chaining by Compta et al. [8], require the transfer of
additional information about the recomposition process. This can be prob-
lematic in our proxy use case, for example, if MTU restrictions apply. To
solve this issue, the goal of our research was to develop a novel coding scheme,
which allows padding reduction without invoking additional communication
overhead. The result was the aforementioned size-based coding scheme, pub-
lished in [P4].

As shown in Figure 29, the possible gain of padding overhead optimization
depends heavily on the applications packet length distribution. The more
heterogeneous the packet lengths are, the more padding occurs. Thus, ap-
plying a coding overhead optimization is only really necessary and beneficial
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Figure 29: Observed average transmitted payload per RLNC generation
(g=32) in the PyNC proxy for UDP-based applications on an error-free
link. The error bars show 95% confidence intervals (c.f. [P4], Figure 2).

for applications with heterogeneous packet lengths. For example, our in-
tegration solutions [P1] and [P2] were developed to speed up over-the-air
firmware updates. In such a scenario, all data is available a priori and can
be fragmented into even-sized chunks. The resulting packet length distribu-
tion is similar to the one of a UFTP file transfer, where almost no padding
overhead occurs (c.f. Figure 29). Thus, it is not really necessary to apply
any padding optimization. The possible gain is much higher for real-time
multimedia application like Skype VoIP, where the data is generated dur-
ing runtime and must be transmitted with tight timeliness constraints. An
overhead evaluation for different application types was done in [P4], which
verified this hypothesis.

It has to be noted that a related coding scheme was proposed by Taghouti
et. al in their publication "Reduction of Padding Overhead for RLNC Media
Distribution With Variable Size Packets" [52]. While there are similarities
to our work, [P4] was independently developed and earlier submitted for
publication. We initially submitted [P4] to the Conext conference in June
2018, where it got just about rejected after a 3 month long review process.
The paper was then submitted to the IEEE Conference on Local Computer
Networks (LCN) in March 2019, where it was accepted and published in the
proceedings via IEEE Xplore. We later discovered the paper by Taghouti et.
al in the IEEE Transactions on Broadcasting journal, which was published in
September 2019. While both solutions have a similar motivation and show
a trace-based evaluation to highlight the impact for real-world applications,
there are distinct differences in the encoding process itself. Our size-based
coding scheme combines the original packets and preserves their structures,
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and, thus, can be applied to all types of traffic. The approach by Taghouti
et. al instead focuses especially on video traffic and introduce a new notion,
called macro-symbols. These macro-symbols can correspond to a single GF-
element or to a series of elements within one original packet. The padding
overhead reduction is then achieved by cleverly selecting and ordering the
macro-symbols of a generation prior to encoding, Yet, this scheme does not
directly preserve the original packet structures and requires additional infor-
mation about the macro-symbol forming, which is the main difference to our
approach.

3.3.2 The Impact of Bit Errors on Intra-Session Network
Coding with Heterogeneous Packet Length

Extended Abstract: Recent studies, e.g., [8] and our previous work [P4],
have shown that network coding-based FEC can invoke increased packet
sizes, and, thus, excessive padding overhead. This problem is especially sig-
nificant for traffic with heterogeneous packet lengths. Yet, most conducted
studies, including our previous ones, emulate packet loss using length inde-
pendent random loss models. In reality, larger packets have a higher proba-
bility to get corrupted, e.g., by failing a series of link layer cycling redundancy
checks. Thus, additional padding can not only have a negative impact on
the throughput, but also possibly increase the overall frame loss rate and the
packet loss rate. To highlight this problem, Figure 30 exemplary shows the
increased average frame error rate, which is induced by the additional coding
overhead, if a bit error model is applied. To further analyze the magnitude
of this problem, the here presented study [P6] instead applies a more real-
istic bit error model to the encoded traffic, including the coding overhead.
We present formal equations to calculate the impact in terms of frame error
rate and packet loss rate before and after decoding. A trace-based simula-
tion highlights the implications for relevant real-world applications, namely
QUIC web browsing, UFTP file transfer, Skype VoIP, and FFmpeg video
streaming. Figure 31 depicts one of the core results, namely the packet re-
ception rate after decoding. The shown heatmap verifies our hypothesis, that
the coding overhead has a significant impact on the overall packet loss rate
if a bit error model is applied, In some cases, this negative impact is so large
that it even overshadows the coding gains, even if additional redundancy is
invested.

52



3 Contributions 3.3 Optimization

0 200 400 600 800 1000 1200 1400
avg. Packet Length [byte]

0.0

0.2

0.4

0.6

0.8
Fr

am
e 

Er
ro

r R
at

e 
(F

ER
) [

%
]

QUIC
QUIC+NC

UFTP
UFTP+NC

Skype

Skype+NC

FFmpeg

FFmpeg+NC

BER: 0.0001
NC: sRLNC(g:16, r:0.5)

Figure 30: Motivational example: Impact of network coding overhead
(sRLNC, g=16, r=0.5) on average frame error rate using a Bernoulli bit

error model with avg. BER=0.0001 (c.f. [P6], Figure 1).

4

8

16

32

a)
 Q

UI
C

ge
ne

ra
tio

ns
ize

 g

100 100 100 100

100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

99.9

BER: 0.0001
94.8 98.3 99.5 99.9

91.9 95.7 99.3 99.9 100

89.0 91.5 96.7 99.9 100 100

87.9 90.5 97.4 100 100 100

88.4

BER: 0.0002
59.1 64.3 70.5 76.6

56.4 57.3 61.1 67.6 75.9

55.5 55.6 56.1 58.3 64.1 74.1

54.4 54.5 54.7 56.1 60.2 69.6

56.4

BER: 0.0003
33.5 34.3 35.1 36.5

33.0 33.1 33.3 33.6 34.1

32.5 32.5 32.6 32.8 32.9 33.2

31.8 31.7 31.8 31.9 32.0 32.1

33.3

BER: 0.0004
22.6 22.7 22.8 23.0

22.3 22.4 22.5 22.5 22.5

22.1 22.1 22.1 22.1 22.2 22.2

21.6 21.7 21.6 21.6 21.7 21.7

22.5

BER: 0.0005

4

8

16

32

b)
 U

FT
P

ge
ne

ra
tio

ns
ize

 g

100 100 100 100

100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

99.9 94.2 98.2 99.5 99.9

90.6 95.2 99.3 99.9 100

87.3 90.1 96.2 99.9 100 100

85.8 88.4 96.9 100 100 100

86.7 51.4 57.1 64.6 72.4

48.3 49.0 52.8 60.8 70.9

47.4 47.5 47.5 49.0 55.1 67.5

46.2 46.2 46.1 46.2 48.8 60.3

49.0 20.4 20.7 21.6 22.8

20.1 20.1 20.0 20.2 20.4

19.6 19.5 19.6 19.6 19.5 19.5

18.7 18.7 18.7 18.7 18.7 18.7

20.5 7.6 7.6 7.6 7.7

7.5 7.5 7.4 7.5 7.5

7.2 7.2 7.3 7.3 7.2 7.2

6.9 6.9 6.8 6.8 6.8 6.8

7.7

4

8

16

32

c)
 S

ky
pe

ge
ne

ra
tio

ns
ize

 g

100 100 100 100

100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100 99.9 100 100 100

99.9 100 100 100 100

99.9 100 100 100 100 100

99.9 100 100 100 100 100

99.6 99.6 99.8 99.9 99.9

99.5 99.7 99.9 100 100

99.4 99.7 99.8 100 100 100

99.4 99.7 99.9 100 100 100

98.9 98.9 99.3 99.5 99.6

98.8 99.2 99.6 99.7 99.8

98.5 99.0 99.4 99.7 99.8 99.9

98.4 98.8 99.3 99.7 99.8 99.9

97.8

1/16 1/8 1/4 1/2 3/4 1/1
redundancy r

4

8

16

32

d)
 F

Fm
pe

g

ge
ne

ra
tio

ns
ize

 g

100 100 100 100

100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

99.9

1/16 1/8 1/4 1/2 3/4 1/1
redundancy r

98.2 99.5 99.9 100

97.1 99.0 99.9 100 100

95.6 97.6 99.5 100 100 100

95.2 97.9 99.8 100 100 100

94.0

1/16 1/8 1/4 1/2 3/4 1/1
redundancy r

82.2 86.8 90.4 93.1

78.6 80.9 86.4 91.5 95.0

76.8 77.1 78.9 85.6 92.2 96.5

76.0 76.0 76.9 83.2 92.2 97.7

77.3

1/16 1/8 1/4 1/2 3/4 1/1
redundancy r

65.0 66.9 69.1 71.2

62.9 63.2 64.1 65.7 67.5

62.5 62.4 62.5 62.7 63.3 64.3

61.8 61.7 61.8 61.9 62.0 62.2

63.1

1/16 1/8 1/4 1/2 3/4 1/1
redundancy r

55.0 55.8 56.5 57.2

54.1 54.3 54.3 54.4 54.5

53.9 53.9 53.9 54.0 53.9 54.0

53.4 53.4 53.4 53.3 53.4 53.4

54.4
0

20

40

60

80

100

PRR [%
]

Figure 31: Heatmap of average Packet Reception Rate after decoding
(𝑃𝑅𝑅𝐷𝐸𝐶) for different sRLNC parametrizations. The uncoded reference

𝑃𝑅𝑅 is given in each marked top left corner, (c.f. [P6], Figure 1).
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Context & Discussion: While [P6] was published after [P4], it is not a di-
rect follow up. Instead, the later study delves deeper into the underlying mo-
tivation and highlights the need for padding overhead reduction schemes.In
the overall context of this thesis, the most discussable claim in [P6] is the hy-
pothesis that it is more realistic to use a bit-error model instead of a packet
length independent loss model, even though all our other publications use
the latter one. While bit-error models do indeed better reflect the physical
impact of inferences and signal degradation, length independent models are
still widely used in networking research. For example, all models in the pop-
ular network emulator netem simply operate on a per-packet basis. Even
netem’s corruption option does not factor in the packet lengths. This limi-
tation was also inherited by our initial link’em bridge prototype, due to its
foundation on netem. To solve this issue, we have not only created Bernoulli
bit error model, but also ported a Signal-to-Noise-Ratio (SNR)-based model
from the network simulator 𝑁𝑆 − 3 into link’em using our custom loss mod-
ule extension. This enables a proper emulation of bit errors without relying
on expensive hardware or non-reliable methods, like the microwave setup
by Kim et al. [27]. Using such an approach would be an interesting topic
for future work, not only to validate our simulation results of [P4] and [P6],
but also evaluate the padding reduction schemes by Compta et al. [8] in a
real-world testbed.
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Conclusion: This thesis has summarized and discussed our contributions
to field of network coding-based FEC. While each publication delved deeper
into its respective topic and solved a distinctive problem, the superordinate
goal was to substantially improve the overall state-of-the-art and bring net-
work coding one step closer to practice. Sticking to our motivational bridging
the gap analogy, which was initially depicted in Figure 1, we have introduced
novel methodologies to connect the information theory fundamentals of net-
work coding to its real-world applicability. This was achieved by showing
efficient ways to integrate coding, creating better evaluation methods, and
shining a light on the impact of padding overhead for real-world applications.
More precisely, [P1] and [P2] presented efficient ways to make network cod-
ing usable within IoT protocols, namely CoAP and MQTT-SN, to overcome
packet loss in wireless scenarios. Bot testbed evaluations verified that the
coding schemes can significantly reduce the completion time of a reliable file
transfer and, thus, save valuable energy. To enable a better evaluation of
possible coding gains, [P3] and [P5] introduced novel tools and methods to
do so. Thereby, the developed link’em bridge [P3] was also featured in the
VoIP testbed of [P5] to enable a reliable packet loss emulation. This usage
does not only link our publications, but also verifies the practical purpose
of the link’em bridge for networking research. Finally, in [P4] and [P6], we
have highlighted the occurrence of padding overhead for real-world applica-
tions with heterogeneous packet length distributions and presented a novel
packet-structure preserving coding scheme to overcome the problem.

Future Work: The presented contributions of this thesis did not only
solve specific relevant challenges, but also paved the way for future research.
While our publications have introduced efficient network coding extension
for CoAP [P1] and MQTT-SN [P2], yet, it would be interesting to adapt our
solutions to other protocols. To give a specific example, especially an exten-
sion for the Data Distribution Service (DDS) looks promising. Because DDS
implements a data-centric publish-subscribe architecture and stores the data
in a distributed manner between all nodes, promising coding opportunities
arise. Not only can our network coding enhanced publish-subscribe pattern
from [P2] speed up the data transfer, but the data blocks them self can
also be distributed as independent linear combinations across the network.
Such an approach solves the coupon collector problem, similar to the net-
work coded file-sharing in Avalanche [15]. This does not only make the data
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distribution process much easier, but also increases the overall robustness of
the system.

The IETF Coding for efficient NetWork Communications Research Group
(NWCRG) currently works on a draft to add packet-level FEC to QUIC,
similar to TETRYS’ sliding window encoding scheme [42]. Such an integra-
tion would bring network coding-based FEC to a vast variety of applications,
which makes it necessary to address the challenge of padding overhead re-
duction. Especially our findings in [P6] highlight, how strong the negative
impact of this issue really is. While our proposed size-based coding scheme
[P4] is one solution to the problem, a real-world comparison to other ap-
proaches would be interesting, e.g., the fragmentation schemes by Compta
et al. [8].

Considering SPQER [P5], we believe that the approach has great potential,
especially with to the ongoing push towards better machine learning algo-
rithms in mind. Taking a look at the related field of video streaming QoE,
VMAF, a machine learning-based approach has replaced purely image-based
metrics like SSIM, and is now considered state-of-art. A similar change will
probably happen to VoIP QoE metrics. The results in our journal publi-
cation were calculated using a classifier, which was trained on a dataset of
carefully created annotations. This allows the classifier to achieve a high
score in correspondence to the ground truth, but does not directly reflect
the true human hearing capability. Thus, by training a specialized classi-
fier for SPQER, which does maybe not achieve a perfect score compared to
the annotation data set, but instead better mimics the human reception of
speech, a very well fitting VoIP QoE could be calculated. While such devel-
opments are still subject to long-term future work, our link’em bridge [P3]
has already shown its worth. Not only was it used in our SPQER testbed,
but the bridge was also featured in the setup in [30] to create specific frame
drop patterns within an RTP video stream. Such an adaption does not only
highlight the versatility of link’em and shows its potential for future work, it
also verifies that our contributions are not limited to network coding-based
FEC, but can also be applied to other areas of networking as well.

Thus, to conclude, this thesis does not only make meaningful contributions
to specific network coding challenges and bridge the gap between information
theory and real-world usage, but also enables future work, even in further
areas of networking research.
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