On Operads

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001051822
Titel: On Operads
Sonstige Titel: Über Operaden
Autor(en): Brinkmeier, Michael
Erstgutachter: Prof. Dr. Rainer Vogt
Zweitgutachter: Dr. habil. Martin Markl
Zusammenfassung: This Thesis consists of four independent parts. In the first part I prove that the delooping, i.e.the classifying space, of a grouplike monoid is an $H$-space if and only if its multiplication is a homotopy homomorphism. This is an extension and clarification of a result of Sugawara. Furthermore I prove that the Moore loop space functor and the construction of the classifying space induce an adjunction on the corresponding homotopy categories. In the second part I extend a result of G. Dunn, by proving that the tensorproduct $C_{n_1}\otimes\dots \otimes C_{n_j}$ of little cube operads is a topologically equivalent suboperad of $C_{n_1 \dots n_j}$. In the third part I describe operads as algebras over a certain colored operad. By application of results of Boardman and Vogt I describe a model of the homotopy category of topological operads and algebras over them, as well as a notion of lax operads, i.e. operads whose axioms are weakened up to coherent homotopies. Here the W-construction, a functorial cofibrant replacement for a topological operad, plays a central role. As one application I construct a model for the homotopy category of topological categories. C. Berger claimed to have constructed an operad structure on the permutohedras, whose associated monad is exactly the Milgram-construction of the free two-fold loop space. In the fourth part I prove that this statement is not correct.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001051822
Schlagworte: Operads; Little Cubes; Tensorproduct of Operads; H-spaces; Strongly Homotopy Commutative; Homotopy Homomorphism; Permutohedron
Erscheinungsdatum: 18-Mai-2001
Enthalten in den Sammlungen:FB06 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
E-Diss91_thesis.tar.gz147,31 kBGZIPÖffnen/Anzeigen
E-Diss91_thesis.pdfPräsentationsformat830,44 kBAdobe PDFMiniaturbild

Alle Ressourcen im repOSitorium sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt. rightsstatements.org