Characterization of the KdpFABC complex from Escherichia coli, of soluble subdomains from KdpB, and of a homologous protein of Methanococcus jannaschii

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2003071014
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Characterization of the KdpFABC complex from Escherichia coli, of soluble subdomains from KdpB, and of a homologous protein of Methanococcus jannaschii
Authors: Bramkamp, Marc
Thesis referee: Prof. Dr. K. Altendorf
Prof. Dr. W. Schoner
Abstract: The KdpFABC complex is a P-type ATPase. Several features make the inducible Kplus-transporting ATPase a unique member of this enzyme family. Aspects of structure and function of KdpB, the catalytic subunit of the complex, were examined here. Site-directed mutagenesis of the charged residues aspartate 583 and lysine 586 in the putative transmembrane helix 5 of KdpB revealed that these charges are involved in the coupling of ATP hydrolysis to ion translocation. The binding of FITC was shown to be specific and the binding site is within the nucleotide-binding domain of KdpB, most probably at lysine 395. Modification of KdpB with FITC was affected by adenosine nucleotides. A Mg2plus-dependent hydrolysis of p-nitrophenolphosphate was observed, which was inhibited by micromolar concentrations of ortho-vanadate and FITC. Low concentrations of ATP stimulated pNPP hydrolysis, while higher concentrations of ATP were inhibitory. ADP, AMP and Pi inhibited the pNPP hydrolysis. The catalytic modules of KdpB were separately synthesized, purified and biochemically characterized. It was found that KdpBN was highly soluble and could be concentrated up to 1 mM and higher. Therefore, the KdpBN domain was used for further structural analysis using nuclear magnetic resonance spectroscopy. The KdpBN domain could be purified from cells grown in minimal medium with 15N-ammonium sulfate and 13C1-6 glucose as sole nitrogen and carbon sources, respectively. The purified, labeled KdpBN protein was applied to NMR analysis. High quality multidimensional NMR spectra were obtained (M. Haupt and H. Kessler, TU Munich, personal communication) and structure calculations leading to backbone assignments were carried out. An ortholog of the H4H5 domain of KdpB from the thermopilic archaeon Methanococcus jannaschii, Mj0968, was cloned, expressed, purified, and characterized.
URL: https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2003071014
Subject Keywords: Kdp; potassium transport; NMR; protein structure
Issue Date: 10-Jul-2003
Type of publication: Dissertation oder Habilitation [doctoralThesis]
Appears in Collections:FB05 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
E-Diss226_thesis.pdfPräsentationsformat7,43 MBAdobe PDF
E-Diss226_thesis.pdf
Thumbnail
View/Open


Items in osnaDocs repository are protected by copyright, with all rights reserved, unless otherwise indicated. rightsstatements.org