Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201901231011
Open Access logo originally created by the Public Library of Science (PLoS)
Title: Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes
Authors: Knuesting, Johannes
Brinkmann, Marie Clara
Silva, Brenner
Schorsch, Michael
Bendix, Jörg
Beck, Erwin
Scheibe, Renate
ORCID of the author: https://orcid.org/0000-0002-6140-6181
https://orcid.org/0000-0002-2130-6581
https://orcid.org/0000-0002-4640-441X
Abstract: In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.
Citations: PLoS ONE, Volume 13, Number 8: e0202255, 2018, 1-24
URL: https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201901231011
Subject Keywords: Setaria; Photosynthesis; Carbon dioxide; Grasses; Leaves; Ultraviolet radiation; Phenols; Thin-layer chromatography
Issue Date: 13-Aug-2018
License name: Attribution 4.0 International
License url: http://creativecommons.org/licenses/by/4.0/
Type of publication: Einzelbeitrag in einer wissenschaftlichen Zeitschrift [article]
Appears in Collections:FB05 - Hochschulschriften
Open-Access-Publikationsfonds

Files in This Item:
File Description SizeFormat 
PlosONE_13_8_2018_Knuesting.pdf5,85 MBAdobe PDF
PlosONE_13_8_2018_Knuesting.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons