Population control methods in stochastic extinction and outbreak scenarios

Please use this identifier to cite or link to this item:
https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017051115860
Open Access logo originally created by the Public Library of Science (PLoS)
Full metadata record
DC FieldValueLanguage
dc.creatorHilker, Frank M.
dc.creatorSegura, Juan
dc.creatorFranco, Daniel
dc.date.accessioned2017-05-11T10:06:24Z
dc.date.available2017-05-11T10:06:24Z
dc.date.issued2017-05-11T10:06:24Z
dc.identifier.citationSegura Juan, Hilker Frank M., Franco, Daniel (2017) Population control methods in stochastic extinction and outbreak scenarios. PLoS ONE 12(2):e0170837. doi:10.1371/journal.pone.0170837
dc.identifier.urihttps://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017051115860-
dc.description.abstractAdaptive limiter control (ALC) and adaptive threshold harvesting (ATH) are two related control methods that have been shown to stabilize fluctuating populations. Large variations in population abundance can threaten the constancy and the persistence stability of ecological populations, which may impede the success and efficiency of managing natural resources. Here, we consider population models that include biological mechanisms characteristic for causing extinctions on the one hand and pest outbreaks on the other hand. These models include Allee effects and the impact of natural enemies (as is typical of forest defoliating insects). We study the impacts of noise and different levels of biological parameters in three extinction and two outbreak scenarios. Our results show that ALC and ATH have an effect on extinction and outbreak risks only for sufficiently large control intensities. Moreover, there is a clear disparity between the two control methods: in the extinction scenarios, ALC can be effective and ATH can be counterproductive, whereas in the outbreak scenarios the situation is reversed, with ATH being effective and ALC being potentially counterproductive.eng
dc.relationhttp://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170837
dc.rightsNamensnennung 4.0 International-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectPopulation control methodseng
dc.subjectoutbreak scenarioseng
dc.subjectstochastic extinctioneng
dc.subject.ddc510 - Mathematik
dc.titlePopulation control methods in stochastic extinction and outbreak scenarioseng
dc.typeEinzelbeitrag in einer wissenschaftlichen Zeitschrift [article]
dc.identifier.doidoi:10.1371/journal.pone.0170837
vCard.ORGFB6
Appears in Collections:FB06 - Hochschulschriften
Open-Access-Publikationsfonds

Files in This Item:
File Description SizeFormat 
Zeitschriftenartikel_PLOS_ONE_12_2_2017_Hilker.pdf3,87 MBAdobe PDF
Zeitschriftenartikel_PLOS_ONE_12_2_2017_Hilker.pdf
Thumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons