Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2000102612
Titel: Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis
Sonstige Titel: Musterbildung in Zellulären Automaten Modellen - Charakterisierung, Beispiele und Analyse
Autor(en): Dormann, Sabine
Erstgutachter: Prof. Dr. Horst Malchow
Zweitgutachter: PD Dr. Andreas Deutsch
Zusammenfassung: Cellular automata (CA) are fully discrete dynamical systems. Space is represented by a regular lattice while time proceeds in finite steps. Each cell of the lattice is assigned a state, chosen from a finite set of "values". The states of the cells are updated synchronously according to a local interaction rule, whereby each cell obeys the same rule. Formal definitions of deterministic, probabilistic and lattice-gas CA are presented. With the so-called mean-field approximation any CA model can be transformed into a deterministic model with continuous state space. CA rules, which characterise movement, single-component growth and many-component interactions are designed and explored. It is demonstrated that lattice-gas CA offer a suitable tool for modelling such processes and for analysing them by means of the corresponding mean-field approximation. In particular two types of many-component interactions in lattice-gas CA models are introduced and studied. The first CA captures in abstract form the essential ideas of activator-inhibitor interactions of biological systems. Despite of the automaton´s simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed (Turing pattern). In the second CA, rules are designed to mimick the dynamics of excitable systems. Spatial patterns produced by this automaton are the self-organised formation of spiral waves and target patterns. Properties of both pattern formation processes can be well captured by a linear stability analysis of the corresponding nonlinear mean-field (Boltzmann) equations.
URL: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2000102612
Schlagworte: lattice gas cellular automaton; mean field analysis; Turing pattern; excitable media; pattern formation
Erscheinungsdatum: 26-Okt-2000
Enthalten in den Sammlungen:FB06 - E-Dissertationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
E-Diss69_DISS.source.tar.gz4,04 MBGZIPÖffnen/Anzeigen
E-Diss69_DISS.final.pdfPräsentationsformat3,57 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen


Alle Ressourcen im repOSitorium sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt. rightsstatements.org