Abstract Motivic Homotopy Theory

Please use this identifier to cite or link to this item:
https://nbn-resolving.org/urn:nbn:de:gbv:700-2017021015476
Open Access logo originally created by the Public Library of Science (PLoS)
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorProf. Dr. Markus Spitzweck
dc.creatorArndt, Peter
dc.date.accessioned2017-02-10T15:35:01Z
dc.date.available2017-02-10T15:35:01Z
dc.date.issued2017-02-10T15:35:01Z
dc.identifier.urihttps://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017021015476-
dc.description.abstractWe explore motivic homotopy theory over deeper bases than the spectrum of the integers: Starting from a commutative group object in a cartesian closed presentable infinity category, replacing the usual multiplicative group scheme in motivic spaces, we construct projective spaces, and show that infinite dimensional projective space is the classifying space of the group object. After passage to the stabilization, we construct a Snaith spectrum, calculate the cohomology represented by it for projective spaces and on its rationalization produce Adams operations and a splitting into summands of their eigenspaces.eng
dc.rightsNamensnennung-NichtKommerziell-KeineBearbeitung 3.0 Unported-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/-
dc.subjectmotiveseng
dc.subjecthomotopy theoryeng
dc.subjecthigher categorieseng
dc.subjectK-theoryeng
dc.subject.ddc510 - Mathematik
dc.titleAbstract Motivic Homotopy Theoryeng
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date2016-10-27-
dc.contributor.refereeProf. David Gepner, PhD
dc.subject.bk31.61 - Algebraische Topologie
dc.subject.bk31.27 - Kategorientheorie
dc.subject.msc19-02 - Research exposition
dc.subject.msc55-02 - Research exposition
vCard.ORGFB6
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
thesis_arndt.pdfPräsentationsformat552,05 kBAdobe PDF
thesis_arndt.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons