Resultants: A Tool for Chow Varieties

Please use this identifier to cite or link to this item:
https://nbn-resolving.org/urn:nbn:de:gbv:700-2000091517
Open Access logo originally created by the Public Library of Science (PLoS)
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPD Dr. Roland Schwänzl
dc.creatorPlümer, Judith
dc.date.accessioned2010-01-30T14:50:12Z
dc.date.available2010-01-30T14:50:12Z
dc.date.issued2000-09-15T15:55:12Z
dc.date.submitted2000-09-15T15:55:12Z
dc.identifier.urihttps://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2000091517-
dc.description.abstractThe Chow/Van der Waerden approach to algebraic cycles via resultants is elaborated and used to give a purely algebraic proof for the algebraicity of the complex suspension over arbitrary fields. The algebraicity of the join pairing on Chow varieties then follows over the complex numbers. The approach implies a more algebraic proof of Lawson´s complex suspension theorem in characteristic 0. The continuity of the action of the linear isometries operad on the group completion of the stable Chow variety is a consequence. Further Hoyt´s proof of the independence of the algebraic-continuous homeomorphism type of Chow varieties on embeddings is rectified and worked out over arbitrary fields.eng
dc.language.isoeng
dc.subjectChow variety
dc.subjectresultant
dc.subjectjoin pairing
dc.subjectinfinite loop spaces
dc.subject.ddc510 - Mathematik
dc.titleResultants: A Tool for Chow Varietieseng
dc.title.alternativeResultanten: Ein Werkzeug zum Umgang mit Chow Varietätenger
dc.typeDissertation oder Habilitation [doctoralThesis]-
thesis.locationOsnabrück-
thesis.institutionUniversität-
thesis.typeDissertation [thesis.doctoral]-
thesis.date1999-06-25T12:00:00Z-
elib.elibid13-
elib.marc.edtfangmeier-
elib.dct.accessRightsa-
elib.dct.created2000-07-21T09:43:13Z-
elib.dct.modified2000-09-15T15:55:12Z-
dc.contributor.refereeProf. Dr. Rainer Vogt
dc.contributor.refereeProf. Dr. Paulo Lima-Filho
dc.subject.msc14C25eng
dc.subject.msc55N20eng
dc.subject.dnb27 - Mathematikger
vCard.ORGFB6ger
Appears in Collections:FB06 - E-Dissertationen

Files in This Item:
File Description SizeFormat 
E-Diss13_pluemer.tar.gz125,98 kBGZIP
E-Diss13_pluemer.tar.gz
View/Open
E-Diss13_thesis.ps.gz210,09 kBGZIP
E-Diss13_thesis.ps.gz
View/Open


Items in repOSitorium are protected by copyright, with all rights reserved, unless otherwise indicated. rightsstatements.org