Regionalization of Uncovered Agricultural Soils Based on Organic Carbon and Soil Texture Estimations

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017032715771
Open Access logo originally created by the Public Library of Science (PLoS)
Titel: Regionalization of Uncovered Agricultural Soils Based on Organic Carbon and Soil Texture Estimations
Autor(en): Kanning, Martin
Siegmann, Bastian
Jarmer, Thomas
Zusammenfassung: The determination of soil texture and organic carbon across agricultural areas provides important information to derive soil condition. Precise digital soil maps can help to till agricultural fields with more accuracy, greater cost-efficiency and better environmental protection. In the present study, the laboratory analysis of sand, silt, clay and soil organic carbon (SOC) content was combined with hyperspectral image data to estimate the distribution of soil texture and SOC across an agricultural area. The aim was to identify regions with similar soil properties and derive uniform soil regions based on this information. Soil parameter data and corresponding laboratory spectra were used to calibrate cross-validated (leave-one-out) partial least squares regression (PLSR) models, resulting in robust models for sand (R2 = 0.77, root-mean-square error (RMSE) = 5.37) and SOC (R2 = 0.89, RMSE = 0.27), as well as moderate models for silt (R2 = 0.62, RMSE = 5.46) and clay (R2 = 0.53, RMSE = 2.39). The regression models were applied to Airborne Imaging Spectrometer for Applications DUAL (aisaDUAL) hyperspectral image data to spatially estimate the concentration of these parameters. Afterwards, a decision tree, based on the Food and Agriculture Organization (FAO) soil texture classification scheme, was developed to determine the soil texture for each pixel of the hyperspectral airborne data. These soil texture regions were further refined with the spatial SOC estimations. The developed method is useful to identify spatial regions with similar soil properties, which can provide a vital information source for an adapted treatment of agricultural fields in terms of the necessary amount of fertilizers or water. The approach can also be adapted to wider regions with a larger sample size to create detailed digital soil maps (DSMs). Further, the presented method should be applied to future hyperspectral satellite missions like Environmental Mapping and Analysis Program (EnMap) and Hyperspectral Infrared Imager (HyspIRI) to cover larger areas in shorter time intervals. Updated DSMs on a regular basis could particularly support precision farming aspects.
Bibliografische Angaben: Remote Sensing, Vol. 8, No. 11, Article No. 927, 2016, S. 1-17
URL: https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017032715771
Schlagworte: Remote sensing; hyperspectral; stratification; soil organic carbon; partial least squares regression; decision-tree; digital soil maps; sand; silt; clay
Erscheinungsdatum: 27-Mär-2017
Lizenzbezeichnung: Namensnennung 4.0 International
URL der Lizenz: http://creativecommons.org/licenses/by/4.0/
Publikationstyp: Einzelbeitrag in einer wissenschaftlichen Zeitschrift [article]
Enthalten in den Sammlungen:FB06 - Hochschulschriften
Open-Access-Publikationsfonds

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Zeitschriftenartikel_Remote_Sens_8_11_2016_Kanning.pdf4,75 MBAdobe PDF
Zeitschriftenartikel_Remote_Sens_8_11_2016_Kanning.pdf
Miniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons