Probing protein import machineries of different organisms with the lipid bilayer technique: Functional comparison and phylogenetic insights

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2012102510445
Open Access logo originally created by the Public Library of Science (PLoS)
Titel: Probing protein import machineries of different organisms with the lipid bilayer technique: Functional comparison and phylogenetic insights
Autor(en): Harsman, Anke
Erstgutachter: Prof. Dr. Richard Wagner
Zweitgutachter: PD Dr. Martin Jung
Zusammenfassung: Im Rahmen dieser Arbeit wurde die Konservierung elektrophysiologischer Charakteristika von Proteintranslokasen aus verschiedenen Organismen untersucht. Die Sec61/Sec61p Komplexe aus rauen Mikrosomen von Canis familiaris und Saccharomyces cerevisiae bilden ionenpermeable Poren mit einer hohen Leitfähigkeit in planaren Lipidmembranen. In Säugerzellen werden diese durch einen Calcium-Calmodulin (Ca2+-CaM)-vermittelten negativen Feedback-Mechanismus reguliert. Im Rahmen dieser Arbeit konnte die Spezifität der zugrundeliegenden Interaktion von Ca2+-CaM mit der α-Untereinheit des Sec61 Komplexes belegt werden. Es wurde gezeigt, dass der Calmodulin Antagonist Ophiobolin A in der Lage ist, die Inhibition der Ionenpermeation durch Sec61 aufzuheben. Des Weiteren wurde anhand elektrophysiologischer Messungen nachgewiesen, dass dieser Ca2+-CaM-vermittelte Regulationsmechanismus in der Hefe S. cerevisiae nicht vorhanden ist. Dies wird auf eine kritische Variation in der Primärstruktur des Hefe-Proteins zurückgeführt, welche die Bindung von Calmodulin an den N-Terminus von Sec61p verhindert. Der bakterielle SecYEG Komplex aus E. coli konnte erfolgreich in Proteoliposomen rekonstituiert werden. Die Funktionalität des Translokons wurde in in vitro proOmpA Importexperimenten nachgewiesen. Mittels dieser Proteoliposomen sollten SecYEG Poren in den planaren Bilayer integriert werden. Sowohl für den inaktiven als auch für den durch die Anwesenheit von Substraten oder Bindepartnern aktivierten Komplex konnten keine ionenpermeablen Poren in der Membran nachgewiesen werden. Dies lässt darauf schließen, dass im Gegensatz zu den homologen Komplexen in Eukaryoten, der bakterielle Sec Komplex intrinsisch die Permeabilitätsbarriere für Ionen aufrechterhält. Die vorliegenden Ergebnisse legen nahe, dass weder die Ausbildung ionenpermeabler Poren, noch deren Regulation zwischen den Sec Komplexen von Bakterien, Hefen und Säugern vollständig konserviert ist. In einem zweiten Teilprojekt wurden auf der Suche nach der zentralen Proteinimportpore in der äußeren Mitochondrienmembran von Trypanosoma brucei zwei mögliche Kandidaten, TbSam50 und ATOM, anhand elektrophysiologischer Untersuchungen verglichen. Beide waren in der Lage in planaren Bilayern ionenpermeable Poren auszubilden. Die elektrophysiologischen Grundcharakteristika dieser Poren, wie der hohe Leitwert und die Selektivität für Kationen sowie die beobachtete Interaktion mit mitochondrialen Präsequenzen, stimmen gut mit einer potentiellen Funktion als Proteinimportpore überein. Eine detaillierte Untersuchung der Einzelkanaleigenschaften zeigte, dass TbSam50 beträcht-liche Ähnlichkeiten zu homologen Proteinen in Hefen und menschlichen Zellen aufweist. Somit bestätigen die hier präsentierten Ergebnisse die Identifikation von TbSam50 als Kern der trypanosomalen Assemblierungsmaschinerie für β-barrel Proteine in der äußeren Mitochondrienmembran. Besonderheiten in der Beeinflussung der Kanaleigenschaften durch mitochondriale Präpeptide, insbesondere die erhöhte Verweildauer des Kanals im geschlossenen Zustand, weisen darauf hin, dass TbSam50 keine duale Funktion als β-barrel Insertase und Proteintranslokase besitzt. Hingegen lieferte die elektrophysiologische Charakterisierung von ATOM Hinweise, welche die Identifikation dieses Proteins als porenbildende Untereinheit des mitochondrialen Proteinimportapparates in T. brucei bestätigen. Darüber hinaus zeigten Vergleiche der elektrophysiologischen Charakteristika, insbesondere des Schaltverhaltens und der Anzahl porenbildender Untereinheiten pro aktiver Einheit im artifiziellen Bilayer, dass ATOM stärkere Ähnlichkeiten zu Proteintranslokasen bakterieller Abstammung aufweist, als zu Tom40, der generellen Importpore der Eukaryoten. Dies unterstützt das auf Sequenzvergleichen basierende Model, dass ATOM ein evolutives Relikt repräsentiert, anhand dessen die Entwicklung der mitochondrialen Proteinimportmaschinerie aus einer bakteriellen, Omp85-artigen Protein-exportpore abgeleitet werden kann.
URL: https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2012102510445
Schlagworte: protein translocation; electrophysiology
Erscheinungsdatum: 25-Okt-2012
Publikationstyp: Dissertation oder Habilitation [doctoralThesis]
Enthalten in den Sammlungen:FB05 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_harsman.pdfPräsentationsformat26,86 MBAdobe PDF
thesis_harsman.pdf
Miniaturbild
Öffnen/Anzeigen


Alle Ressourcen im Repositorium osnaDocs sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt. rightsstatements.org