On the theory of planar and cylindrical dielectric waveguides with photorefractive nonlinearity

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2004110111
Titel: On the theory of planar and cylindrical dielectric waveguides with photorefractive nonlinearity
Autor(en): Geisler, Andreas
Erstgutachter: Prof. Dr. Schürmann
Zweitgutachter: apl. Prof. Dr. Schmidt
Zusammenfassung: Planar and cylindrical waveguides with linear cladding and a core with real, field dependent permittivity are considered, in particular even and odd modes are investigated.Assuming a plane wave with TE-polarization, Maxwell´s equations for the electric field lead to a nonlinear differential equation whose solution is approximated by means of a Green s function and an iteration method. Referring to a photorefractive permittivity with external field, the approximate solution is compared with the numerical solution; furthermore, the amplitude of even modes in the planar waveguide is compared with the analytically determined amplitude. In both cases, the agreement is satisfactory.The conditions of convergence of the iteration are investigated for a photorefractive permittivity with external field. It is shown that they are fulfilled for suitable choice of the width of the waveguide and the propagation constant. By means of the iteration method, the change of the linear dispersion relation due to the field dependent permittivity is described.The ratio of the power flow in the core to the total power flow is linearized in order to investigate the influence of weak nonlinearity.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2004110111
Schlagworte: dielectric waveguide; planar waveguide; cylindrical waveguide; photorefractive permittivity
Erscheinungsdatum: 1-Nov-2004
Enthalten in den Sammlungen:FB04 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
E-Diss357_thesis.pdfPräsentationsformat484,91 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen


Alle Ressourcen im repOSitorium sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt. rightsstatements.org