Organometallic Polymer - Graphene Nanocomposites: Promising Battery Materials

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017012715280
Open Access logo originally created by the Public Library of Science (PLoS)
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorProf. Dr. Lorenz Walder
dc.creatorBeladi Mousavi, Seyyed Mohsen
dc.date.accessioned2017-01-27T09:17:25Z
dc.date.available2017-01-27T09:17:25Z
dc.date.issued2017-01-27T09:17:25Z
dc.identifier.urihttps://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017012715280-
dc.description.abstractPreparation, structural analysis, and electrochemical performance of a new cathodic battery material, consisting of a nanocomposite of poly(vinylferrocene) (PVFc) (Eox: 0.4 V vs. Ag/AgCl) and reduced graphene oxide (rGO), are described. The nanocomposite shows the highest charge-discharge efficiency (at a rate of 100 A g-1) ever reported for any organic / organomatellic battery material. Remarkably, the composite is “thickness scalable” up to 0.21 mAh cm-2 (770 mC cm−2 at 29 μm film thickness) on a flat surface with > 99% coloumbic efficiency, exhibiting a specific capacity density of 114 mAh g−1. The composite material is binder free and the charge storing material (PVFc) accounts for > 88% of the total weight of the cathodic material. The secret behind such a performance is the electrostatic interaction between the redox polymer in its oxidized state (exhibiting positive charge) and the original filler i.e., graphene oxide (GO) with negative surface charge. This self-assembling step is analyzed by zeta potential measurements, and a modeling study confirms the experimentally found heavy polymer loading on the GO (in aqueous solution). The efficient self-assembly led to composites with high ratio of redox polymer / GO where all polymers are in close contact with GO sheets. The stable colloidal solution was casted on the surface of a flat current collector and the insulating GO was electrochemically transformed to conductive reduced graphene oxide (rGO). The GO / rGO transformation was catalyzed by methyl viologen dichloride (MV++) working as a redox shuttle (solublized in the aqueous electrolyte) and thereby accelerating the electron transfer to GO. Complete GO / rGO transformation and the quantitative ion breathing of the composite are found by means of electrochemical quartz crystal microbalance and electrochemical AFM.eng
dc.rightsNamensnennung 3.0 Unported-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/-
dc.subjectmetallocene batteryeng
dc.subjectcompositeeng
dc.subject.ddc540 - Chemie
dc.titleOrganometallic Polymer - Graphene Nanocomposites: Promising Battery Materialseng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date2017-01-20-
dc.contributor.refereeProf. Dr. Martin Steinhart
dc.subject.bk35.14 - Elektrochemie
vCard.ORGFB5
Enthalten in den Sammlungen:FB05 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis_beladi_mousavi.pdfPräsentationsformat3 MBAdobe PDF
thesis_beladi_mousavi.pdf
Miniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons