Inducing Conceptual User Models

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
Titel: Inducing Conceptual User Models
Autor(en): Müller, Martin Eric
Erstgutachter: Prof. Dr. C. Rollinger
Zweitgutachter: PD Dr. habil H. Gust
Prof. Dr. I. Düntsch
Zusammenfassung: User Modeling and Machine Learning for User Modeling have both become important research topics and key techniques in recent adaptive systems. One of the most intriguing problems in the `information age´ is how to filter relevant information from the huge amount of available data. This problem is tackled by using models of the user´s interest in order to increase precision and discriminate interesting information from un-interesting data. However, any user modeling approach suffers from several major drawbacks: User models built by the system need to be inspectable and understandable by the user himself. Secondly, users in general are not willing to give feedback concerning user satisfaction by the delivered results. Without any evidence for the user´s interest, it is hard to induce a hypothetical user model at all. Finally, most current systems do not draw a line of distinction between domain knowledge and user model which makes the adequacy of a user model hard to determine. This thesis presents the novel approach of conceptual user models. Conceptual user models are easy to inspect and understand and allow for the system to explain its actions to the user. It is shown, that ILP can be applied for the task of inducing user models from feedback, and a method for using mutual feedback for sample enlargement is introduced. Results are evaluated independently of domain knowledge within a clear machine learning problem definition. The whole concept presented is realized in a meta web search engine called OySTER.
Schlagworte: Machine Learning for User Modeling; User Modeling; Adaptive User Interfaces; Web information retrieval; Web Search engines; Document filtering
Erscheinungsdatum: 29-Apr-2002
Enthalten in den Sammlungen:FB07 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
E-Diss188_thesis.pdfPräsentationsformat11,23 MBAdobe PDFMiniaturbild

Alle Ressourcen im repOSitorium sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.