Automatisierungspotenzial von Stadtbiotopkartierungen durch Methoden der Fernerkundung

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201006096323
Titel: Automatisierungspotenzial von Stadtbiotopkartierungen durch Methoden der Fernerkundung
Autor(en): Bochow, Mathias
Erstgutachter: Prof. Dr. Hermann Kaufmann
Zweitgutachter: Prof. Dr. Manfred Ehlers
Zusammenfassung: Die Stadtbiotopkartierung hat sich in Deutschland als die Methode zur Schaffung einer ökologischen Datenbasis für den urbanen Raum etabliert. Sie dient der Untersuchung naturschutzfachlicher Fragen, der Vertretung der Belange des Naturschutzes in zahlreichen räumlichen Planungsverfahren und ganz allgemein einer ökologisch orientierten Stadtplanung. Auf diese Weise kommen die Städte ihrem gesetzlichen Auftrag nach, Natur und Landschaft zu schützen, zu pflegen und zu entwickeln (§ 1 BNatSchG), den es explizit auch innerhalb der besiedelten Fläche zu erfüllen gilt. Ein Großteil der heute bestehenden 228 Stadtbiotoptypenkarten ist in der Etablierungsphase der Methode in den 80er Jahren entstanden und wurde häufig durch Landesmittel gefördert. Der Anteil der Städte, die jemals eine Aktualisierung durchgeführt haben, wird jedoch auf unter fünf Prozent geschätzt. Dies hängt vor allem mit dem hohen Kosten- und Zeitaufwand der Datenerhebung zusammen, die durch visuelle Interpretation von CIR-Luftbildern und durch Feldkartierungen erfolgt. Um die Aktualisierung von Stadtbiotoptypenkarten zu vereinfachen, wird in der vorliegenden Arbeit das Automatisierungspotenzial von Stadtbiotopkartierungen durch Nutzung von Fernerkundungsdaten untersucht. Der Kern der Arbeit besteht in der Entwicklung einer Methode, die einen wichtigen Arbeitsschritt der Stadtbiotopkartierung automatisiert durchführt: Die Erkennung des Biotoptyps von Biotopen. Darüber hinaus zeigt die Arbeit das Automatisierungspotenzial bei der flächenhaften Erhebung von quantitativen Parametern und Indikatoren zur ökologischen Bewertung von Stadtbiotopen auf. Durch die automatische Biotoptypenerkennung kann die Überprüfung und Aktualisierung einer Biotoptypenkarte in weiten Teilen der Stadt automatisiert erfolgen, wodurch der Zeitaufwand reduziert wird. Das entwickelte Verfahren kann in den bestehenden Ablauf der Stadtbiotopkartierung integriert werden, indem zunächst die Kartierung ausgewählter Biotoptypen automatisch erfolgt und die verbleibenden Flächen der Stadt durch visuelle Luftbildinterpretation und Feldbegehung überprüft und zugeordnet werden. Die thematische Einteilung der Biotoptypen orientiert sich im urbanen Raum in erster Linie an der anthropogenen Nutzung, da diese den dominierenden Faktor für die biologische Ausstattung der Biotope darstellt. Die entwickelte Methode eignet sich vor allem zur Erkennung von baulich geprägten Biotopen, da die Nutzung - und dadurch der Biotoptyp einer Fläche - durch eine automatische Analyse der Geoobjekte innerhalb der Biotopfläche ermittelt werden kann. Die Geoobjekte wiederum können durch eine Klassifizierung von multisensoralen Fernerkundungsdaten (hyperspektrale Flugzeugscannerdaten und digitale Oberflächenmodelle) identifiziert werden. Die Analyse der Geoobjekte und der urbanen Oberflächenarten innerhalb der Biotopfläche erfolgt anhand von räumlichen, morphologischen und quantitativen Merkmalen. Auf Basis dieser Merkmale wurden zwei Varianten eines automatischen Biotopklassifizierers entwickelt, die unter Verwendung von Fuzzy Logik und eines neu entwickelten, paarweise arbeitenden Maximum Likelihood Klassifizierers (pMLK) implementiert wurden. Für die bisher implementierten 10 Biotoptypen, die zusammen etwa die Hälfte des Stadtgebiets abdecken, wurde eine Erkennungsgenauigkeit von über 80 % ermittelt. Der pMLK wurde erfolgreich in zwei Städten (Berlin, Dresden) erprobt, wodurch seine Übertragbarkeit nachgewiesen werden konnte.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201006096323
Schlagworte: Stadtbiotopkartierung; Fernerkundung; GIS; räumliche Analyse; Fuzzy Logik; Klassifizierung; Automatisierung; Objekterkennung; urban biotope mapping; remote sensing; GIS; spatial analysis; fuzzy logic; classification; automation; object recognition
Erscheinungsdatum: 9-Jun-2010
Enthalten in den Sammlungen:FB06 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_bochow.pdfPräsentationsformat51,83 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons